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Abstract ambiguoudor a variety of reasons. For instance,
an author of a movie review may have negative

Supervised polarity classification systems  gpinions of the actors but at the same time talk
are typically domain-specific. Building  enthusiastically about how much she enjoyed the
these systems involves the expensive pro- plot. Here, the review is ambiguous because she
cess of annotating a large amount of data  discussed both the positive and negative aspects of
for each domain. A potential solution  the movie, which is not uncommon in reviews. As
to this corpus annotation bottleneck is to another examp|e, a |arge portion of a movie re-
build unsupervised polarity classification  view may be devoted exclusively to the plot, with
systems. However, unsupervised learning  the author only briefly expressing her sentiment at
of polarity is difficult, owing in part to the the end of the review. In this case, the review is
prevalence of sentimentally ambiguous re-  ambiguous because the objective material in the
views, where reviewers discuss both the  reyiew, which bears no sentiment orientation, sig-
positive and negative aspects of a prod- njficantly outnumbers its subjective counterpart.
uct. To address this problem, we pro- Realizing the challenges posed by ambiguous
pose a semi-supervised approach to senti-  o\jews, researchers have explored a number of
ment cI.aSS|f|cat|or_1 where_we first mine the techniques to improveupervisedpolarity classi-
unambiguous reviews using spectral tech-  fiars  For instance, Pang and Lee (2004) train an
niques and then exploit them to classify  hgependensubjectivityclassifier to identify and
the ambiguous reviews via a novel com-  remove objective sentences from a review prior to
bination of active learing, transductive a1ty classification. Koppel and Schier (2006)
learning, and ensemble learning. use neutral reviews to help improve the classi-
fication of positive and negative reviews. More
recently, McDonald et al. (2007) have investi-
Sentiment analysis has recently received a logated a model for jointly performing sentence- and
of attention in the Natural Language Processinglocument-level sentiment analysis, allowing the
(NLP) community. Polarity classification, whose relationship between the two tasks to be captured
goal is to determine whether the sentiment exand exploited. However, the increased sophistica-
pressed in a document is “thumbs up” or “thumbstion of supervised polarity classifiers has also re-
down”, is arguably one of the most popular taskssulted in their increased dependence on annotated
in document-level sentiment analysis. Unlikedata. For instance, Koppel and Schler needed to
topic-based text classification, where a high accumanually identify neutral reviews to train their po-
racy can be achieved even for datasets with a largérity classifier, and McDonald et al.’s joint model
number of classes (e.g., 20 Newsgroups), po|arityequires that each sentence in a review be labeled
classification appears to be a more difficult taskwith polarity information.
One reason topic-based text classification is easier Given the difficulties of supervised polarity
than polarity classification is that topic clusters areclassification, it is conceivable thansupervised
typically well-separated from each other, result-polarity classification is a very challenging task.
ing from the fact that word usage differs consid-Nevertheless, a solution to unsupervised polarity
erably between two topically-different documents.classification is of practical significance. One rea-
On the other hand, many reviews aentimentally son is that the vast majority of supervised polarity

1 Introduction



classification systems admmain-specificHence, perimental results on five sentiment classification
when given a new domain, a large amount of andatasets demonstrate that our system can gener-
notated data from the domain typically needs to bate high-quality labeled data from unambiguous
collected in order to train a high-performance po-reviews, which, together with a small number of
larity classification system. As Blitzer et al. (2007) manually labeled reviews selected by the active
point out, this data collection process can be “prodearner, can be used to effectively classify ambigu-
hibitively expensive, especially since product fea-ous reviews in a discriminative fashion.

tures can change over time”. Unfortunately, to The rest of the paper is organized as follows.
our knowledge, unsupervised polarity classifica-Section 2 gives an overview of spectral clustering,
tion is largely an under-investigated task in NLP.which will facilitate the presentation of our semi-
Turney’s (2002) work is perhaps one of the mostsupervised approach to sentiment classification in
notable examples of unsupervised polarity clasSection 3. We evaluate our approach in Section 4
sification. However, while his system learns theand present our conclusions in Section 5.
semantic orientation of phrases in a review in an

unsupervised manner, such information is used t8¢ Spectral Clustering

heuristically predict the polarity of a review. In this section, we give an overview of spectral

At first glance, it may seem plausible to apply clustering, which is at the core of our algorithm
an unsupervised clustering algorithm suchkas  for identifying ambiguous reviews.
means to cluster the reviews according to their po-
larity. However, there is reason to believe that sucl?.1 Motivation

a clustering approach is doomed to fail: in the abyyhen given a clustering task, an important ques-
sence of annotated data, an unsupervised learnggn to ask is: which clustering algorithm should
is unable to identify which features are relevantye ysed? A popular choice ismeans. Neverthe-
for polarity classification. The situation is further |ess it is well-known thak-means has the major
complicated by the prevalence of ambiguous regrawback of not being able to separate data points
views, which may contain a large amount of irrel-tnat are not linearly separable in the given feature
evant and/or contradictory information. space (e.g, see Dhillon et al. (2004)). Spectral
In light of the difficulties posed by ambiguous clustering algorithms were developed in response
reviews, we differentiate between ambiguous ando this problem withk-means clustering. The cen-
unambiguous reviews in our classification processral idea behind spectral clustering is to (1) con-
by addressing the task of semi-supervised polarstruct a low-dimensional space from the original
ity classification via a “mine the easy, classify the(typically high-dimensional) space while retaining
hard” approach. Specifically, we propose a novehs much information about the original space as
system architecture where we first automaticallypossible, and (2) cluster the data points in this low-
identify and label theinambiguougi.e., “easy”)  dimensional space.
reviews, then handle thembiguoud(i.e., “hard”) .
reviews using a discriminative learner to bootstrag?-2 ~Algorithm
from the automatically labeled unambiguous re-Although there are several well-known spectral
views and a small number of manually labeled re<lustering algorithms in the literature (e.g., Weiss
views that are identified by an active learner. (1999), Meila and Shi (2001), Kannan et al.

It is worth noting that our system differs from (2004)), we adopt the one proposed by Ng et al.
existing work on unsupervised/active learning in(2002), as itis arguably the most widely used. The
two aspects. First, while existing unsupervised®!90rithm takes as input a similarity matrixcre-
approaches typically rely on clustering or learn-ated by applylng auser—_defmed similarity functlop
ing via a generative model, our approach distin1o €ach pair of data points. Below are the main

guishes between easy and hard instances and e3ePs of the algorithm:

ploits the strengths of discriminative models t0 ;| ~raate the diagonal matri@ whose {,i)-
classify the hard instances. Second, while exist- entry is the sum of the-th row of,S

ing active learners typically start with manually la- and then construct the Laplacian matfix=
beled seeds, our active learner relies only on seeds G-1/28G-1/2

that are automatically extracted from the data. Ex- 2. Find the eigenvalues and eigenvectors.of



3. Create a new matrix from the eigenvectors typically comprise 1-2% of a vocabulary. The de-
that correspond to the largest eigenvalue’s.  cision of exactly how many terms to remove from

4. Each data point is now rank-reduced to seach dataset is subjective: a large corpus typically
point in them-dimensional space. Normal- requires more removals than a small corpus. To be

ize each point to unit length (while retaining consistent, we simply sort the vocabulary by doc-
the sign of each value). ument frequency gnd remove the top 1.5%. .
5. Cluster the resulting data points usiig Reca_ll thatin thys step we use spectral clustering
means. to identify unamblguous_ reviews. To rna_lke_use of
spectral clustering, we first create a similarity ma-
In essence, each dimension in the reduced spatex, defining the similarity between two reviews
is defined by exactly one eigenvector. The reaas the dot product of their feature vectors, but fol-
son why eigenvectors with large eigenvalues ardowing Ng et al. (2002), we set its diagonal entries
retained is that they capture the largest variance ito 0. We then perform an eigen-decomposition of
the data. Therefore, each of them can be thougtthis matrix, as described in Section 2.2. Finally,
of as revealing an important dimension of the datausing the resulting eigenvectors, we partition the
length-normalized reviews into two sets.
3 Our Approach As Ng et al. point out, “different authors still
While spectral clustering addresses a major drawc_ilsggree on which elgenv,(’actors to use, and how to
. - derive clusters from them”. To create two clusters,
back of k-means clustering, it still cannot be ex-

e . the most common way is to use only the second
pected to accurately partition the reviews due to y y

the presence of ambiguous reviews. Motivated belgenvector, as Shi and Malik (2000) proved that

this observation, rather than attempting to clusteﬁ:znegetﬂ\éegzg'n_miﬁgspzrti ;gﬁ'?:ﬁ&éﬂea Ft)r?g

all the reviews at the same time, we handle themin .. . L
. . . . . _minimum normalized cut of the similarity grafh
different stages. As mentioned in the introduction, .
o . .where the nodes are the data points and the edge
we employ a “mine the easy, classify the hard

. e weights are the pairwise similarity values of the
approach to polarity classification, where we (1) _ . L . : .
. . . ) . - . points. Clustering in a one-dimensional space is
identify and classify the “easy” (i.e., unambigu- .. "~ . . o .
; ; trivial: since we have a linearization of the points,
ous) reviews with the help of a spectral cluster-

. o all we need to do is to determine a threshold for
ing algorithm; (2) manually label a small number I . .
of “hard” (i.e., ambiguous) reviews selected by anpartmonmg the points. A common approach is to

) . . et the threshold to zero. In other words, all points
active learner; and (3) using the reviews labeled  aip

thus far, apply a transductive learner to label thewhose value in the second eigenvector is positive

o . . . . are classified as positive, and the remaining points
remaining (ambiguous) reviews. In this section, o .

) : . are classified as negative. However, we found that
we discuss each of these steps in detalil.

the second eigenvector does not always induce a
3.1 Identifying Unambiguous Reviews partition of the nodes that corresponds to the min-

imum normalized cut. One possible reason is that

We begin by preprocessing the reviews to be clasgyy; ang Mmalik's proof assumes the use of a Lapla-

sified.  Specifically, we tokenize and downcaseujan matrix that is different from the one used by

each rewew and represent it as a vector Of_u_n'Ng et al. To address this problem, we use the first
grams, using frequency as presence. In additionye eigenvectors: for each eigenvector, we (1) use
we remove from the vector punctuation, numperseach of itsn elements as a threshold to indepen-
words of length one, and words that occur in 8yeny generate, partitions, (2) compute the nor-
single reV|_ew .only. ) FlnaIIy,_fOIIOW|_ng the com- malized cut value for each partition, and (3) find
mon practice in the information retrieval commu- o inimum of then cut values. We then select

nity, we remove words with high document fre- y,q aigenvector that corresponds to the smallest of
quency, many of which are stopwords or domainy,. five minimum cut values

specific general-purpose words (€.g., “movies” in Next, we identify the ambiguous reviews from
the movie domain). A preliminary examination

of our evaluation datasets reveals that these words 2Using the normalized cut (as opposed to the usual cut)
- ensures that the size of the two clusters are relatively bal-

For brevity, we will refer to the eigenvector with theth anced, avoiding trivial cuts where one cluster is empty and
largest eigenvalue simply as theth eigenvector. the other is full. See Shi and Malik (2000) for details.



the resulting partition. To see how this is done,to the accurate clustering of the ambiguous data
consider the example in Figure 1, where the goapoints. However, in the absence of labeled data,
is to produce two clusters from five data points. it is not easy to assess feature relevance. Even if
1100 10,6983 0.7158 Iapeled data were present, th(_a amb_lgupus points
11100 —0.6983 0.7158 might be better handled by a discriminative learn-
00110 —0.9869 —0.1616 : ) ) o
(8 001 %> (ZSQ% :8%%) ing _system than a clustering algo_rlt_hm, as discrim-
inative learners are more sophisticated, and can
Figure 1: Sample data and the top two eigenvechandle ambiguous feature space more effectively.
tors of its Laplacian Taking into account these two observations, we
aim to (1) remove the ambiguous data points while
In the matrix on the left, each row is the featurecjustering their unambiguous counterparts, and
vector generated fab;, thei-th data point. By in-  then (2) employ a discriminative learner to label
spection, one can identify two clustefg):, D2} the ambiguous points in a later step.
and{Dy, D5}. Ds is ambiguous, as it bears re-  The question is: how can we identify the
semblance to the points in both clusters and thereambiguous data points? To do this, we ex-
fore can be assigned to any of them. In the maploit an important observation regarding eigen-
trix on the right, the two columns correspond todecomposition. In the computation of eigenvalues,
the top two eigenvectors obtained via an eigeneach data point factors out the orthogonal projec-
decomposition of the Laplacian matrix formedtions of each of the other data points with which
from the five data points. As we can see, the secthey have an affinity. Ambiguous data points re-
ond eigenvector gives us a natural cluster assigreeive the orthogonal projections from both the
ment: all the points whose corresponding valuegositive and negative data points, and hence they
in the second eigenvector a&ongly positivevill  have near-zero values in the pivot eigenvectors.
be in one cluster, and tretrongly negativegpoints  Given this observation, our algorithm uses the
will be in another cluster. Being ambiguous; is  eight steps below to remove the ambiguous points

weakly negativeind will be assigned to the “neg- in an iterative fashion and produce a clustering of
ative” cluster. Before describing our algorithm for the unambiguous points.

identifying ambiguous data points, we make two
additional observations regardirig;.

First, if we removedDs, we could easily clus-
ter the remaining (unambiguous) points, since the
similarity graph becomes more disconnected as
we remove more ambiguous data points. The
guestion then is: why is it important to produce

. : o D
a good clustering of the unambiguous points? Re . SortD according toe and removex points in

qall that the g(_)al of this _step 's not only ien- the middle ofD (i.e., the points indexed from
tify the unambiguous reviews, but alscatenotate D D]

them asPOSITIVE or NEGATIVE, so that they can
serve as seeds for semi-supervised learning in a7' If |D| = 5, goto Step 8, else goto _Step_l.
later step. If we have a good 2-way clustering of 8. Run 2-means oato cluster the paints iD.
the seeds, we can simply annotate each cluster (by This algorithm can be thought of as the oppo-
sampling a handful of its reviews) rather than eactsite of self-training. In self-training, we iteratively
seed. To reiterate, removing the ambiguous dattrain a classifier on the data labeled so far, use it
points can help produce a good clustering of theito classify the unlabeled instances, and augment
unambiguous counterparts. the labeled data with the most confidently labeled
Second, as an ambiguous data paip,can in  instances. In our algorithm, we start with an ini-
principle be assigned to any of the two clusterstial clustering of all of the data points, and then
According to the second eigenvector, it should beteratively remove thex most ambiguous points
assigned to the “negative” cluster; but if featurefrom the dataset and cluster the remaining points.
#4 were irrelevant, it should be assigned to thd&siven this analogy, it should not be difficult to see
“positive” cluster. In other words, the ability to the advantage of removing the data points in an it-
determine the relevance of each feature is cruciadrative fashion (as opposed to removing them in a

1. Create a similarity matrixS from the data
points D.

. Form the Laplacian matrik from S.

. Find the top five eigenvectors &f

. Row-normalize the five eigenvectors.

. Pick the eigenvector for which we get the
minimum normalized cut.

b wN
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single iteration): the clusters produced in a given Dataset lterative | Single Step
. . . Movie 89.3 86.5
iteration are supposed to be better than those in Kitchen 87.9 871
the previous iterations, as subsequent clusterings Electronics || 80.4 77.6

- : Book 68.5 70.3
are generated from less ambiguous points. In our DVD 663 654

experiments, we set to 50 andg to 5003

Finally, we label the two clusters. To do this,
we first randomly sample 10 reviews from each
cluster and manually label each of themrass
ITIVE or NEGATIVE. Then, we label a cluster as they are not necessarily relevant for creating po-
POSITIVE if more than half of the 10 reviews from larity clusters. In fact, owing to the absence of la-
the cluster areosITIVE, otherwise, it is labeled beled data, unsupervised clustering algorithms are
asNEGATIVE. For each of our evaluation datasets,unable to distinguish between useful and irrelevant
this labeling scheme always produces arasr  features for polarity classification. Nevertheless,
TIVE cluster and on®EGATIVE cluster. Inthe rest being able to distinguish between relevant and ir-
of the paper, we will refer to these 500 automati-relevant information is important for polarity clas-
cally labeled reviews aseeds sification, as discussed before. Now that we have

A natural question is: can this algorithm pro- & small, high-quality seed set, we can potentially
duce high-quality seeds? To answer this questiorf,"ake better use of the available features by train-
we show in the middle column of Table 1 the label-iNg adiscriminativeclassifier on the seed set and
ing accuracy of the 500 reviews produced by ouhaving it identify the relevant and irrelevant fea-
iterative algorithm for our five evaluation datasetstures for polarity classification.
(see Section 4.1 for details on these datasets). To Despite the high quality of the seed set, the re-
better understand whether it is indeed beneficiagulting classifier may not perform well when ap-
to remove the ambiguous points in an iterativeplied to the remaining (unlabeled) points, as there
fashion, we also show the results of a version ofs no reason to believe that a classifier trained
this algorithm in which we remove all but the 500 solely on unambiguous reviews can achieve a
least ambiguous points in just one iteration (sedigh accuracy when classifying ambiguous re-
the rightmost column). As we can see, for threeviews. We hypothesize that a high accuracy can
datasets (Movie, Kitchen, and Electronics), thebe achieved only if the classifier is trained on both
accuracy is above 80%. For the remaining twoambiguous and unambiguous reviews.
(Book and DVD), the accuracy is not particularly As a result, we applhactive learning(Cohn
good. One plausible reason is that the ambiguoust al., 1994) to identify the ambiguous reviews.
reviews in Book and DVD are relatively tougher Specifically, we train a discriminative classifier us-
to identify. Another reason can be attributed toing the support vector machine (SVM) learning al-
the failure of the chosen eigenvector to capture thgorithm (Joachims, 1999) on the set of unambigu-
sentiment dimension. Recall that each eigenvectoous reviews, and then apply the resulting classifier
captures an important dimension of the data, antb all the reviews in théraining folds* that are not
if the eigenvector that corresponds to the minimunseeds. Since this classifier is trained solely on the
normalized cut (i.e., the eigenvector that we chose)inambiguous reviews, it is reasonable to assume
does not reveal the sentiment dimension, the rethat the reviews whose labels the classifier is most
sulting clustering (and hence the seed accuracyncertain about (and therefore are most informa-
will be poor. However, even with imperfectly la- tive to the classifier) are those that are ambigu-
beled seeds, we will show in the next section howous. Following previous work on active learning
we exploit these seeds to learn a better classifier.for SVMs (e.g., Campbell et al. (2000), Schohn

and Cohn (2000), Tong and Koller (2002)), we de-

3.2 Incorporating Active Learning fine the uncertainty of a data point as its distance
from the separating hyperplane. In other words,

Table 1: Seed accuracies on five datasets.

Spectral clustering allows us to focus on a smal

number of dimensions that are relevant as far as—————
Following Dredze and Crammer (2008), we perform

creating well-separated clusters is concerned, by yss.validation experiments on the 2000 labeled reviews i

- each evaluation dataset, choosing the active learninggoin
3Additional experiments indicate that the accuracy of ourfrom the training folds. Note that the seeds obtained in the

approach is not sensitive to small changes to these values. previous step were also acquired using the training foldis on



points that are closer to the hyperplane are morgoints inL;, wherei # j) as unlabeled data.
uncertain than those that are farther away. After training the ensemble, we classify each
We perform active learning for five iterations. unlabeled point as follows: we sum the (signed)
In each iteration, we select the 10 most uncertairgonfidence values assigned to it by the five ensem-
points from each side of the hyperplane for humarble classifiers, labeling it asosITIVE if the sum
annotation, and then re-train a classifier on all ofs greater than zero (andEGATIVE otherwise).

the points annotated so far. This yields a total ofSince the points in the test fold are included in the
100 manually labeled reviews. unlabeled data, they are all classified in this step.

3.3 Applying Transductive Learning 4 Evaluation

Given that we now have kabeled se(composed 4-1 Experimental Setup
of 100 manually labeled points selected by activeFor evaluation, we use five sentiment classifica-
learning and 500 unambiguous points) as well asion datasets, including the widely-used movie re-
a larger set of points that are yet to be labelediiew dataset [MOV] (Pang et al., 2002) as well as
(i.e., the remaining unlabeled points in the train-four datasets that contain reviews of four differ-
ing folds and those in the test fold), we aim toent types of product from Amazon [books (BOO),
train a better classifier by using a weakly superDVDs (DVD), electronics (ELE), and kitchen ap-
vised learner to learn from both the labeled andpliances (KIT)] (Blitzer et al., 2007). Each dataset
unlabeled data. As our weakly supervised learnehas 2000 labeled reviews (1000 positives and 1000
we employ a transductive SVM. negatives). We divide the 2000 reviews into 10
To begin with, note that the automatically ac-equal-sized folds for cross-validation purposes,
quired 500 unambiguous data points are not pemaintaining balanced class distributions in each
fectly labeled (see Section 3.1). Since these unanfold. It is important to note that while the test fold
biguous points significantly outnumber the manu4s accessible to the transductive learner (Step 3),
ally labeled points, they could undesirably domi-only the reviews in training folds (but not their la-
nate the acquisition of the hyperplane and dimin-els) are used for the acquisition of seeds (Step 1)
ish the benefits that we could have obtained fronand the selection of active learning points (Step 2).
the more informative and perfectly labeled active We report averaged 10-fold cross-validation re-
learning points otherwise. We desire a system thasults in terms of accuracy. Following Kamvar et al.
can use the active learning points effectively and af2003), we also evaluate the clusters produced by
the same time is noise-tolerant to the imperfectlyour approach against the gold-standard clusters us-
labeled unambiguous data points. Hence, insteaithg Adjusted Rand Index (ARI). ARI ranges from
of training just one SVM classifier, we aim to re- —1to 1, better clusterings have higher ARl values.
duce classification errors by training an ensemble i
of five classifiers, each of which uses all 100 man#-2 Baseline Systems
ually labeled reviews and a different subset of theRecall that our approach uses 100 hand-labeled re-
500 automatically labeled reviews. views chosen by active learning. To ensure a fair
Specifically, we partition the 500 automatically comparison, each of our three baselines has ac-
labeled reviews into five equal-sized sets as folcess to 100 labeled points chosen from the train-
lows. First, we sort the 500 reviews in ascendingng folds. Owing to the randomness involved in
order of their corresponding values in the eigenthe choice of labeled data, all baseline results are
vector selected in the last iteration of our algorithmaveraged over ten independent runs for each fold.
for removing ambiguous points (see Section 3.1)Semi-supervised spectral clustering. We im-
We then put point into setl; .4 5. This ensures plemented Kamvar et al.'s (2003) semi-supervised
that each set consists of not only an equal numbespectral clustering algorithm, which incorporates
of positive and negative points, but also a mix oflabeled data into the clustering framework in the
very confidently labeled points and comparativelyform of must-link and cannot-link constraints. In-
less confidently labeled points. Each classifigr stead of computing the similarity between each
will then be trained transductively, using the 100pair of points, the algorithm computes the similar-
manually labeled points and the pointsfipas la- ity between a point and its most similar points
beled data, and the remaining points (including allonly. Since its performance is highly sensitive to



Accuracy Adjusted Rand Index

System Variation MOV KIT ELE BOO DVD || MOV KIT ELE BOO DVD

Semi-supervised spectral learning67.3  63.7 57.7 558 56.4] 0.12 0.08 0.01 0.02 0.02
Transductive SVM 68.7 655 629 587 57.3 014 009 0.07 0.03 0.02
Active learning 689 68.1 633 586 580 014 014 0.08 0.03 0.03

Our approach (after 1st step) 69.8 70.8 657 586 558 0.15 0.17 0.10 0.03 0.01
Our approach (after 2nd step) 735 73.0 699 60.6 59.8 022 021 0.16 0.04 0.04
Our approach (after 3rd step) 76.2 741 706 62.1 62.7 0.27 023 0.17 0.06 0.06

OO~ WNE

Table 2: Results in terms of accuracy and Adjusted Rand Ifatethe five datasets.

k, we tested values of 10, 15,., 50 fork and re- comparable results to the best baseline. Per-
ported in row 1 of Table 2 thbestresults. As we formance increases substantially after the second
can see, accuracy ranges from 56.2% to 67.3%step, indicating the benefits of active learning.
whereas ARI ranges from 0.02 to 0.12. Row 6 shows the results of transductive learn-

Transductive SVM. We employ as our second ing with ensemble. Comparing rows 5 and 6,

baseline a transductive SVMrained using 100 We see that performance rises by 0.7-2.9% for
points randomly sampled from the training foldsall five datasets after “ensembled” transduction.

as labeled data and the remaining 1900 points akhis could be attributed to (1) the unlabeled data,
unlabeled data. Results of this baseline are showyhich may have provided the transductive learner
in row 2 of Table 3. As we can see, accuracyWith useful information that are not accessible to

ranges from 57.3% to 68.7% and ARI ranges fronrthe other learners, and (2) the ensemble, which is
0.02 to 0.14, which are significantly better thanmore noise-tolerant to the imperfect seeds.

those of semi-supervised spectral learning.

Active learning. Our last baseline implements
the active learning procedure as described in Tond0 gain insight into how the design decisions we
and Koller (2002). Specifically, we begin by train- made in our approach impact performance, we
ing an inductive SVM on one labeled exampleconducted the following additional experiments.

from each class, iteratively labeling the most un-importance of seeds. Table 1 showed that for
certain unlabeled point on each side of the hyperall but one dataset, the seeds obtained through
plane and re-training the SVM until 100 points aremultiple iterations are more accurate than those
labeled. Finally, we train a transductive SVM on gptained in a single iteration. To envisage the im-
the 100 labeled points and the remaining 1900 Unportance of seeds, we conducted an experiment
labeled points, obtaining the results in row 3 of Ta-where we repeated our approach using the seeds
ble 1. As we can see, accuracy ranges from 58%earned in a single iteration. Results are shown in
to 68.9%, whereas ARI ranges from 0.03 to 0.14the first row of Table 3. In comparison to row 6 of
Active learning is the best of the three baselinesTaple 2, we can see that results are indeed better
presumably because it has the ability to choose th@hen we bootstrap from higher-quality seeds.
labeled data more intelligently than the other two. Tg further understand the role of seeds, we ex-
perimented with a version of our approach that
bootstraps fronno seeds. Specifically, we used
Results of our approach are shown in rows 4-6 othe 500 seeds to guide the selection of active learn-
Table 2. Specifically, rows 4 and 5 show the re-ing points, but trained a transductive SVM using
sults of the SVM classifier when it is trained on only the active learning points as labeled data (and
the labeled data obtained after the first step (unsuhe rest as unlabeled data). As can be seen in row
pervised extraction of unambiguous reviews) an@ of Table 3, the results are poor, suggesting that
the second step (active learning), respectively. Afour approach yields better performance than the
ter the first step, our approach can already achievgaselines not only because of the way the active
~ SAll the SVM classifiers in this paper are trained using Ieam!ng _pomts were C_hosen’ but also because of
the SVM9" package (Joachims, 1999). All SVM-related contributions from the imperfectly labeled seeds.

learning parameters are set to their default values except i \\e also experimented with training a transduc-
transductive learning, where we ge(the fraction of unla-

beled examples to be classified as positive) to 0.5 so that thEVE SVM using On_ly the_ 100 least amblggous
system does not have any bias towards any class. seeds (i.e., the points with the largest unsigned

4.4 Additional Experiments

4.3 Our Approach



Accuracy Adjusted Rand Index
System Variation MOV KIT ELE BOO DVD || MOV KIT ELE BOO DVD
1 | Single-step cluster purification 749 727 701 66.9 604 025 0.21 0.16 0.11 0.03
2 | Using no seeds 58.3 55.6 59.7 54.0 56.1] 0.04 0.04 0.02 0.01 0.01
3 | Using the least ambiguous seeds 74.6 69.7 69.1 609 63.3 024 0.16 0.14 0.05 0.07
4 | No Ensemble 741 727 688 615 59.9 023 021 014 005 0.04
5 | Passive learning 741 724 68.0 637 586 023 020 013 0.07 0.03
6 | Using 500 active learning points| 825 784 775 735 734 042 032 030 022 0.22
7 | Fully supervised results 86.1 817 793 776 80.6 053 041 0.34 030 0.38

Table 3: Additional results in terms of accuracy and Adjdsgand Index for the five datasets.

second eigenvector values) in combination within row 6 of Table 3, we show the results when the
the active learning points as labeled data (and thexperiment in row 6 of Table 2 was repeated using
rest as unlabeled data). Note that the accuracy &00 active learning points. Perhaps not surpris-
these 100 least ambiguous seeds is 4-5% highangly, the 400 additional labeled points yield a 4—
than that of the 500 least ambiguous seeds showhl% increase in accuracy. For further comparison,
in Table 1. Results are shown in row 3 of Table 3.we trained dully supervisedSVM classifier using
As we can see, using only 100 seeds turns out to ball of the training data. Results are shown in row
less beneficial than using all of them via an ensem? of Table 3. As we can see, employing only 500
ble. One reason is that since these 100 seeds aaetive learning points enables us to almost reach
the most unambiguous, they may also be the leastlly-supervised performance for three datasets.
informative as far as learning is concerned. Re- _

member that SVM uses only the support vectors t® Conclusions

acquire the hyperplane, and since an unambiguoyge have proposed a novel semi-supervised ap-
seed is likely to be far away from the hyperplane,nroach to polarity classification. Our key idea
itis less likely to be a support vector. is to distinguish between unambiguous, easy-to-
Role of ensemble learning. To get a better idea mine reviews and ambiguous, hard-to-classify re-
of the role of the ensemble in the transductiveviews. Specifically, given a set of reviews, we
learning step, we used all 500 seeds in combinaapplied (1) an unsupervised algorithm to identify
tion with the 100 active learning points to train aand classify those that are unambiguous, (2) an
single transductive SVM. Results of this experi-active learner that is trained solely on automati-
ment (shown in row 4 of Table 3) are worse thancally labeled unambiguous reviews to identify a
those in row 6 of Table 2, meaning that the en-small number of prototypical ambiguous reviews
semble has contributed positively to performancefor manual labeling, and (3) an ensembled trans-
This should not be surprising: as noted beforeductive learner to train a sophisticated classifier
since the seeds are not perfectly labeled, using atin the reviews labeled so far to handle the am-
of them without an ensemble might overwhelm thebiguous reviews. Experimental results on five sen-
more informative active learning points. timent datasets demonstrate that our “mine the

Passive learning. To better understand the role €asy, classify the hard” approach, which only re-
of active learning in our approach, we replaced itduires manual labeling of a small number of am-
with passive learning, where we randomly pickedPiguous reviews, can be employed to train a high-
100 data points from the training folds and usedPerformance polarity classification system.

them as labeled data. Results, shown in row 5 of We plan to extend our approach by exploring
Table 3, are averaged over ten independent rurf¥/o of its appealing features. First, none of the
for each fold. In comparison to row 6 of Table 2, Steps in our approach is designed specifically for
we see that employing points chosen by an activéentiment classification. This makes it applica-
learner yields significantly better results than emble to other text classification tasks. Second, our
ploying randomly chosen points, which suggest@Pproach is easily extensible. Since the semi-

that the way the points are chosen is important. Supervised learner is discriminative, our approach
can adopt a richer representation that makes use

of more sophisticated features such as bigrams or
manually labeled sentiment-oriented words.

Using more active learning points. An interest-
ing question is: how much improvement can we
obtain if we employ more active learning points?
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