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Abstract and negotiations) and to eliminateGeorge W. Bush
from the list of candidate antecedentstu city, for

This paper examines whether a learning- instance. As a result, researchers have re-adopted

based coreference resolver can be improved
using semantic class knowledge that is au-
tomatically acquired from a version of the

Penn Treebank in which the noun phrases

the once-populaknowledge-rich approach, investi-
gating a variety of semantic knowledge sources for
common noun resolution, such as #eemantic rela-
tions between two NPs (e.g., Ji et al. (2005)), their

are labeled with their semantic classes. Ex-
periments on the ACE test data show that a
resolver that employs such induced semantic
class knowledge yields a statistically signif-

icant improvement of 2% in F-measure over
one that exploits heuristically computed se-
mantic class knowledge. In addition, the in-

duced knowledge improves the accuracy of
common noun resolution by 2-6%.

semantic similarity as computed using WordNet
(e.g., Poesio et al. (2004)) or Wikipedia (Ponzetto
and Strube, 2006), and tleentextual role played by
an NP (see Bean and Riloff (2004)).

Another type of semantic knowledge that has
been employed by coreference resolvers is dfte
mantic class (SC) of an NP, which can be used to dis-
allow coreference between semantically incompat-
ible NPs. However, learning-based resolvers have
not been able to benefit from having an SC agree-
ment feature, presumably because the method used

In the past decadénowledge-lean approaches have t0 compute the SC of an NP is too simplistic: while
significantly influenced research in noun phraséhe SC of a proper name is computed fairly accu-
(NP) coreference resolution — the problem of detertately using a named entity (NE) recognizer, many
mining which NPs refer to the same real-world enf€solvers simply assign to a common noun the first
tity in a document. In knowledge-lean approachedi-€-, most frequent) WordNet sense as its SC (e.g.,
coreference resolvers employ only morpho-syntacti€o0n et al. (2001), Markert and Nissim (2005)). It
cues as knowledge sources in the resolution procei§sot easy to measure the accuracy of this heuristic,
(e.g., Mitkov (1998), Tetreault (2001)). While thesebut the fact that the SC agreement feature is not used
approaches have been reasonably successful (@eSoon et al.'s decision tree coreference classifier
Mitkov (2002)), Kehler et al. (2004) speculate thaf€ems to suggest that the SC values of the NPs are
deeper linguistic knowledge needs to be made availot computed accurately by this first-sense heuristic.
able to resolvers in order to reach the next level of Motivated in part by this observation, we exam-
performance. In fact, semantics plays a crucially imine whether automatically induced semantic class
portant role in the resolution of common NPs, allowknowledge can improve the performance of a
ing us to identify the coreference relation betweettearning-based coreference resolver, reporting eval-
two lexically dissimilar common nouns (e.dalks uation results on the commonly-used ACE corefer-

1 Introduction



ence corpus. Our investigation proceeds as followsuy the baseline resolver, improves the accuracy of
Train a classifier for labeling the SC of an NP. common noun resolution by about 5-8%.

In ACE, we are primarily concerned with classify-

ing an NP as belonging to one of the ACE semar? Related Work
tic classes. For instance, part of the ACE Phase Iaention detection.

o e Many ACE participants have
evaluation involves classifying an NP agRSON

hical-political also adopted a corpus-based approach to SC deter-
ORGANIZATION, GPE (a geographical-political re- mination that is investigated as part of timention

gion), FACILITY,, LOCATION, Of OTHERS W? ad.opt detection (MD) task (e.g., Florian et al. (2006)).
a corpus-based approach to SC determination, r tiefly, the goal of MD is to identify the boundary
casting the problem as a six-class classification tas ’

Derive two k led ; ; a mention, its mention type (e.g., pronoun, name),
erive two knowledge sources Tor COTelerence .4 its semantic type (e.g., person, location). Un-
resolution from the induced SCs. The first

K led KS) | icql like them, (1) we do not perform the full MD task,
nowledge source (KS) semantic class agreement as our goal is to investigate the role of SC knowl-

(SCA). Following Soon et al. (2001), we represengdge in coreference resolution; and (2) we do not

SCA as a binary value that |_nd|cates whether the Mise the ACE training data for acquiring our SC clas-
duced SCs of the twp NP_s mvolyed_ are the same %ﬁfier; instead, we use th@BN Entity Type Corpus
not. The second KS "“e_”“‘?”- which is represented (Weischedel and Brunstein, 2005), which consists of
as a binary value th_at indicates wheth_er an NP b%ﬂl the Penn Treebank Wall Street Journal articles
longs to one of .the five ACE SCs mentioned abc_)V(?Nith the ACE mentions manually identified and an-
Her_1ce, theme_ntlc_)n value of an NP can F’e y e_adlly notated with their SCs. This provides us with a train-
derived from its induced SC: the value N® if its ing set that is approximately five times bigger than

SC ISOTHERS andves otherv\nse._ This KS gould that of ACE. More importantly, the ACE participants
be useful for ACE coreference, since ACE is con-

d with Wi v NPs that i do not evaluate the role ahduced SC knowledge
cerned with resolving only NFs that areé mentions. 4, 4 reference resolution: many of them evaluate
Incorporate the two knowledge sources in a

¢ verN s ) heth coreference performance on perfect mentions (e.g.,
coreterence reso ver_. ext, we mvest!gate whether Luo et al. (2004)); and for those that do report per-
these two KSs can improve a learning-based bas,

: ) yrmance on automatically extracted mentions, they
line resolver that employs a fairly standard featur%Io not explain whether or how the induced SC infor-

set. Sl_nce (1) the two KSs can each_ be_ rePrhation is used in their coreference algorithms.
sented in the resolver ascanstraint (for filtering

non-mentions or disallowing coreference betweeﬂomt': prtc;]bablllstlc kr)nodels of coref?r_er:ce. tR_e-_
semantically incompatible NPs) or aseature, and cently, Inere has been a surge of Interest n im-
(2) they can be applied to the resolveiisolation or proving coreference resolution by jointly modeling

in combination, we have eight ways of incorporating clzjorefe’rencs '://thh a rzecl)%tgd tiSk such as MD (de'?"
these KSs into the baseline resolver. aume an arcu ( ))- However, joint models

In our experiments on the ACE Phase 2 coreftypIcally need to be _tral_ned on Qata thai_smulta—
neously annotated with information required by all

erence corpus, we found that (1) our SC induc-

tion method yields a significant improvement of 2%0]c the underlying models. For instance, Daumé and

in accuracy over Soon et al’s first-sense heuristiM_arcus model assumes as input a corpus annotated

method as described above; (2) the coreference r‘é’lth both MD and coreference information. On the

solver that incorporates our induced SC knowledggther hand, we tackle c.o.referen.ce and SC.lnductlon
by means of the two KSs mentioned above yieldgeparately_(ratherthanJomtly), since we train our SC
a significant improvement of 2% in F-measure Ovegetermlnatlon model on_the BB'\_] Er_mty Type Cor-
the resolver that exploits the SC knowledge comPus: where coreference information is absent.

puted by Soon et al.'s method; (3) thention KS, 3 Semantic Class Induction

when used in the baseline resolver asoastraint,

improves the resolver by approximately 5-7% in F-This section describes how we train and evaluate a
measure; and (43CA, when employed as feature  classifier for determining the SC of an NP.



3.1 Training the Classifier ACE SC Keywords
o ) PERSON person

Training corpus. As mentioned before, we use| oRGANIZATION| social group
the BBN Entity Type Corpus for training the SC FACILITY establishment, construction, building, facjl-

o . - L ity, workplace
classifier. This corpus was originally developed t¢o—5p¢ Country, province, government, fown, City,
support the ACE and AQUAINT programs and conj administration, society, island, community
sists of annotations of 12 named entity types ar|d-OCATION dry land, region, landmass, body of water,

. . . . geographical area, geological formation

nine nominal entity types. Nevertheless, we wil

only make use of the annotations of the five ACETable 1: List of keywords used in WordNet search
semantic types that are present in our ACE Phasef@r generatingvN_CLASS features.
coreference corpus, namelyERSON ORGANIZA-

TION, GPE FACILITY, andLOCATION. (5) WN_CLASS:. For each keywordy shown in the
Training instance creation. We create one train- right column of Table 1, we determine whether the
ing instance for each proper or common NP (exhead noun ofNR is a hyponym ofw in WordNet,
tracted using an NP chunker and an NE recognizetsing only the first WordNet sense aR.! If so,

in each training text. Each instance is representesle create avN_CLASS feature withw as its value.

by a set of lexical, syntactic, and semantic feature3,hese keywords are potentially useful features be-
as described below. If the NP under consideration isause some of them are subclasses of the ACE SCs
annotated as one of the five ACE SCs in the corpushown in the left column of Table 1, while others
then the classification of the associated training irappear to be correlated with these ACE SCs.

stance is simply the ACE SC value of the NP. Other6) INDUCED_CLASS: Since the first-sense heuris-
wise, the instance is labeled@sHERS This results tic used in the previous feature may not be accurate
in 310063 instances in the training set. in capturing the SC of an NP, we employ a corpus-

Features. \We represent the training instance for d2ased method for inducing SCs that is motivated by
noun phrasenR, using seven types of features: research in lexical semantics (e.g., Hearst (1992)).
(1) WORD: For each wordw in NR, we create a CGiven a large, unannotated corpusve use Identi-
WORD feature whose value is equal ta No fea- Finder to label each NE with its NE type and MINI-

(2) sUBLVERB: If NR is involved in a subject- @mPple extraction would beEastern Airlines, the

verb relation, we create sUB.1VERB feature whose C&'Tiér>, where the first entry is a proper noun la-
value is the verb participating in the relation. WebP€led with either one of the seven MUC-style NE
use Lin’s (1998b) MINIPAR dependency parser tdypes’ or OTHERS’ and the second entry is a com-
extract grammatical relations. Our motivation herdnon noun. \We then infer the SC of a common
is to coarsely model subcategorization. noun as follows: (1) we compute the probability
(3) VERB_.OBJ A VERB_OBJ feature is created in that the common noun co-occurs with each of the
a similar fashion asUBJVERB if NR participates €19ht NE type based on the extracted appositive

in a verb-object relation. Again, this represents oufé!ations, and (2) if the most likely NE type has a
attempt to coarsely model subcategorization. co-occurrence probability above a certain threshold

(4) NE: We use BBN's IdentiFinder (Bikel et al., (we setitto 0.7), we createlBDUCED_CLASS fea-

1999), a MUC-style NE recognizer to determine the This is motivated by Lin’s (1998c) observation that a coref-

NE type ofNR. If NRB is determined to be BERSON  erence resolver that employs only the first WordNet sense per
or ORGANIZATION, we create amE feature whose forms slightly better than one that employs more than onsesen

L . . The keywords are obtained via our experimentation with
value is simply its MUC NE type. However, NR ;. q\et and the ACE SCs of the NPs in the ACE training data.

iS determinEd to be BOCATION, we Create a feature 3We used (1) the BLLIP corpus (30M WOTdS), which con-
with value GPE (because most of the MUGCoCA- sists of WSJ articles from 1987 to 1989, and (2) the Reuters
TION NEs are ACEGPE NEs). Otherwise, noiE Coapus (3.7GB daFa),.whlch ha; 806,791 .Reuters articles.

. . Person, organization, location, date, time, money, pércen
feature will be created (because we are not interested sthjs indicates the proper noun is not a MUC NE.

in the other MUC NE types). ®For simplicity, oOTHERSIs viewed as an NE type here.



ture forNR whose value is the most likely NE type. ___|PER ORG GPE FAC LOC OTH
. . . . Training || 19.8 9.6 114 16 1.2 56.3
(7) NEIGHBOR: Research in lexical semantics Sug-| Test 195 90 96 18 1.1 594
gests that the SC of an NP can be inferred from its - _
distributionally similar NPs (see Lin (1998a)). Mo- Table 2: Distribution of SCs in the ACE corpus.
tivated by this observation, we create for each of

NR’s ten most semantically similar NPsneigH-  tions for the remaining 20% of the instances; and (3)
BOR feature whose value is the surface string offain an SVM classifier (using the LIBSVM pack-
the NP. To determine the ten nearest neighbors, v@@e (Chang and Lin, 2001)) on these 20% of the in-
use the semantic similarity values provided by Lin'sstances, vv_here each instanceis repr_e_sented by a
dependency-based thesaurus, which is constructggt of 31 binary features. More specifically, Iet=
using a distributional approach combined with ar{li1, li2 li, lis, lis } be the set of predictions that we

information-theoretic definition of similarity. obtained fori in step (2). To represenfwe generate
one feature from each non-empty subseLgaf

Learning algorithms. We experiment with four
learners commonly employed in language learningz > Evaluating the Classifiers

Deqsmn_ List (.DL): We gse the DL Iearne.r as de- For evaluation, we use the ACE Phase 2 coreference
scribed in Collins and Singer (1999), motivated by ) . _
) ) ‘corpus, which comprises 422 training texts and 97
its success in the related tasks of word sense dis-

fest texts. Each text has its mentions annotated with

ambiguation (Yarowsky, 1995) and NE classifica;, . .
tion (Collins and Singer, 1999). We apply add-on their ACE SCs. We create our test instances from

. . ?he ACE texts in the same way as the training in-
smoothing to smooth the class posteriors. . . .
. stances described in Section 3.1. Table 2 shows the
1-Nearest Neighbor (1-NN)We use the 1-NN clas- . )
- . L percentages of instances corresponding to each SC.
sifier as implemented in TiMBL (Daelemans et al., e
2004), employingiot product as the similarity func Table 3 shows the accuracy of each classifier (see
-004), employingiot prodlic Y row 1) for the ACE training set (54641 NPs, with
tion (which defines similarity as the number of com-
mon feature-value pairs between two instances). A 6414 proper NPs and 38227 common NPs) and the
P . - PACE test set (13444 NPs, with 3713 proper NPs and
other parameters are set to their default values. .
Max Ent ME) - Wi lov Lin's ME 9731 common NPs), as well as their performance on
vaximum £n ropy_( ): We employ LIns the proper NPs (row 2) and the common NPs (row
implementation, using a Gaussian prior for smooth- .
3). We employ as our baseline system the Soon et al.

ing and running the algorithm until convergence. .
Naive B NBIW in-h ol method (see Footnote 8), whose accuracy is shown
aive Bayes (NB)We use an in-house imp ementa'under the Soon column. As we can see, DL, 1-NN,

tion of NB’ using add-one smogt_hlng o smogj[h th%\nd SVM show a statistically significant improve-
class priors and the class-conditional probabllltles.mem over the baseline for both data sets. whereas

In ao]ditign, we train_an SVM classifier.for SCME and NB perform significantly wors. Addi-
determination by combining the output of five Clas'tional experiments are needed to determine the rea-

S|f|c:|;1:uon mﬁthJ’dS: EL’ 1_':;'? _MEHNB’ andd Sl{;’onson for ME and NB's poor performance.
et al’s method as described In the Introduction, |, 5, attempt to gain additional insight into the

with the goal of examining whether SC CI""SSiﬁCa’performance contribution of each type of features,

tion accuracy can be ‘”_‘Pro"‘?d by comt_)ining th‘?/ve conduct feature ablation experiments using the
output of |r_1(_1|V|duaI classifiers in a superwged Mang, (|assifier (DL is chosen simply because it is the
ner. Specifically, we (1) use 80% of the 'nStanC_eBest performer on the ACE training set). Results are
generated from the BBN Entity Type Corpu_s_ o raNLG\wn in Table 4, where each row shows the accu-
the four classifiers; (2) a_pply the four classifiers ar_]qacy of the DL trained on all types of features except
Soon et al.'s method to independently make pred|%r the one shown in that row (All), as well as accu-

See http://www.cs.ualberta.edindek/downloads.htm racies on the proper NPs (PN) and the common NPs

®In our implementation of Soon’s method, we label an in{CN). For easy reference, the accuracy of the DL
stance a®THERSIf no NE or WN_CLASS feature is generated; —
otherwise its label is the value of tihne feature or the ACE SC ®We use Noreen’s (1989) Approximate Randomization test
that has thevN_cLAsSfeatures as its keywords (see Table 1). for significance testing, with set to .05 unless otherwise stated.



Training Set Test Set
Soon| DL | I-NN | ME | NB | SVM || Soon| DL | 1I-NN | ME | NB | SVM
Overall 831|850 840 | 545| 71.3| 842 | 81.1| 829 831 | 53.0] 70.3| 833
Proper NPs 83.1|84.1| 810 | 542 |655| 822 | 79.6 | 820| 79.8 | 55.8| 64.4 | 80.4
CommonNPs | 83.1 | 854 | 85.2 | 546 | 73.8| 85.1 || 81.6 | 83.3| 843 | 51.9| 726 | 844

WN P~

Table 3: SC classification accuracies of different methodshie ACE training set and test set.

Training Set Test Set sparseness. TheE feature, as expected, is crucial
Feature Type | PN CN All | PN CN Al

Allfeatures || 841 854 850 820 833 829 Lo the classification of proper NPs.
- WORD 842 854 850 820 831 828

-SUBLVERB | 84.1 854 85( 820 833 829 4 Applicationto Coreference Resolution
-VERB.OBJ || 84.1 85.4 850 820 833 829

- NE 729 853 814 741 832 80.7 i i i i
“wnciass |l 841 859 853 819 sa1 s34 e can now derive from the induced SC informa

-INDUCED.C || 84.0 856 851 82.0 83.6 8374 tiontwo KSs—semantic classagreement andmen-

-NEIGHBOR || 82.8 84.9 843 80.2 829 821 tion— and incorporate them into our learning-based
coreference resolver in eight different ways, as de-
scribed in the introduction. This section examines
whether our coreference resolver can benefit from

Table 4: Results for feature ablation experiments.

Training Set Test Set
Feature Type | PN  CN All | PN CN Al

WORD 640 839 779665 824 784 any ofthe eight ways of incorporating these KSs.
SUBLVERB 24.0 702 56.3 28.8 705 59.0

VERB_OBJ 240 70.2 56.3 28.8 70.5 59.0 4.1 Experimental Setup

NE 81.1 721 74.8 78.4 714 73.3

WN_CLASS 256 788 628 304 789 655 Asin SC induction, we use the ACE Phase 2 coref-
3 . ..
INDUCED-C gg:g gé:é gg:i gg:g 2223 ?g:é erence corpus for evaluation purposes, acquiring the
coreference classifiers on the 422 training texts and
Table 5: Accuracies of single-feature classifiers. evaluating their output on the 97 test texts. We re-
port performance in terms of two metrics: (1) the
classifier trained on all types of features is showineasure score as computed by the commonly-used
in row 1 of the table. As we can see, accuracy dropgUC scorer (Vilain et al., 1995), and (2) ttaecu-
significantly with the removal af e andNEIGHBOR.  racy on the anaphoric references, computed as the
As expected, removingE precipitates a large drop fraction of anaphoric references correctly resolved.
in proper NP accuracy; somewhat surprisingly, reFollowing Ponzetto and Strube (2006), we consider
moving NEIGHBOR also causes proper NP accuracyan anaphoric referencep, correctly resolved ifip
to drop significantly. To our knowledge, there are n@nd its closest antecedent are in the same corefer-
prior results on using distributionally similar neigh-ence chain in the resulting partition. In all of our
bors as features for supervised SC induction. experiments, we use NPs automatically extracted by
Note, however, that these results do not imply@n in-house NP chunker and IdentiFinder.
that the remaining feature types are not useful for .
SC classification; they simply suggest, for instance‘}'2 The Baseline Coreference System
thatwoRD is not important in the presence of otherOur baseline coreference system uses the C4.5 deci-
feature types. To get a better idea of the utility ofion tree learner (Quinlan, 1993) to acquire a classi-
each feature type, we conduct another experiment frer on the training texts for determining whether two
which we train seven classifiers, each of which emNPs are coreferent. Following previous work (e.qg.,
ploys exactly one type of features. The accuracieSoon et al. (2001) and Ponzetto and Strube (2006)),
of these classifiers are shown in Table 5. As we camwe generate training instances as follows: a positive
see,NEIGHBOR has the largest contribution. Thisinstance is created for each anaphoric NP, and
again demonstrates the effectiveness of a distribits closest antecedemp; and a negative instance is
tional approach to semantic similarity. Its superiocreated fomnp; paired with each of the intervening
performance tovORD, the second largest contribu- NPs,NR41, NR2, ..., NP_;. Each instance is rep-
tor, could be attributed to its ability to combat dataesented by 33 lexical, grammatical, semantic, and




positional features that have been employed by highve can see, the baseline achieves an F-measure of
performing resolvers such as Ng and Cardie (20027.0 and a resolution accuracy of 48.4.

and Yang et al. (2003), as described below. To get a better sense of how strong our baseline
Lexical features. Nine features allow different is, we re-implement the Soon et al. (2001) corefer-
types of string matching operations to be performednce resolver. This simply amounts to replacing the
on the given pair of NPsyp, andNR,0, including 33 features in the baseline resolver with the 12 fea-
(1) exact string match for pronouns, proper noungures employed by Soon et al.'s system. Results of
and non-pronominal NPs (both before and after desur Duplicated Soon et al. system are shown in row
terminers are removed); (2) substring match foR of Tables 6 and 7. In comparison to our baseline,
proper nouns and non-pronominal NPs; and (3) heatle Duplicated Soon et al. system performs worse
noun match. In addition, one feature tests whethetccording to both metrics, and although the drop in
all the words that appear in one NP also appear iR-measure seems moderate, the performance differ-
the other NP. Finally, a nationality matching featureence is in fact highly significanp€0.002)1

is used to match, for instancBritish with Britain.

Grammatical features. 22 features test the gram-
matical properties of one or both of the NPs. ThesRecall from the introduction that our investigation of
include ten features that test whether each of the twibe role of induced SC knowledge in learning-based
NPs is a pronoun, a definite NP, an indefinite NP, aoreference resolution proceeds in three steps:
nested NP, and a clausal subject. A similar set dfabel the SC of each NP in each ACE document.
five features is used to test whether both NPs allé a noun phraseNg, is a proper or common NP,
pronouns, definite NPs, nested NPs, proper nouriien its SC value is determined using an SC classi-
and clausal subjects. In addition, five features detefier that we acquired in Section 3. On the other hand,
mine whether the two NPs are compatible with reif NR is a pronoun, then we will be conservative and
spect to gender, number, animacy, and grammaticpbsit its SC value aSNCONSTRAINED (i.e., it is se-
role. Furthermore, two features test whether the twmantically compatible with all other NP&3.

NPs are in apposition or participate in a predicat®erive two KSs from the induced SCsRecall that
nominal construction (i.e., the IS-A relation). our first KS,Mention, is defined on an NP; its value

Semantic features. Motivated by Soon et al. iS YESif the induced SC of the NP is n@THERS

(2001), we have a semantic feature that tests wheth@pd NO otherwise. On the other hand, our second

one NP is a name alias or acronym of the other.  KS, SCA, is defined on a pair of NPs; its value is

Positional feature. We have a feature that com-_YES if the two NPs have the _same induced SC that
NotOTHERS andNO otherwise.

putes the distance between the two NPs in sentencty

After training, the decision tree classifier is usedncorporate the two KSs into the baseline re-

to select an antecedent for each NP in a test teﬁolver. Recall that there are eight ways of incor-

Following Soon et al. (2001), we select as the arporitlgg these tw? };SS mt; ou rt resolve;: tth €y can
tecedent of each NRp;, the closest preceding NP eag h € represen € I'az(? trham or ?S a;;a Ere,
that is classified as coreferent wittp;. If no such and they can be applied fo the resolvensoiation

NP exists, no antecedent is selecteder. and in combination. Constraints are applied dur-

Row 1 of Table 6 and Table 7 shows the resultgﬁI g the antecedent selgction step. Specifically, when
of the baseline system in terms of F-measure ( mployed as a constraint, tMention KS disallows

and accuracy in resolving 4599 anaphoric referenc%% rse;e\"/lrz:[fsn?/:\ggi?’\lt\(l)vowﬂzzgi::g;?(nse é)ifsthem

(All), respectively. For further analysis, we also re- .
. , llows coreference if th&CA value of the two NPs
port the corresponding recall (R) and precision (P'nvolved isSNO. When encoded as a feature for the

in Table 6, as well as the accuracies of the system in

resolving 1769 pronouns (PRO), 1675 proper I\lPrSesoIver, theMention feature for an NP pair has the

(PN), and 1155 common NPs (CN) in Table 7. As ''Again, we use Approximate Randomization with.05.
- 12The only exception is pronouns whose SC value can be eas-
We assume thatp, precedesir, in the associated text. ily determined to beeERSON(e.g.,he, him, his, himself).

4.3 Coreference with Induced SC Knowledge



System Variation R P F R P F R P F R P F
1 | Baseline system 60.9 53.6 G57.0| - - - - - - - - -
2 | Duplicated Soonetal. | 56.1 544 55.3| — - - - - - - - -
Add to the Baseline Soon’s SC Method Decision List SVM Perfect Information
3 | Mention(C) only 56.9 69.7 626 | 595 706 64.6( 59.5 70.7 64.6| 61.2 83.1 705
4 | Mention(F) only 60.9 54.0 57.2|| 61.2 529 56.7| 609 53.6 57.0/| 62.3 33.7 43.8
5 | SCA(C)only 56.4 70.0 62.5| 57.7 712 63.7| 589 70.7 64.3/| 61.3 86.1 71.6
6 | SCA(F)only 62.0 52.8 57.0| 625 535 57.6| 63.0 533 57.7|| 71.1 33.0 45.1
7 | Mention(C) + SCA(C) | 56.4 70.0 625 57.7 71.2 63.7|| 589 70.8 64.3]| 61.3 86.1 71.6
8 | Mention(C) + SCA(F) | 58.2 66.4 62.0| 60.9 66.8 63.7|| 614 66.5 63.8| 71.1 76.7 73.8
9 | Mention(F) + SCA(C) | 56.4 69.8 62.4| 57.7 71.3 63.8|| 589 70.6 64.3| 62.7 853 723
10 | Mention(F) + SCA(F) | 62.0 52.7 57.0|| 62.6 52.8 57.3|| 63.2 52.6 57.4| 71.8 30.3 42.6
Table 6: Coreference results obtained via the MUC scoringqam for the ACE test set.
System Variation PRO PN CN [ All PRO PN CN [ All PRO PN CN [ All
1 | Baseline system 59.2 548 225] 4841 - - - — — — - —
2 | Duplicated Soonetal. | 53.4 457 16.9] 414 - - - - - - - -
Add to the Baseline Soon’s SC Method Decision List SVM
3 | Mention(C) only 585 51.3 16.5| 453 | 59.1 54.1 20.2| 47.5| 59.1 53.9 20.6| 47.5
4 | Mention(F) only 59.2 55.0 225| 485| 59.2 56.1 22.4| 48.8| 59.4 552 22.6| 48.6
5 | SCA(C)only 58.1 50.1 16.4| 44.7| 58.1 51.8 17.1f 45,5 585 52.0 19.6| 46.3
6 | SCA(F)only 59.2 549 27.8| 49.7|| 604 56.7 30.1| 51.5| 60.8 56.4 29.4| 51.3
7 | Mention(C) + SCA(C) | 58.1 50.1 16.4| 44.7| 58.1 51.8 17.1] 455| 58,5 519 19.5 46.3
8 | Mention(C) + SCA(F) | 589 52.0 22.3| 47.2| 60.2 559 28.1 50.6| 60.7 55.3 27.4| 50.4
9 | Mention(F) + SCA(C) | 58.1 50.3 16.3| 44.8| 58.1 524 16.7| 456 | 58.6 524 19.7| 46.6
10 | Mention(F) + SCA(F) | 59.2 55.0 27.6| 49.7| 60.4 56.8 30.1 51.5| 60.8 56.5 295 51.4

Table 7: Resolution accuracies for the ACE test set.

value YES if and only if theMention value for both 7 can be interpreted in a similar manner.
NPs isYES, whereas th&CA feature for an NP pair ~ From Table 6, we can see that (1) in comparison to
has its value taken from tHaCA KS. the baseline, F-measure increases significantly in the
Now, we can evaluate the impact of the two KSdive cases where at least one of the KSs is employed
on the performance of our baseline resolver. Specifas a constraint by the resolver, and such improve-
cally, rows 3-6 of Tables 6 and 7 show the F-measuments stem mainly from significant gains in preci-
and the resolution accuracy, respectively, when esion; (2) in these five cases, the resolvers that use
actly one of the two KSs is employed by the baselin&Cs induced by DL and SVM achieve significantly
as either a constraint (C) or a feature (F), and rowsigher F-measure scores than their counterparts that
7-10 of the two tables show the results when bothely on Soon’s method for SC determination; and (3)
KSs are applied to the baseline. Furthermore, eactone of the resolvers appears to benefit fiIgD in-
row of Table 6 contains four sets of results, each dbrmation whenevemention is used as a constraint.
which corresponds to a different method for deter- Moreover, note that even with perfectly computed
mining the SC value of an NP. For instance, the firs6C information, the performance of the baseline sys-
set is obtained by using Soon et al.’s method as deem does not improve when neithD nor SCA is
scribed in Footnote 8 to compute SC values, servingmployed as a constraint. These results provide fur-
as sort of a baseline for our results using induced Sther evidence that the decision tree learner is not ex-
values. The second and third sets are obtained bagsiditing these two semantic KSs in an optimal man-
on the SC values computed by the DL and the SVMer, whether they are computed automatically or per-
classifier, respectiveli? The last set corresponds tofectly. Hence, in machine learning for coreference
an oracle experiment in which the resolver has agesolution, it is important to determine not onijat
cess to perfect SC information. Rows 3-10 of Tablé¢inguistic KSs to use, but aldmow to use them.
e ~ While the coreference results in Table 6 seem to
Results using other learners are not shown due to space lim-

itations. DL and SVM are chosen simply because they achieve/99est th_aSCA and mentl(_)n should b_e employed
the highest SC classification accuracies on the ACE traisitg @S constraints, the resolution results in Table 7 sug-
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