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Abstract

While commonsense knowledge acquisition and reasoning
has traditionally been a core research topic in the knowl-
edge representation and reasoning community, recent years
have seen a surge of interest in the natural language process-
ing community in developing pre-trained models and testing
their ability to address a variety of newly designed common-
sense knowledge reasoning and generation tasks. This pa-
per presents a survey of these tasks, discusses the strengths
and weaknesses of state-of-the-art pre-trained models for
commonsense reasoning and generation as revealed by these
tasks, and reflects on future research directions.

Introduction
Commonsense knowledge is the information that is gener-
ally accepted by the majority of people concerning everyday
life, encapsulating the practical knowledge about how the
world works. Reasoning with commonsense knowledge is
at the core of building natural language understanding mod-
els and, more broadly, AI systems that can reason about the
world in the same way as humans do.

A vast amount of work on commonsense knowledge ac-
quisition and reasoning has traditionally been conducted in
the knowledge representation and reasoning community (see
Zang et al. (2013) for a survey). For instance, there have
been notable attempts to manually create large-scale com-
monsense knowledge bases (e.g., Cyc (Lenat 1995)) and au-
tomatically acquire commonsense knowledge from the Web
(e.g., Open Mind Common Sense (Singh et al. 2002)). More
recently, the Winograd Schema Challenge, a pronoun res-
olution task that requires the use of commonsense knowl-
edge, was proposed as a practical alternative to the Turing
Test (Levesque et al. 2012).

The advent of the neural natural language processing
(NLP) era has revolutionized virtually all areas of NLP re-
search. One of the major breakthroughs is arguably the de-
velopment of pre-trained language models (PLMs). Specifi-
cally, researchers have discovered that neural models can be
trained (via a process known as pre-training) on a large body
of unannotated text to acquire general knowledge about lan-
guage, including both linguistic and commonsense knowl-
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edge. This has sparked tremendous interest in the NLP com-
munity in examining what kind of commonsense knowledge
PLMs possess and the extent to which such knowledge can
be exploited to address commonsense knowledge reasoning
and generation tasks in the last few years.

Our goal in this paper is to provide the general AI audi-
ence with a timely survey of the recent advances in the NLP
community on commonsense knowledge reasoning and gen-
eration using PLMs. Specifically, the focus of this survey is
(1) the kind of commonsense knowledge that PLMs possess
and (2) the extent to which such knowledge can be exploited
for recently designed commonsense knowledge reasoning
and generation tasks. For an overview of what linguistic
knowledge PLMs possess, we refer the reader to Rogers
et al. (2020). For comprehensive surveys of the details and
the inner workings of PLMs, we refer the reader to Qiu et al.
(2020), Han et al. (2021), and Kalyan et al. (2021).

Pre-trained Language Models
In this section, we provide the reader with the background
on PLMs needed to understand the rest of the paper.

For a long time, supervised learning has been the most
successful learning paradigm in NLP. For instance, training
a neural model to perform a classification task in a super-
vised manner primarily involves training an encoder to en-
code the input as a task-specific representation that would be
useful for classifying a given sample. In contrast, for a text
generation task (e.g., text summarization, machine transla-
tion), one would typically employ an encoder-decoder neu-
ral architecture, in which the encoder first encodes the input,
and then the decoder generates the output sequence token by
token based on both the encoded input and the tokens that
have been generated so far. The performance of supervised
models is often limited by the (typically small) amount of
data they are trained on.

Pre-training offers a solution to the aforementioned data
scarcity problem. The idea is to first train a model on
one or more self-supervised learning tasks during a process
known as pre-training, and the resulting model, in which the
weights have already been initialized during pre-training,
can be fine-tuned using the (potentially small amount of)
task-specific data in a supervised fashion. Self-supervised
learning tasks are NLP tasks for which the label associated
with a training instance can be derived automatically from



the text itself. Consider, for instance, one of the most well-
known self-supervised learning tasks, Masked Language
Modeling (MLM) (Devlin et al. 2019). Given a sequence
of word tokens in which a certain percentage of tokens is
masked randomly, the goal of MLM is to predict the masked
tokens. As can be imagined, a model for MLM can there-
fore be trained on instances where each one is composed of
a partially masked sequence of word tokens and the associ-
ated “class” value is the masked tokens themselves. Because
no human annotation is needed, a model can be pre-trained
on a very large amount of labeled data that can be automati-
cally generated. Various studies have shown that pre-training
allows a model to learn universal language representations
that encode both linguistic and commonsense knowledge,
and a PLM, after being fine-tuned, can offer substantially
improved performance on a wide variety of NLP tasks.

Existing PLMs differ primarily in terms of (1) what is
being pre-trained (is it the encoder, the decoder, or both of
them?); (2) the self-supervised learning tasks used; and (3)
the network architecture. While early work has focused on
pre-training the encoder (e.g., BERT (Devlin et al. 2019),
RoBERTa (Liu et al. 2019), ELECTRA (Clark et al. 2019))
or the decoder (e.g., GPT-2 (Svyatkovskiy et al. 2019)), re-
cent work has focused on jointly pre-training the encoder
and the decoder (e.g., T5 (Raffel et al. 2020), BART (Lewis
et al. 2020)). The most successful PLMs are based on the
Transformer (Vaswani et al. 2017), a fully-connected self-
attention model. Throughout this paper we will simply use
the term PLMs to refer to Transformer-based PLMs.

Capturing Commonsense Knowledge
How well do PLMs capture commonsense knowledge? Re-
searchers have employed probing to answer this question.
To probe a PLM for commonsense knowledge, most of the
probing methods use a hand-crafted template to convert a
relational fact from a knowledge base (KB), which is typi-
cally represented in the form of a triple <s, r, o> where s is
the SUBJECT, r is the RELATION, and o is the OBJECT, into
a natural language sentence. One template needs to be de-
fined for each relation. As illustrated in Figure 1, each triple
having the KB relation "place of birth" would be translated
to a sentence of the form "SUBJECT was born in OBJECT".
Note that a template keeps the entities intact while approxi-
mately the RELATION to a set of hand-coded verbs/relations
that can generalize on numerous entities (e.g., ATLOCA-
TION may be translated to "is in"). One of the entities (i.e.,
the SUBJECT or the OBJECT) in the sentence will then be
masked. The resulting clozed sentence can then provide an
automated and flexible way to probe PLMs for stored knowl-
edge. Specifically, if a PLM can fill in the blank in the given
clozed sentence correctly (i.e., the answer is the same as the
entity that appears in the triple originally used to generate
the sentence), then the PLM is considered to possess the
knowledge being probed. Note that we are not asking the
PLM to derive new knowledge: only inference is performed
by the PLM to check for stored knowledge.

Several key observations are being revealed via probing
experiments. First, PLMs are becoming a promising al-
ternative to KBs. BERT shows signs of capturing relational

Pre-trained  
LM

"Dante was born in [MASK]"

Neural LM 
Memory Access Florence

e.g. BERT

Figure 1: A common approach to probe PLMs for stored
knowledge (Petroni et al. 2019).

Prompt Model Predictions

A has fur, is big, has claws, has
teeth, is an animal, eats, is brown,
and lives in woods.

bear, wolf, cat, ...

Table 1: Masked token predictions about stereotypical as-
sumptions get refined as more properties are appended (Weir
et al. 2020).

knowledge in a zero-shot setting reasonably well compared
to supervised alternatives (Petroni et al. 2019). It can recall
factual knowledge for some relations such as one-to-one, but
it struggles to perform well on other relations such as N-to-
M and N-to-one.

Second, PLMs do not generalize well on unseen en-
tities. While BERT can predict the top 100 triples mined
from Wikipedia fairly accurately, which suggests that BERT
can generalize to specific data sources (Davison et al. 2019),
PLMs do not generalize well on entities not encountered
during pre-training due to their heavy reliance on memo-
rization in the pre-training process (Logan et al. 2019).

Third, PLMs can perform comparisons and catego-
rizations of entities. Specifically, they can compare phys-
ical objects along a particular attribute such as weight or
size (e.g., a chair is smaller than a room) (Goel et al. 2019).
When it comes to categorization, they work reasonably well
on knowledge types that are ontological in nature, such as
"mango isA fruit" (Hwang et al. 2021).

Finally, analyzing the top-k predictions made by PLMs
on the association between an entity and its attributes, we
see that PLMs can learn stereotypical associations rea-
sonably well from large text corpora. As more properties are
appended to provide contextual knowledge (see the example
in Table 1), the performance of RoBERTa-L increases, with
predictions going from being sensible to more acceptable
as per human interpretation. Specifically, PLMs do better
on functional (e.g., "eat fish") and encyclopedic (e.g., "are
found in forests") knowledge than on visual-perceptual vari-
ants (e.g., "bears have fur"). Although this result is encour-
aging, when asked for widely acceptable properties about
an entity, the ranked predictions provided by PLMs do not
correlate strongly with those of humans (Weir et al. 2020).

Reasoning with Commonsense Knowledge
In this section, we examine how well PLMs perform com-
monsense reasoning by considering five types of common-
sense reasoning tasks.



Linguistic Reasoning
Linguistic reasoning is concerned with understanding text
for which the correct interpretation requires commonsense
knowledge. A representative benchmark for linguistic rea-
soning is WINOGRANDE (Sakaguchi et al. 2020), which
consists of Winograd schema-inspired problems that re-
quire linguistic, social or physical reasoning (Levesque et al.
2012). As an example, given the sentence "The plant took up
too much room in the urn, because the was large" and
two answer candidates "plant" and "urn", the goal is to de-
termine which candidate should be used to fill in the blank.

Several observations can be made based on the perfor-
mance of PLMs on this and other linguistic reasoning tasks.

First, BERT shows poor linguistic sensitivity and be-
comes fragile on negated and misprimed sentences (Kass-
ner and Schütze 2020; Ettinger 2020). For example, BERT
fails to distinguish between the two sentences “Birds can-
not [MASK]”) and “Birds can [MASK]” and tends to get
distracted if they are prepended with "misprimes" such as
“Talk? Birds can [MASK]”. The fact that its predictions do
not change with such major changes indicates that BERT
does not attend to the prominent cues in the desired manner.

Second, PLMs perform poorly on numerical knowl-
edge out-of-the-box (Lin et al. 2020a; Wallace et al. 2019;
Chen et al. 2019; Bhagavatula et al. 2020). For instance,
given the sentence "Birds have [MASK] legs", BERT pre-
dicts "four" to be the answer, suggesting that pre-training
does not facilitate the acquisition of numerical knowledge.

Third, as the sentences in a given reasoning task re-
quire more turns of logical reasoning (i.e., the task be-
comes increasingly complex), BERT’s performance de-
teriorates (Zhou et al. 2020b; Richardson and Sabharwal
2020; Huang et al. 2019). These are typically sentences with
complex semantics such as riddles, where PLMs are re-
quired to understand figurative language (Lin et al. 2021a).

Several attempts have been made to improve the robust-
ness of PLMs for linguistic reasoning tasks.
Semantic similarity. Niu et al. (2021) show that seman-
tic similarity matching can be used to make PLMs robust
against irrelevant factors such as word frequencies. Specif-
ically, we can first use PLMs to generate plausible answers
so that we can compute the similarity between each gener-
ated answer and each of the provided answer candidates, and
then we can select the answer candidate that has the highest
similarity score as the correct answer.
Attention maps. Klein and Nabi (2019) show that atten-
tion maps obtained from BERT can be used for coreference
resolution in long sentences, suggesting their potential use-
fulness for pronoun disambiguation.
Numerical reasoning. To improve numerical reasoning,
Geva et al. (2020) pre-train BERT on two numerical tasks,
one involving predicting what comes after a sentence such
as "3+4+5" and the other involving answering numerical
questions (e.g., given a historical passage about Spain, an-
swer the question of "How many Japanese families were
in Spain?"), so that BERT is endowed with the ability to
understand computations expressed in pseudo-natural lan-
guage (text+digits).

Name: Egg
Temperature: RoomTemp

isCooked: False
isBroken: True

<heatUp>

t+1
Name: Egg

Temperature: Hot
isCooked: True
isBroken: True

t

Figure 2: Simulating what might happen next in order
to enable PLMs to encode language "form" and "mean-
ing" (Zellers et al. 2021).

Reasoning about Physical World
Physical commonsense reasoning involves understanding
concepts based on the physical properties of objects, includ-
ing the affordances of objects (i.e., the actions applicable to
them) and how they can be manipulated. A representative
benchmark for physical commonsense reasoning is PIQA
(Bisk et al. 2020). Given a sentence such as "When boiling
butter, when it’s ready, you can ", the goal is to fill in
the blank with one of two answer options, such as "Pour it
onto a plate" and "Pour it onto a jar".

Perception and interaction are among the key compo-
nents behind how humans learn to reason about the physi-
cal world. However, static input representations which cur-
rent neural models are fed are inadequate since they cannot
compensate for the information humans derive from being
in a dynamic physical world. So, a key question posed by
PIQA is whether PLMs can reason over physical common-
sense questions without interacting with the physical world.

Several observations can be made about the performance
of PLMs on physical commonsense reasoning questions.
First, PLMs predominantly learn property associations
that are explicitly mentioned in text, achieving higher
accuracies on entities that have simple affordances (e.g.,
"spoon") than on entities that have a long tail of affordances
(e.g., "water"). Second, PLMs struggle to understand fun-
damental relations (e.g., "before/after", "top/bottom") and
find it hard to reason when common objects are used in
unconventional ways (e.g., a glue stick is used as a paper-
weight). Finally, although neural representations are dexter-
ous at capturing the affordances ("boats can be driven") and
properties ("boats require fuel") of objects, PLMs struggle
to understand the connection between affordances and
properties (Forbes et al. 2019; Zhao et al. 2020).

In light of the weakness associated with the lack of inter-
action with the physical world, Zellers et al. (2021) explore
the benefits of providing PLMs access to world dynamics.
World dynamics include information that one would obtain
after interacting with objects. As an example, consider Fig-
ure 2. If an action heatUp is applied to a pan, the model
will learn that the temperature of an egg has risen to become
hot and is now in a cooked state. Predicting object states
after an action has been taken drastically improves a PLM’s
ability to make correct inferences about object states.



Abductive Reasoning
Abductive reasoning involves finding the most likely ex-
planation for a set of incomplete observations. There are
at least two representative benchmarks for abductive rea-
soning, COSMOSQA (Huang et al. 2019) and HELLASWAG
(Zellers et al. 2019b). COSMOSQA is a commonsense com-
prehension task where, given a context, the goal is to choose
the answer to the question based on the context from four
answer candidates. This benchmark contains questions that
require abductive reasoning, such as "what might I continue
to do after the situation described in the context?" HEL-
LASWAG is a benchmark in which the goal is to choose the
best plausible ending of a given context out of four options.

Several observations can be made. First, Huang et al.
(2019) attribute the errors made by their model on COS-
MOSQA to two reasons. First, PLMs struggle on examples
where the context becomes intricate enough to require
cross-sentence interpretation and reasoning. In such ex-
amples, PLMs are required to understand the important parts
of the passage and jointly attend to the identified parts. In ad-
dition, PLMs do not understand what situations are in-
consistent with human commonsense. For example, they
may choose "leaving a baby alone at home is not safe" over
"she would try to find a babysitter" when asked the question
"what would happen if she does not find a daycare". Inter-
estingly, when one of the answer options is "None of the
above", PLMs often struggle to choose this option since the
words in this option do not provide enough signal for why
this option might be correct.

Second, PLMs struggle with selecting the most plau-
sible ending given a context for HELLASWAG. Since a
given context can have multiple correct endings, determin-
ing which one would be the most plausible requires prior
reasoning of what humans relate to the most with their com-
monsense knowledge. Zellers et al. (2018, 2019b) show that
when more surface cues are eliminated, PLMs are less likely
to be able to predict the most plausible ending even though
it might be trivial for humans to do so.

Social Reasoning
Social reasoning involves modeling the mental states of
others and their likely actions to the extent that reasoning
can be performed over their behaviors and emotions. A rep-
resentative benchmark for social reasoning is SOCIALIQA
(Sap et al. 2019b), which evaluates commonsense reasoning
based on social situations and interactions. Consider the
following example taken from SOCIALIQA, in which the
correct answer is boldfaced:

"Context": "Tracy had accidentally pressed upon Austin
in the small elevator and it was awkward."
"Question" : "Why did Tracy do this?"
"Choice A": "get very close to Austin";
"Choice B": "squeeze into the elevator";
"Choice C": "get flirty with Austin"

Several observations can be made. First, BERT finds ex-
amples of effects ("what will happen to X?") and motivation
("why did X do that to Y?") easier than those that involve

understanding descriptions ("how would you describe X?")
(Sap et al. 2019b). Second, it performs better on examples
where the answer exhibits cues about emotions than those
involving spatial commonsense (Bhagavatula et al. 2020).

Multimodal Reasoning
Textual representations are restricted to what can be ex-
pressed through natural language and therefore are unable
to represent the multi-modal information that humans could
have access to or infer by being in a dynamic world, such as
a constant stream of images and a sequence of interactions
in the physical world. Vision naturally becomes a next step
towards enabling learning through joint interaction (Bald-
win 1995). However, merely using raw visual images along
with their descriptions is by no means sufficient to provide
grounded understanding (Marasović et al. 2020). For exam-
ple, inferring the intentions of the entities in images can only
be well dealt with if we have some prior information (either
behavioral or temporal) to rely on to make justifiable infer-
ences. This has led the community to look into approaches
that can help provide a tighter integration of linguistic and
visual modalities.

There are two well-known benchmarks for multimodal
reasoning. VISUAL COMMONSENSE REASONING (VCR)
(Zellers et al. 2019a) seeks to answer cognition-level ques-
tions from images. Concretely, given an image with a list of
regions and a question, the goal is to choose the answer to
the question out of a set of possible candidates and provide a
rationale that can explain why the chosen answer is correct.
An example can be found in Figure 3. VISUAL COMMON-
SENSE GRAPHS (Park et al. 2020) checks how well PLMs
reason about the dynamic context from a static image and an
event. Specifically, given an image and a textual description
of an event at present, the task is to generate the rest of the
visual commonsense graph that is connected to the event.
For example, given an image of a man who is drowning in
the river and a textual description of the event, the goal is to
generate a commonsense graph with nodes such as "the man
wanted to save himself from drowning", "the man is wait-
ing for help", "the man senses his own death", and "the man
needs to swim towards the river bank". Empirical results re-
veal that for both benchmarks, models that exploit both vi-
sual and textual information outperform those that only use
textual information. This suggests that visual features help
make higher quality commonsense inferences.

Temporal Reasoning
Time is an inherent aspect of events. Broadly, temporal rea-
soning involves two subtasks. Temporal attribute prediction
involves understanding an event mentioned in text or dia-
logue through reasoning with its temporal dimensions such
as the duration of the event, when the event typically hap-
pens, how long the event is going to be stationary, and how
often it happens. Temporal relation identification involves
understanding how an event is temporally related to other
events mentioned in the same text or dialogue (e.g., did an
event take place before or after another event?). Temporal
reasoning is challenging because the timestamp associated
with an event and the aforementioned temporal dimensions



Figure 3: Learning to reason about dynamic context from a static image (Zellers et al. 2019a).

may not be mentioned explicitly and therefore need to be
inferred.

Two commonly-used benchmarks have been developed
for temporal reasoning. MC-TACO (Zhou et al. 2019)
is a question-answering benchmark involving temporal
commonsense comprehension. Here is an example:

"Context": The massive ice sheet, called a glacier, caused
the features on the land you see today
"Question": When did the glacier start to impact the
land’s features ?
"options": a) centuries ago; b) hours ago; c) 10 years
ago; d) tens of millions of years ago

TIMEDIAL (Qin et al. 2021) involves temporal reasoning
in dialogue. Here is an example:

A: May we see the wine list please.
B: Sure. Our special wine today is a 1989 Chardonnay.
A: I’d like a bottle please.
B: I’ll need to see your ID please.
A: Here you go.
B: Sorry about the inconvenience, you look so young. I
had to make sure you are over .
a) 21 years old; b) 30 years old; c) 4 years old; d) 18
years old

Ideally, one can train time-aware PLMs to address these
temporal reasoning tasks. An obstacle to the development
of such PLMs concerns the lack of large-scale KBs that in-
corporate the notion of time into the facts that they encode
over entities and events. For instance, the LOCATION rela-
tion (i.e., where a person lives) and the EMPLOYMENT re-
lation (i.e., the company a person is affiliated with) are de-
pendent on time, but existing KBs typically fail to encode
the time period for which a given relation holds true. Such
time-aware KBs should also encode temporal commonsense
knowledge such as "if a student attends a university, s/he will
likely graduate and work after a few years".

Given the lack of such KBs, time-aware PLMs can only
be trained on the annotated training data provided by MC-
TACO and TIMEDIAL. For instance, Zhou et al. (2020a)
propose TACO-LM, a BERT-based PLM that is trained to be
temporally aware by contextually estimating duration and
time via (1) extracting the important events and their tem-
poral information and then (2) asking the model to predict
the masked tokens that talk about some temporal aspect.
However, TACO-LM only provides marginal improvements

over BERT w.r.t. duration, frequency, and when the event
typically takes place. More recently, Qin et al. (2021) have
shown that fine-tuned PLMs struggle to perform well on TI-
MEDIAL primarily because they largely fail to understand
the context of the given dialogue and instead simply rely on
shallow cues about the temporal patterns in the context.

Generating Commonsense Knowledge
Commonsense knowledge generation is a critical com-
ponent in building commonsense knowledge resources.
Broadly, we can divide commonsense knowledge generation
tasks into two categories, as described below.

Knowledge Base Completion
A KB is a collection of relational facts, each of which is
represented as a triple <s, r, o>, where s is the SUBJECT, r
is the RELATION, and o is the OBJECT. KB completion is the
task of automatically inferring missing facts by reasoning
about the information already present in the KB.

To date, the most successful knowledge generation ap-
proach with PLMs is arguably Commonsense Transformer
(COMET) (Bosselut et al. 2019). COMET can be used to
generate o given s and r after being pre-trained on a knowl-
edge base such as ConceptNet (Speer et al. 2017; Singh et al.
2002), which represents (mostly taxonomic) commonsense
knowledge as a graph of concepts (words or phrases) con-
nected by relations (edge types), or ATOMIC (Sap et al.
2019a), which is a large-scale KG consisting of textual de-
scriptions of inferential knowledge (if-then relations).

Constrained Commonsense Text Generation
Next, we examine studies on how PLMs can be used to gen-
erate commonsense text subject to a set of constraints.

Tasks There are three benchmarks commonly used to
evaluate commonsense generation approaches.

COMMONGEN (Lin et al. 2020b): Given a concept set
(e.g., {dog, frisbee, catch, throw}), the goal is
to generate a coherent sentence describing an everyday event
using all the provided concepts.

COMMONSENSE EXPLANATIONS (COS-E) (Rajani
et al. 2019): Given that a model selects an answer (from a
set of candidates) to a given question, the goal is to generate
an explanation of why the selected answer is correct. The
resulting explanation may help us understand the reasoning
that a model relies on to arrive at the selected answer.



αNLG (Bhagavatula et al. 2020): Given two observation-
s/events that happen in two different timesteps, the goal is to
generate a valid hypothesis h of what happened between the
observations/events.

Challenges These benchmarks reveal that PLMs, when
used as commonsense knowledge generators, suffer from
several shortcomings.

• Poor coherency: The generated sentences do not neces-
sarily adhere to the human notion of commonsense. For
instance, given the concept set {dog, catch, throw, fris-
bee}, GPT2 generates the sentence "A dog throws a fris-
bee at a football player". Although this sentence is gram-
matically correct, it suffers from poor coherency.

• Insufficient concept coverage: PLMs continue to pro-
duce sentences that fail to include all concepts from the
provided concept set. In the previous example, the con-
cept "catch" was not used to generate the output.

• Limited reasoning capability: It is not clear what kind
of reasoning is used by PLMs to arrive at an answer.
Though a solution to explanation generation could shed
light on this question, some studies show that existing
approaches generate either trivial or noisy explanations,
providing little or no evidence of how a PLM arrives at
the selected answer (Ji et al. 2020a). Other studies show
that the reasoning used by PLMs is often not fully correct
(McCoy et al. 2019; Shwartz and Choi 2020). Overall,
the reasoning capability of PLMs is far from satisfactory.

Improving Coherency and Concept Coverage Several
approaches have been proposed to address two of the chal-
lenges, poor coherency and insufficient concept coverage.
Using prototypes. Guu et al. (2018) propose a sentence
generation mechanism that involves selecting a sentence
from the training data (known as a prototype) and editing it
into a form that satisfies a given set of constraints. Their hy-
pothesis is that it is easier to edit a sentence that is grammati-
cally correct and semantically coherent than to generate one
from scratch. If provided with a concept set {trailer,
shirt, side, sit, road} from COMMONGEN, a
PLM may generate "A man sits on the side of a trailer and a
shirt", whereas a prototype such as "Two guys in red shirts
are sitting on chairs, by the side of the road, behind that open
trailer" may be edited by the PLM to form "a man in a white
shirt and black pants sits on the side of a trailer on the road",
which has better coverage and coherency.
Using knowledge graphs (KGs). KGs play a crucial role
in enabling PLMs to improve the semantic correctness (and
thus coherency) of text as they can provide PLMs with in-
formation that may not be captured reliably by PLMs, such
as entity representations and their dependency relations (i.e.,
how concepts are related). For instance, Li et al. (2021) ex-
tract concept-specific relations from a KG and inject them
into a PLM to make the generated text more coherent.
Reasoning over multi-hop relational paths in KGs. The
sparse connections between the nodes in KGs may make
it hard for PLMs to learn rich relations from them. These
rich relations, however, may be needed by PLMs to gen-
erate commonsense sentences with rich semantic struc-
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Figure 4: Using structural relational knowledge for multi-
hop reasoning (Ji et al. 2020b). Blue nodes correspond to
concepts in story, orange nodes correspond to those in story
ending, and green nodes are intermediate concepts that con-
nect their blue and orange counterparts.

tures in order to boost coherency. A solution to this prob-
lem is to perform multi-hop reasoning, which involves rea-
soning over multiple edges/relations in a KG. When per-
forming multi-hop reasoning, models are required to at-
tend to different parts of a given context to answer a ques-
tion. Figure 4 shows an example of a task known as story
ending generation, where the goal is to generate the end
of a story given the story context. In this example, ex-
ternal commonsense knowledge in the form of relational
paths can guide the generation of the two nodes lava and
substance by providing background knowledge such as
(volcano, madeOf, lava). Capturing what lava
and substance that appear in the story ending refer to
in the story context is non-trivial for PLMs, especially when
the story is long. To address this drawback, Ji et al. (2020b)
perform reasoning over multi-hop relational paths as a way
to extract structural and semantic knowledge from a KG.
Using iterative refinements. When provided with infor-
mation about past and future events (as in αNLG), humans
can easily reason about these events using contextual and
prior knowledge. This kind of non-monotonic reasoning is
crucial to improving generation coherency. However, non-
monotonic reasoning is difficult for neural models since the
generation process happens predominantly while condition-
ing on the left context (Welleck et al. 2019). To address this
problem, Qin et al. (2020) propose a decoding approach that
involves sampling from the combined output vector repre-
sentations computed from both forward and backward prop-
agation. In other words, iterative refinements are made on
the generated text through alternating between forward and
backward passes, yielding text with improved coherency.

Concluding Remarks
Despite recent progresses on using PLMs to address com-
monsense knowledge reasoning and generation tasks, many
of these tasks are far from being solved. We conclude our
discussion with key challenges in this area of research.



Dataset Model Human Dataset Model Human

HellaSwag 93.85 95.6 WinoGrande 86.64 94.0
CosmosQA 91.79 94.0 SocialIQA 83.15 88.1
PIQA 90.13 94.9 VCR 63.15 85.0

Table 2: Results of state-of-the-art models and human base-
lines on widely-used commonsense reasoning benchmarks.

Improving benchmarks. While state-of-the-art models
have achieved near-human performance on many of the
benchmarks mentioned in this paper (see Table 2), the rea-
soning tasks underlying these benchmarks are still far from
being solved. Consequently, it is not clear what the perfor-
mance gains on a particular benchmark mean. Bender and
Koller (2020) point out that acing a benchmark has led us
to over-estimate the capability of PLMs, which in turn has
given rise to misleading definitions of "understanding". It
is therefore important to re-think what is being learned by
PLMs and how benchmarks can be made more representa-
tive such that performance gains on them translate to mean-
ingful progress towards the bigger goal of "understanding".
Reducing biases. Biases in benchmarks such as pre-
dictable question structures, annotation artifacts, and lexical
overlap provide easy shortcuts for PLMs to arrive at correct
answers without involving reasoning. To mitigate biases,
researchers have used adversarial filtering wherein easily
solvable options are replaced iteratively by new ones until
the discriminator misclassifies it (Zellers et al. 2018; Mc-
Coy et al. 2019; Bras et al. 2020). To robustify data, several
workarounds have been proposed that revolve around reduc-
ing lexical overlap, creating complex reasoning questions
that require additional context, and employing adversarial
approaches with newer models (Gardner et al. 2019). Bias
reduction in benchmarks remains an active research area.
Exploring new components of commonsense knowledge.
These are numerous components of commonsense knowl-
edge that are partially understood and not covered by the
present research. One primary reason for this is that we
do not have a comprehensive understanding of how hu-
mans learn. A concrete example can be derived from Kahne-
man’s (2011) cognitive system of intuition. There is no clear
way of representing a human’s mental and emotional states
that can be readily used by our algorithms. Modeling multi-
ple mental states with natural language is a highly non-trivial
process (Sap et al. 2020).
Addressing the reporting bias. Much commonsense
knowledge is assumed rather than mentioned explicitly in
text (Grice 1975; Van Durme 2010; Gordon and Van Durme
2013). This results in what is known as the "reporting bias",
which, when combined with the scarcity of training data for
many NLP tasks, makes it hard for PLMs to receive appro-
priate signal about a particular concept (Zhao et al. 2020).
This could lead to over-generalization of associations and
amplification of biases (Shwartz and Choi 2020). How to
address the reporting bias remains an open question.
Improving existing KGs. While many approaches rely on
KGs to obtain rich contextual knowledge, existing KGs have
at least two key weaknesses that can potentially limit their

usefulness for commonsense reasoning. The first is sparsity:
many concepts and relations are missing in existing KGs (Li
et al. 2016). This sparsity problem in turn limits the amount
of knowledge that can be extracted from KGs for com-
monsense reasoning (Zhao et al. 2020). The second is non-
contextualization: finding the nodes that are most relevant to
a query is difficult, particularly by propagation-based algo-
rithms, because many of them are non-contextual in nature
(Fadnis et al. 2019). To address the non-contextualization
problem, Malaviya et al. (2020) have attempted to use the
structural and semantic connections of the nodes in a KG to
obtain contextual information. The resulting contextual in-
formation can then be explicitly encoded in a KG by creat-
ing additional nodes, which alleviates the sparsity problem.
How to densify KGs and contextualize their nodes is an on-
going research topic (Wang et al. 2020).
Harnessing commonsense knowledge from different
modalities. There are many instances wherein the visual
modality is required along with text to make sense of a
particular situation (Park et al. 2020). While humans learn
commonsense knowledge predominantly through percep-
tion and interaction with the physical world, neural mod-
els are primarily trained on text data. Harnessing common-
sense knowledge from different modalities can potentially
take these models to the next level of performance.
Towards multilinguality. An important but underex-
plored direction is multi-lingual commonsense reasoning
and generation. Studies have shown that the performance of
cross-lingual PLMs is poor when evaluated on non-English
commonsense reasoning benchmarks (Lin et al. 2021b).
These models perform poorly when evaluated on a test set
that was translated to English, leading to staggering transfer
reasoning capabilities to other languages and restricting the
research scope to only certain languages (Ponti et al. 2020).
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