Abstractive Summarization: A Survey of the State of the Art

Hui Lin and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas
Richardson, TX 75083-0688
{hui,vince}@.hlt.utdallas.edu

Abstract

The focus of automatic text summarization research has ex-
hibited a gradual shift from extractive methods to abstractive
methods in recent years, owing in part to advances in neural
methods. Originally developed for machine translation, neu-
ral methods provide a viable framework for obtaining an ab-
stract representation of the meaning of an input text and gen-
erating informative, fluent, and human-like summaries. This
paper surveys existing approaches to abstractive summariza-
tion, focusing on the recently developed neural approaches.

1 Introduction

Nowadays online users suffer from an information overload:
the vast amount of fast-growing textual information on the
Web makes it challenging for a user to read all the material
she is potentially interested in. Automatic text summariza-
tion, which is arguably one of the important high-level natu-
ral language applications, seeks to alleviate this information
overload problem by automatically creating a concise sum-
mary of one or more text documents. Broadly, there are two
kinds of text summarization tasks. Extractive summarization
aims to create a summary by selecting a subset of the sen-
tences in the input text that maximizes the coverage of im-
portant content while minimizing redundancy. In contrast,
abstractive summarization aims to create an abstract repre-
sentation of the input text and use natural language gener-
ation techniques to generate a summary. In comparison to
extractive summaries, abstractive summaries are more chal-
lenging to produce, but are arguably a better approximation
of human summaries as they may contain expressions that
do not exist in the original text (Cohn and Lapata 2008).
Table 1 shows an input document and the corresponding
human-generated abstractive summary.

The focus of text summarization research has exhibited a
gradual shift from extractive techniques to abstractive tech-
niques in recent years, owing in part to significant advances
in the development of neural methods. Originally developed
for machine translation, neural methods have arguably rev-
olutionized the way abstractive summarization research is
conducted, creating new, exciting opportunities for summa-
rization and generation researchers.

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Source: the sri lanka government on wednesday an-
nounced the closure of government schools with immedi-
ate effect as a military campaign against tamil separatists
escalated in the north of the country.

Summary: sri lanka closes schools as war escalates.

Table 1: An example on abstractive summarization taken
verbatim from Zhou et al. (2017). The boldfaced words in
the summary do not appear in the input document.

While several surveys on text summarization have been
published over the years (Radev et al. 2002; Spérck Jones
2007; Lloret and Palomar 2012; Nenkova and McKeown
2012; Saggion and Poibeau 2012; Allahyari et al. 2017),
their foci are extractive rather than abstractive summariza-
tion. Our goal in this paper is to provide the Al audience
with a timely survey on abstractive summarization.

2 Evaluation Methods

Two types of evaluation methods are typically used to eval-
uate machine-produced summaries: manual evaluation and
automatic evaluation.

In manual evaluation, human judges are asked to choose
the best summary among several candidates by manually
scoring each one along multiple dimensions of quality
such as accuracy, clarity, and completeness (Greenbacker
2011). However, as manual evaluation is time-consuming
and is particularly inefficient for large-scale evaluations,
there have been a lot of attempts to develop automatic eval-
uation methods. For this reason, several automatic evalua-
tion metrics have been developed. The widely-used metrics
include (1) BLEU (Papineni et al. 2002), which was origi-
nally developed to evaluate machine translation systems; (2)
METEOR (Denkowski and Lavie 2014), which addresses
BLEU’s weakness when applied to low-resource languages
and has a better correlation with human judgment at the sen-
tence/segment level than BLEU; (3) Pyramid (Nenkova et
al. 2007), a well-known method for evaluating content selec-
tion in summarization; and (4) ROUGE (Lin 2004), a recall-
based evaluation metric for summarization. Being one of the
most popular metrics, ROUGE has several commonly used
variants, such as ROUGE-N, which computes the n-gram
recall between a candidate summary and a reference sum-
mary; ROUGE-SU, which uses skip-bigrams and unigrams

to measure recall; and ROUGE-L (Longest Common Sub-
sequence), which requires in-sequence but not consecutive
matches that reflect sentence-level word order n-grams.
Large-scale summarization evaluation efforts sponsored
by the U.S. government, such as SUMMAC (1996-1998)
(Mani et al. 2002), DUC (2000-2007) (Over et al. 2007),
and TAC (2008—present), have played an important role
in designing evaluation standards over the years. However,
designing appropriate metrics for automatically evaluating
summaries is challenging, and the definition of what consti-
tutes a good summary remains largely an open question.

3 Datasets

Next, we describe several datasets that have been extensively
used to evaluate automatic summarization systems.

DUC The summarization evaluations conducted as part of
the NIST-sponsored Document Understanding Conference
(DUC) (2000-2007) series (Over et al. 2007) and DUC’s
successor, the Text Analysis Conferences (TACs) (2008—
now), have provided a set of annotated datasets for train-
ing and evaluating text summarization systems, focusing on
the evaluation of generic and focused summaries of English
newspaper and newswire articles. The DUC corpora (2000—
2007) are popularly used to evaluate the vast majority of ex-
isting abstractive summarizers. However, as these corpora
are relatively small, they do not provide enough data typi-
cally needed to train neural models.

Annotated English Gigaword Annotated English Giga-
word is another popular corpus for abstractive summariza-
tion research. In comparison to the DUC corpora, Annotated
English Gigaword is considerably larger. It contains nearly
ten million documents (over four billion words) of the orig-
inal English Gigaword Fifth Edition from various domestic
and international news services over the last two decades,
providing plentiful data needed to train neural models. To
build a summarization dataset from Annotated English Gi-
gaword, Rush et al. (2015) automatically create a source-
summary pair from each article by using the first sentence
of the article as the source and its headline as the summary.

CNN/Daily Mail For each story in the CNN/Daily Mail
corpus, Nallapati et al. (2016) came up with a human sum-
mary. This corpus has 286,817 training pairs, 13,368 valida-
tion pairs and 11,487 test pairs, and has been widely used in
many abstractive summarization tasks. Not only does this
corpus provide plentiful training data, but it has two in-
teresting aspects. First, in comparison to the documents in
Gigaword and DUC, those in CNN/Daily Mail are much
longer (781 tokens on average), thus yielding a compara-
tively more challenging summarization task. Second, unlike
Gigaword, which has often been criticized for only having
headlines as summaries, CNN/Daily Mail contains multi-
sentence summaries (3.75 sentences or 56 tokens on aver-
age), and can therefore stimulate research on multi-sentence
summary generation from long documents.

TAC 2010 The TAC 2010 summarization track pioneers
the guided summarization task, where the goal is to create
a 100-word summary of a set of 10 newswire articles for a

WHAT: what happened

WHEN: date, time, other temporal markers

WHERE: physical location
PERPETRATORS: persons/groups initiating the attack

WHY: reasons for the attack

WHO_AFFECTED: affected individuals

DAMAGES: damages caused by the attack

COUNTERMEASURES: | rescue efforts, prevention efforts

Table 2: Aspects of TAC 2010’s guided summarization task
for the Attacks category.

given topic within a predefined category given a list of as-
pects relevant to each category. For example, Table 2 shows
the aspects that a summary should address for the Attacks
category. The documents released as part of the guided sum-
marization task has been widely used for abstractive sum-
marization (Genest and Lapalme 2012).

AMI The AMI Meeting Corpus consists of 100 hours of
meeting recordings and includes 139 multi-party meetings
along with their corresponding extractive and abstractive
summaries (Carletta et al. 2006). This corpus has sparked
a lot of recent research on meeting summarization.

Other corpora Other notable corpora for summarization
research that have been introduced over the years include
TIPSTER (Mani et al. 2002), the Chinese corpus LCSTS
(Hu et al. 2015), the IELTS summary corpus (Fang et al.
2016), a news corpus (Hu et al. 2015), a chat corpus (Zhou
and Hovy 2005; Uthus and Aha 2013) and an email cor-
pus (Ulrich et al. 2008).

4 Classical Approaches

In this section, we introduce classical approaches to abstrac-
tive summarization, using the term “classical” to broadly re-
fer to any approach that is not neural-based.

Early Work

Early approaches to abstractive summarization include: (1)
sentence compression (Cohn and Lapata 2009), which aims
to create a grammatical summary of a given sentence;
(2) sentence fusion (Barzilay and McKeown 2005; Filip-
pova and Strube 2008), which involves using bottom-up lo-
cal multi-sequence alignment to identify phrases convey-
ing similar information and statistical generation to combine
common phrases into a sentence; and (3) sentence revision
(Tanaka et al. 2009), which generates sentences not found in
the input and synthesizes information across sentences.

Fully Abstractive Summarization

The aforementioned approaches offer little improvement
over extractive methods, however. This motivates the devel-
opment of a fully abstractive approach, which typically con-
tains three subtasks performed in a pipeline fashion: infor-
mation extraction, content selection, and surface realization.

Information extraction Information extraction aims to
extract important information from the input text. Many ab-
stractive summarizers focus on extracting phrasal-level in-
formation such as noun phrases (NPs) and verb phrases

(VPs) together with their contextual information (Genest
and Lapalme 2012; Bing et al. 2015). Mehdad et al. (2014)
employ query-based extraction, which aims to extract im-
portant contents using automatically generated queries and
filter contents that have a low probability of being included
in a summary. Genest and Lapalme (2012) extract Informa-
tion Items (INITs), which they define as the smallest element
of coherent information in a sentence. Concretely, an INIT
is defined as a dated and located subject-verb-object triple.
Some domain-specific summarizers make use of knowl-
edge of the category, topic, or domain of the input to guide
the kind of information to be extracted (Wang and Cardie
2013). Recall from the previous section that in guided sum-
marization, the aspects for a category (e.g., Attacks) are
given. As a result, extraction rules can be designed based on
abstraction schemas specific to a certain category to extract
the desired information. For example, a killing schema re-
quires that the killer, the verb that triggers the killing event,
and the victim be extracted. In some cases, however, the in-
put document covers multiple topics, which make manual
pre-tagging of the document difficult. For example, in meet-
ing transcript summarization, several topics may be men-
tioned during the meeting (Oya et al. 2014), in which case
topic segmentation can be applied to identify the topics.

Content selection Content selection aims to select a sub-
set of the candidate phrases extracted from the information
extraction step for inclusion in the final summary, typically
subject to length constraints. For instance, Genest and La-
palme’s (2012) guided summarizer heuristically selects the
candidate phrases most frequently mentioned for an aspect.

‘While heuristic methods can be used for content selection,
many researchers have resorted to Integer Linear Program-
ming (ILP) (Murray et al. 2010; Woodsend and Lapata 2011;
Bing et al. 2015). As a constrained optimization framework,
ILP can be used to optimize an objective function subject
to a set of linear constraints. When applied to content se-
lection, the objective function is a weighted sum of a set of
binary variables. Each variable represents a candidate phrase
and has the value 1 if and only if ILP decides to select it for
inclusion in the final summary. The weight associated with
each variable indicates the importance of the corresponding
candidate phrase. Bing et al. (2015), for instance, estimate
the salience of each candidate phrase based on its position
and its grammatical role in the input document and use the
salience score as its weight. The linear constraints encode
length constraints. For instance, one constraint limits the
number of words in each sentence in the summary.

The key advantage of employing ILP for content selec-
tion is that the decision of which phrases to include in the
summary is made jointly and not independently of other
phrases. This contrasts with non-optimization approaches,
where such decisions are typically made in a heuristic, se-
quential, and therefore potentially suboptimal manner.

Surface realization Surface realization aims to combine
the candidates selected in content selection using grammati-
cal/syntactic rules to generate a summary. An existing natu-
ral language generator such as SimpleNLG (Gatt and Reiter
2009) can be adapted to generate the actual sentences.

Graph-based Methods

In graph-based methods, graphs are used to implement the
aforementioned three abstractive summarization subtasks.
Graphs are chosen because of their expressiveness: they fa-
cilitate the extraction of not only the concepts in an input
document but also the potentially complex and abstract rela-
tions between them (Greenbacker 2011).

For example, event semantic link networks (ESLNs) have
been used for joint information extraction and content selec-
tion (Li et al. 2016). Given an input text, an ESLN can be
constructed to provide an abstract representation of the text.
Specifically, each node corresponds to an event mentioned in
the input text, where an event is composed of an event trig-
ger/action and its arguments. An edge between two nodes
encodes the semantic relation between the corresponding
events. After network construction, ILP can be applied to
this network to perform information extraction and content
selection (i.e., selecting a subset of nodes for generating the
summary), using constraints similar to Bing et al.’s (2015)
(e.g., the length constraints) as well as constraints defined
on the semantic relations (e.g., the nodes should be chosen
such that the resulting graph remains connected).

As another example, entailment graphs can be used for
content selection via detecting redundant sentences as fol-
lows (Mehdad et al. 2014). If two sentences have the same
meaning (bidirectional entailment), one of them will be re-
moved. If one of them is more informative than the other
(unidirectional entailment), the less informative one will be
removed. If both of them have some parts that do not overlap
with the other, none of them will be removed.

The word graph method, which encodes the sentences
into a graph, is usually used in generation (Filippova 2010).
Briefly, a word graph is a weighted directed graph with
words as nodes and is built by incrementally adding sen-
tences to it. In this graph, words that share some sort of sim-
ilarities are mapped onto the same existing node, and the
summary is generated by selecting the best path in the graph.
For instance, after constructing a word graph, Mehdad et al.
(2014) propose a scoring function for ranking viable paths
based on coverage, fluency, and path weight.

Template-based Methods

Template-based methods are motivated by the observation
that human summaries of a given type (e.g., meeting sum-
maries for accomplishing a certain task) have common sen-
tence structures, which can be learned from the human sum-
maries in the training set and encoded as templates. Given an
input document, a summary can be generated by filling the
slots in the best fitted templates learned for this type of doc-
uments. Template-based methods typically consist of three
steps: (1) learning the templates from the human summaries;
(2) extracting important phrases from the input document;
and (3) generating a summary based on the filled templates.

For instance, Oya et al. (2014) propose a robust template-
based method for meeting summarization. In step 1 (tem-
plate learning), a template is first generated from a sentence
of each human summary in the training set by replacing each
NP in the sentence with a blank slot that is labeled with the

hypernym of the NP’s head using WordNet. Then, these tem-
plates are clustered based on their root verbs. Finally, the
templates in each cluster are further generalized using the
word graph method described in the previous subsection. In
step 2 (keyphrase extraction), the important phrases for each
topic segment of the input document are extracted and la-
beled with their hypernyms. Finally, in step 3 (generation),
the templates having the highest similarity with each topic
segment of the meeting are selected. As both the selected
phrases and the most similar template have hypernym la-
bels, candidate summary sentences can be generated by fill-
ing each template with matching labels. Since a potentially
large number of sentences can be generated for each topic
segment, a sentence ranker is trained to rank the generated
sentences in each segment. The highest ranked sentence for
each topic segment will be selected for inclusion in the sum-
mary. The selected sentences are sorted by the chronological
order of the topic segments in the input document.

5 Neural Approaches

In classical methods to abstractive summarization, informa-
tion extraction, content selection, and surface realization are
all challenging subtasks. In contrast, neural methods offer
an end-to-end approach to abstractive summarization, learn-
ing how to abstract from the source document and generate
the corresponding summary in one network. Being the first
to apply neural machine translation to abstractive summa-
rization, Rush et al.’s (2015) work sparks a novel way of
building abstractive summarizers. Since then, neural meth-
ods have become the core technology underlying the vast
majority of abstractive summarizers. While it is fairly easy
to keep track of the information that is being extracted and
selected in classical models, there is comparatively less con-
trol over what is learned and how information is encoded
in neural models. Below we introduce the key ideas that
emerged from neural abstractive summarization research.

The Encoder-Decoder Framework

The vast majority of existing neural abstractive summariza-
tion models are sequence to sequence (seq2seq) models,
which employ the encoder-decoder architecture (Sutskever
et al. 2014). This architecture is composed of an encoder and
a decoder. An encoder encodes source sentences as a list of
fixed-length vector representations, each of which captures
a word and its surrounding context. A decoder then outputs
a summary based on the encoded vectors. The architecture is
jointly trained on document-summary pairs to maximize the
probability of a correct summary for each input document.

Encoding

Encoding has similar aims as information extraction in clas-
sical approaches: they both focus on capturing information
relevant to summary generation. Encoding involves two key
steps: (1) data preprocessing and (2) encoder selection, as
described below.

Preprocessing To preprocess input sentences, many mod-
els use a word-based representation, but for some languages
(e.g., Chinese), a character-based representation may be a

better alternative as it can avoid errors introduced by word
segmentation (Chang et al. 2018). Some use word vectors
pretrained on large corpora via word2vec (Mikolov et al.
2013) or GloVe (Pennington et al. 2014), while others learn
the word embeddings during training (See et al. 2017).

Encoding long documents without losing important infor-
mation is challenging. One way to address this problem is
to compress a (long) input document into a more compact,
informative representation by leveraging extractive methods
to select representative sentences (Chen and Bansal 2018;
Hsu et al. 2018; Lebanoff et al. 2018).

There have also been recent attempts to improve abstrac-
tive summarization by exploiting the background knowledge
extracted from knowledge bases. For example, Amplayo et
al. (2018) extract additional knowledge about the entities
in the input document (e.g., the matches won by a football
team) and subsequently use the resulting external knowledge
to guide the decoder to generate better summaries.

Encoder selection Aiming to learn a better abstract repre-
sentation of the input text and control the information flow
from the encoder to the decoder, some researchers have fo-
cused on selecting or designing their encoders.

Rush et al. (2015) construct their encoder-decoder ar-
chitecture with a convolutional neural network (CNN) as
the encoder and a feed-forward neural network as the de-
coder. However, CNNs are typically replaced by recurrent
neural networks (RNNs) in recent methods in part because
CNNs lack the ability to process long sequences (Chopra
et al. 2016; Nallapati et al. 2016). To address this prob-
lem, long short-term memory networks (LSTMs) (Hochre-
iter and Schmidhuber 1997) are frequently applied instead
(Nema et al. 2017; Pasunuru et al. 2017; Paulus et al. 2017,
See et al. 2017; Tan et al. 2017). In some cases, GRUs (Cho
et al. 2014) have been shown to be a better alternative to
LSTMs (Chen et al. 2016; Kim et al. 2016; Li et al. 2017;
Zhou et al. 2017), as they have fewer parameters and are
faster to train while achieving comparable results (Chung et
al. 2014; Greff et al. 2017).

Recent research on encoding has focused on designing
complicated networks for leveraging existing information
in long documents (Celikyilmaz et al. 2018; Cohan et al.
2018). Nevertheless, how to encode long sequences remains
an open question in seq2seq models.

Decoding

A decoder is commonly implemented using an RNN. At
each timestep, the RNN takes as input two vectors, a rep-
resentation of the previously generated words and a repre-
sentation of the input sequence obtained via the encoding
step, and produces a vector matching the size of the vocab-
ulary, which is subsequently turned into a distribution over
the vocabulary using a softmax layer. Given this distribu-
tion, either the most probable word is generated as the out-
put or, more commonly, the k-best paths up to this timestep
are identified via a beam search, where k is the beam size
(Rush et al. 2015; Chopra et al. 2016; Nallapati et al. 2016;
Paulus et al. 2017; See et al. 2017).

Improvements to the Encoder-Decoder Framework

Numerous attempts have been made to improve the encoder-
decoder framework for abstractive summarization.

Attention Some words/phrases are more important than
others in a document. These important words/phrases are
more likely to appear in a summary than their less impor-
tant counterparts. To identify important words/phrases, one
can employ attention.

The key idea behind attention is to feed the decoder with
an extra input vector (known as the context vector) that en-
codes the important phrases (Bahdanau et al. 2014). At a
high level, attention can first be used to compute a weight
for each element in each timestep indicating its importance,
and the resulting weight distribution over the elements can
then be used to compute the context vector. Intuitively, the
context vector amplifies the useful information from the in-
put processed so far (i.e., information associated with high
weights in the attention distribution) and de-emphasizes the
unimportant information (i.e., information associated with
low weights in the attention distribution).

Depending on whether we employ global (sentence-level)
or local (word-level) attention, the resulting neural model
has the ability to retrieve important information at dif-
ferent levels of a document (Luong et al. 2015; Nallap-
ati et al. 2016; Tan et al. 2017; Celikyilmaz et al. 2018;
Cohan et al. 2018). Attention can also be applied to net-
works that do not employ the encoder-decoder framework
(Vaswani et al. 2017).

Distraction/Coverage While attention enables us to iden-
tify and focus on important phrases, it is not without its prob-
lem. Researchers have observed that the same region/content
could be overly focused, thereby leading to redundancy in
the summary. Distraction can be used to avoid focusing on
the same content (Nema et al. 2017). The idea is to employ
a constraint that reduces the probability of the repeated con-
tent or the weight associated with that content.

Chen et al. (2016) show that distraction can be applied to
the context vector, the attention weight vectors, and decod-
ing, although the application of distraction is not limited to
these three places. For example, in the training step, they im-
plement distraction by subtracting the history context vector
from the current context vector, effectively distracting the
network from content that has been attended to previously.

Some researchers refer to distraction as coverage (See et
al. 2017). Coverage is a concept originated in statistical ma-
chine translation (Koehn et al. 2007) and is subsequently
used for neural machine translation by Tu et al. (2016). See
et al. (2017) define a coverage loss which, when compared
to the original loss, has an additional penalty term for repe-
tition (i.e., more repetition implies less coverage).

Pointer networks/Copy mechanism Frequently occur-
ring words are likely to be identified as important words by
an attention mechanism. In contrast, it is commonly known
that neural sequence models lack the ability to generate rare
words and out-of-vocabulary (OOV) words, even if the gen-
erated context makes the prediction unambiguous.

To alleviate this problem, Vinyals et al. (2015) propose
a pointer network, which copies an element from the input

directly to the output. More generally, pointers can be seen
as an extension of attention that allows us to focus on those
rare or OOV words that are important.

If we use a pointer network to point to a region of the in-
put rather than just a rare/OOV word, it is known as copying.
In the context of abstractive summarization, the copy mech-
anism allows us to copy a segment of the input directly to the
output (Gu et al. 2016; Paulus et al. 2017; See et al. 2017;
Celikyilmaz et al. 2018; Cohan et al. 2018). Specifically, the
decoder is equipped with a “switch” that determines whether
a generator or a pointer should be used at each timestep. If
the switch is turned off, the decoder will generate a pointer
to a word-position in the input sentence and copy the corre-
sponding word to the summary (Nallapati et al. 2016).

Although the pointer/copy mechanism has proven use-
ful for generating readable summaries, it leads to an ob-
vious problem: the summaries may resemble those gener-
ated by extractive approaches, particularly when the decoder
overuses the pointer. Therefore, in order to generate a sum-
mary that is more abstractive than extractive, one should
control the extent to which the pointer is applied.

Other linguistic information can be used in conjunction
with the copy mechanism to yield better summaries. For in-
stance, when using the copy mechanism, Song et al. (2018)
leverage syntactic structure, copying a word from the input
to the summary if “it contains salient semantic content, or it
serves a critical syntactic role in the source sentence”. The
syntactic label of each word, such as its part-of-speech tag
and its depth in the associated dependency parse tree, is en-
coded by the encoder network.

Reinforcement learning The encoder-decoder frame-
work has two weaknesses. First, while the network is trained
to maximize the probability of generating a correct sum-
mary, the generated summary is evaluated by automatic
metrics such as ROUGE. In other words, minimizing the
maximum-likelihood (ML) loss is not necessarily equivalent
to optimizing the desired evaluation metric. Second, while
the decoder is trained on gold summaries, it decodes the
next word by using the generated summary from the last
timestep during test time. In other words, decoding perfor-
mance can be adversely affected by this exposure bias (Ran-
zato et al. 2015), which stems from the fact that “the net-
work has knowledge of the ground truth sequence up to the
next token during training but does not have such supervi-
sion when testing” (Paulus et al. 2017).

To address these problems, researchers have recently
leveraged Reinforcement Learning (RL) (Paulus et al. 2017;
Pasunuru and Bansal 2018). RL enables us to train an agent
to interact with a certain environment so as to maximize
a reward. With the goal of finding an optimal policy (i.e.,
the best action to take for each state), RL can be used to
solve optimization problems that are not differentiable. For
sequence generation, rather than minimizing the ML loss,
we can maximize a reward based on the desired evalua-
tion metric or even employ a hybrid training objective that
not only minimizes the ML loss but also optimizes the de-
sired metric (Paulus et al. 2017). This allows RL to make
global (sentence-level) decisions rather than local (word-
level) decisions during the generation process (Celikyilmaz

et al. 2018; Pasunuru and Bansal 2018): in each timestep, Model i Ri | Ry | Rp
the model can be trained to select a word that maximizes W‘{r‘is'thZk'teinp'(‘l‘S“ (N?H]apz?)tl] ;/; al. 2016) 22451 }g; g%z
. : _ pointer-generator (>ee €t al. . . .
.(global) e\./a.l uation metrics such as ROUGE rather than mak pointer-generator+coverage (See et al. 2017) | 39.5| 17.3| 36.4
ing a decision based purely on the words that have been ML (Paulus et al. 2017) 333| 148] 355
gener‘ated thus far. Ngte that RL also addresses the afore- RL (Paulus et al. 2017) 412] 158! 391
mentioned exposure bias problem, as gold summaries do not ML+RL (Paulus et al. 2017) 399| 15.8] 36.9
need to be used at each step in the training process. DCA ML+SEM+RL (Celikyilmaz et al. 2018) | 41.7| 19.5| 37.9
SummaRuNNer (Nallapati et al. 2017) 39.6| 16.2| 35.3
6 The State of the Art lead-3 (See et al. 2017) 40.3| 17.7] 36.8
Table 3 shows the ROUGE scores of state-of-the-art sum- REFRESH (Narayan et al. 2018) 40.0] 18.2] 36.6

marizers on the most frequent used evaluation corpus in re-
cent years, the CNN/Daily Mail dataset. Several observa-
tions deserve mention. First, in comparison to an encoder-
decoder RNN whose pointer components are trained to ac-
tivate only for OOV words and named entities (row 1), a
pointer-generator network that can freely learn when to use
the pointer (row 2), especially when used in conjunction
with coverage (row 3), yields better results. Second, com-
paring a model that employs RL (row 5) with one that uses
a ML objective (row 4), RL helps to generate better sum-
maries at the sentence level, achieving the highest ROUGE-
L score. Third, there have been attempts to combine ML
and RL: depending on how they are combined, the perfor-
mance of the resulting system may increase (row 7) or de-
crease (row 6). Finally, the extractive summarizers (rows 8—
10) slightly outperform almost all of the non-RL-based ab-
stractive summarizers (rows 1-4). One reason is that extrac-
tive summarizers make sentence-level decisions, which en-
able the creation of summaries that are more readable than
abstractive summaries. However, making sentence-level de-
cisions also makes it difficult for them to retain all of the
important contents if these contents are scattered throughout
the input text. This could explain why extractive summariz-
ers underperform the RL-based abstractive summarizers: RL
can address an abstractive summarizer’s weakness in mak-
ing sentence-level decisions.

7 Concluding Remarks

Despite recent advances in neural abstractive summariza-
tion, state-of-the-art summarization results are still far from
satisfactory. Producing an informative, fluent, and readable
summary remains a difficult task. Below we discuss several
avenues of research that we believe are worth pursuing.

Text simplification Encoding long sentences remains a
challenge for neural approaches to abstractive summariza-
tion. One could leverage the techniques from text simplifica-
tion to convert a complex sentence into simpler ones, which
could be encoded more easily by neural models.

Phrase-based models Considering the fact that most of
the classical summarizers are phrase-based, we believe that
a phrase-based representation can capture the semantics of
text more accurately for neural models. One can design a
hybrid phrase-word representation that combines the advan-
tages of word- and phrase-based representations (Chang et
al. 2018). With a hybrid representation, while the vocabu-
lary size can be larger, the decoder can generate a phrase in
one step. Alternatively, we can enable a pointer to have a
extra state for making phrase-level decisions. For example,

Table 3: Empirical results of different summarizers on the
CNN/Daily Mail dataset expressed in terms of ROUGE-1
(R1), ROUGE-2 (R2), and ROUGE-L (Ry,).

a pointer can select more words at each step if two or more
consecutive words have high probabilities.

Multi-document abstractive summarization Virtually
all recent work on neural abstractive summarization has
focused on summarizing a single document. Few systems
are designed for multi-document abstractive summarization
(Lebanoff et al. 2018; Liao et al. 2018). Note that we can
treat neural multi-document abstractive summarization as
a longer version of single-document summarization after
preprocessing the input documents using classical multi-
document summarization methods. Specifically, we can first
remove redundant information from the set of input docu-
ments by (1) clustering the sentences in the input documents,
(2) identifying the representative sentence in each of the top
clusters, and (3) forming a single document using the result-
ing sentences and reordering them as needed. Then, we can
apply the single-document abstractive summarization tech-
niques discussed earlier to produce an abstractive summary
of our artificially synthesized document.

Evaluation on different text types The vast majority of
the neural models for abstractive summarization are evalu-
ated on corpora composed of news articles because (1) news
articles are well-organized and have predicable structures
and (2) news corpora, which significantly outnumber other
kinds of corpora, provide more data needed to train data-
driven models. We believe it is worthwhile to investigate the
applicability of neural models to corpora other than news,
such as those composed of meetings and conversations.

Beyond seq2seq models While seq2seq models are exten-
sively used for neural abstractive summarization, it is hard to
interpret their results. For instance, it is hard to understand
what exactly is being learned. This in turn can make it hard
to generalize the resulting model to other datasets. In the
long run, interpretable models for abstractive summarization
should be investigated.

Extrinsic evaluation Whether commonly-used evaluation
metrics such as ROUGE are sufficient for evaluating abstrac-
tive summaries is debatable, as the same content can be re-
alized using many different words/phrases. Hence, in addi-
tion to performing an intrinsic evaluation, we may consider
evaluating the correctness and usefulness of abstractive sum-
maries in a downstream natural language application, such
as question answering.

Acknowledgments

We thank the three anonymous reviewers for their detailed
and insightful comments on an earlier draft of the paper. This
work was supported in part by NSF Grant IIS-1528037.

References

Allahyari, M.; Pouriyeh, S. A.; Assefi, M.; Safaei, S.; Trippe,
E. D.; Gutierrez, J. B.; and Kochut, K. 2017. Text summa-
rization techniques: A brief survey. International Journal of
Advanced Computer Science and Applications.

Amplayo, R. K.; Lim, S.; and Hwang, S.-W. 2018. Entity
commonsense representation for neural abstractive summa-
rization. NAACL HLT.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv:1409.0473 [cs].

Barzilay, R., and McKeown, K. R. 2005. Sentence fusion for
multidocument news summarization. Computational Lin-
guistics.

Bing, L.; Li, P,; Liao, Y.; Lam, W.; Guo, W.; and Passonneau,
R. 2015. Abstractive multi-document summarization via
phrase selection and merging. ACL-IJCNLP.

Carletta, J.; Ashby, S.; Bourban, S.; Flynn, M.; Guillemot,
M.; Hain, T.; Kadlec, J.; Karaiskos, V.; Kraaij, W.; Kro-
nenthal, M.; Lathoud, G.; Lincoln, M.; Lisowska, A.; Mc-
Cowan, I.; Post, W.; Reidsma, D.; and Wellner, P. 2006. The
AMI Meeting Corpus: A pre-announcement. MLMI.

Celikyilmaz, A.; Bosselut, A.; He, X.; and Choi, Y. 2018.
Deep communicating agents for abstractive summarization.
NAACL HLT.

Chang, C.; Huang, C.; and Hsu, J. Y. 2018. A hy-
brid word-character model for abstractive summarization.
arXiv:1802.09968 [cs].

Chen, Y., and Bansal, M. 2018. Fast abstractive summariza-
tion with reinforce-selected sentence rewriting. ACL.

Chen, Q.; Zhu, X.; Ling, Z.; Wei, S.; and Jiang, H. 2016.
Distraction-based neural networks for document summa-
rization. IJCAL

Cho, K.; van Merrienboer, B.; Giilgehre, C.; Bougares, F.;
Schwenk, H.; and Bengio, Y. 2014. Learning phrase rep-
resentations using RNN encoder-decoder for statistical ma-
chine translation. EMNLP.

Chopra, S.; Auli, M.; and Rush, A. M. 2016. Abstractive

sentence summarization with attentive recurrent neural net-
works. NAACL HLT.

Chung, J.; Giilgehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. arXiv:1412.3555 [cs].

Cohan, A.; Dernoncourt, F.; Kim, D. S.; Bui, T.; Kim, S.;
Chang, W.; and Goharian, N. 2018. A discourse-aware at-
tention model for abstractive summarization of long docu-
ments. NAACL HLT.

Cohn, T., and Lapata, M. 2008. Sentence compression be-
yond word deletion. COLING.

Cohn, T. A., and Lapata, M. 2009. Sentence compression as
tree transduction. Journal of Artificial Intelligence Research.
Denkowski, M., and Lavie, A. 2014. Meteor Universal: Lan-
guage specific translation evaluation for any target language.
WMT.

Fang, Y.; Zhu, H.; Muszynska, E.; Kuhnle, A.; and Teufel,
S. 2016. A proposition-based abstractive summariser. COL-
ING.

Filippova, K., and Strube, M. 2008. Sentence fusion via
dependency graph compression. EMNLP.

Filippova, K. 2010. Multi-sentence compression: Finding
shortest paths in word graphs. COLING.

Gatt, A., and Reiter, E. 2009. SimpleNLG: A realisation
engine for practical applications. ENLG.

Genest, P.-E., and Lapalme, G. 2012. Fully abstractive ap-
proach to guided summarization. ACL.

Greenbacker, C. 2011. Towards a framework for abstrac-
tive summarization of multimodal documents. ACL Student
Session.

Greff, K.; Srivastava, R. K.; Koutnik, J.; Steunebrink, B. R.;
and Schmidhuber, J. 2017. LSTM: A search space odyssey.
IEEE Transactions on Neural Networks and Learning Sys-
tems 28(10).

Gu, J.; Lu, Z.; Li, H.; and Li, V. O. K. 2016. Incorporating
copying mechanism in sequence-to-sequence learning. ACL.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation.

Hsu, W. T.; Lin, C.; Lee, M.; Min, K.; Tang, J.; and Sun,
M. 2018. A unified model for extractive and abstractive
summarization using inconsistency loss. ACL.

Hu, B.; Chen, Q.; and Zhu, F. 2015. LCSTS: A large scale
Chinese short text summarization dataset. EMNLP.

Kim, M.; Singh, M. D.; and Lee, M. 2016. Towards abstrac-
tion from extraction: Multiple timescale gated recurrent unit
for summarization. First Workshop on Learning Represen-
tations for NLP.

Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Fed-
erico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.;
Zens, R.; et al. 2007. Moses: Open source toolkit for statisti-
cal machine translation. ACL Interactive Poster and Demon-
stration Sessions.

Lebanoff, L.; Song, K.; and Liu, F. 2018. Adapting the
neural encoder-decoder framework from single to multi-
document summarization. EMNLP.

Li, W.; He, L.; and Zhuge, H. 2016. Abstractive news sum-
marization based on event semantic link network. COLING.
Li, P.; Lam, W,; Bing, L.; and Wang, Z. 2017. Deep recur-
rent generative decoder for abstractive text summarization.
EMNLP.

Liao, K.; Lebanoff, L.; and Liu, F. 2018. Abstract meaning
representation for multi-document summarization. COL-
ING.

Lin, C.-Y. 2004. ROUGE: A package for automatic evalu-
ation of summaries. ACL Workshop on Text Summarization
Branches Out.

Lloret, E., and Palomar, M. 2012. Text summarisation in
progress: A literature review. Artificial Intelligence Review.

Luong, M.; Pham, H.; and Manning, C. D. 2015. Effec-
tive approaches to attention-based neural machine transla-
tion. EMNLP.

Mani, I.; Klein, G.; House, D.; Hirschman, L.; Firmin, T.;
and Sundheim, B. 2002. SUMMAC: A text summarization
evaluation. Natural Language Engineering.

Mehdad, Y.; Carenini, G.; and Ng, R. T. 2014. Abstractive
summarization of spoken and written conversations based
on phrasal queries. ACL.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.; and Dean,
J. 2013. Distributed representations of words and phrases
and their compositionality. NIPS.

Murray, G.; Carenini, G.; and Ng, R. 2010. Generating and
validating abstracts of meeting conversations: A user study.
INLG.

Nallapati, R.; Zhou, B.; dos Santos, C. N.; Giil¢ehre, C.;
and Xiang, B. 2016. Abstractive text summarization using
sequence-to-sequence RNNs and beyond. CoNLL.

Nallapati, R.; Zhai, F.; and Zhou, B. 2017. SummaRuN-
Ner: A recurrent neural network based sequence model for
extractive summarization of documents. AAAI.

Narayan, S.; Cohen, S. B.; and Lapata, M. 2018. Ranking
sentences for extractive summarization with reinforcement
learning. NAACL HLT.

Nema, P.; Khapra, M. M.; Laha, A.; and Ravindran, B. 2017.
Diversity driven attention model for query-based abstractive
summarization. ACL.

Nenkova, A., and McKeown, K. 2012. A survey of text
summarization techniques. In Mining Text Data. Springer.

Nenkova, A.; Passonneau, R.; and McKeown, K. 2007.
The Pyramid method: Incorporating human content selec-
tion variation in summarization evaluation. ACM Transac-
tions on Speech and Language Processing.

Over, P.; Dang, H.; and Harman, D. 2007. DUC in context.
Information Processing and Management.

Oya, T.; Mehdad, Y.; Carenini, G.; and Ng, R. T. 2014. A
template-based abstractive meeting summarization: Lever-
aging summary and source text relationships. INLG.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: A method for automatic evaluation of machine trans-
lation. ACL.

Pasunuru, R., and Bansal, M. 2018. Multi-reward reinforced
summarization with saliency and entailment. NAACL HLT.

Pasunuru, R.; Guo, H.; and Bansal, M. 2017. Towards
improving abstractive summarization via entailment genera-
tion. EMNLP Workshop on New Frontiers in Summarization.

Paulus, R.; Xiong, C.; and Socher, R. 2017. A
deep reinforced model for abstractive summarization.
arXiv:1705.04304 [cs].

Pennington, J.; Socher, R.; and Manning, C. D. 2014.
GloVe: Global vectors for word representation. EMNLP.

Radev, D. R.; Hovy, E.; and McKeown, K. 2002. Introduc-
tion to the special issue on summarization. Computational
Linguistics.

Ranzato, M. A.; Chopra, S.; Auli, M.; Zaremba, W. 2015.

Sequence level training with recurrent neural networks.
arXiv:1511.06732 [cs].

Rush, A. M.; Chopra, S.; and Weston, J. 2015. A neu-
ral attention model for abstractive sentence summarization.
EMNLP.

Saggion, H., and Poibeau, T. 2012. Automatic Text Sum-
marization: Past, Present and Future. In Multi-source, Multi-
lingual Information Extraction and Summarization, Theory
and Applications of Natural Language Processing. Springer.
See, A.; Liu, P. J.; and Manning, C. D. 2017. Get to
the point: Summarization with pointer-generator networks.
ACL.

Song, K.; Zhao, L.; and Liu, F. 2018. Structure-infused copy
mechanisms for abstractive summarization. COLING.
Spiérck Jones, K. 2007. Automatic summarising: The state
of the art. Information Processing and Management.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to
sequence learning with neural networks. NIPS.

Tan, J.; Wan, X.; and Xiao, J. 2017. Abstractive document
summarization with a graph-based attentional neural model.
ACL.

Tanaka, H.; Kinoshita, A.; Kobayakawa, T.; Kumano, T.; and
Kato, N. 2009. Syntax-driven sentence revision for broad-
cast news summarization. ACL-IJCNLP Workshop on Lan-
guage Generation and Summarisation.

Tu, Z.; Lu, Z.; Liu, Y.; Liu, X.; and Li, H. 2016. Modeling
coverage for neural machine translation. ACL.

Ulrich, J.; Murray, G.; and Carenini, G. 2008. A publicly
available annotated corpus for supervised email summariza-
tion. AAAI EMAIL Workshop.

Uthus, D. C., and Aha, D. W. 2013. The Ubuntu Chat Cor-
pus for multiparticipant chat analysis. AAAI Spring Sympo-
sium: Analyzing Microtext.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. NIPS.

Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer
networks. NIPS.

Wang, L., and Cardie, C. 2013. Domain-independent ab-
stract generation for focused meeting summarization. ACL.
Woodsend, K., and Lapata, M. 2011. Learning to simplify
sentences with quasi-synchronous grammar and integer pro-
gramming. EMNLP.

Zhou, L., and Hovy, E. H. 2005. Digesting virtual ’geek”
culture: The summarization of technical internet relay chats.
ACL.

Zhou, Q.; Yang, N.; Wei, F.; and Zhou, M. 2017. Selective
encoding for abstractive sentence summarization. ACL.

