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Abstract Nevertheless, there is an essay scoring dimen-
sion for which few computational models have
been developed —thesis clarity. Thesis clarity
refers to how clearly an author explains thesis

of her essay, i.e., the position she argues for with
respect to the topic on which the essay is written.
An essay with a high thesis clarity score presents
its thesis in a way that is easy for the reader to
understand, preferably but not necessarily directly,
as in essays with explicit thesis sentences. It addi-
tionally contains no errors such as excessive mis-
spellings that make it more difficult for the reader
to understand the writer’'s purpose.

Recently, researchers have begun explor-
ing methods of scoring student essays with
respect to particular dimensions of qual-
ity such as coherence, technical errors,
and relevance to prompt, but there is rel-
atively little work on modeling thesis clar-
ity. We present a new annotated corpus
and propose a learning-based approach to
scoring essays along the thesis clarity di-
mension. Additionally, in order to pro-
vide more valuable feedback on why an
essay is scored as it is, we propose a sec-

ond learning-based approach to identify- Our goals in this paper are two-fold. First, we
may lower its thesis clarity score. the thesis clarity of student essays. Because there

are many reasons why an essay may receive a low
thesis clarity score, our second goal is to build a
Automated essay scoring, the task of employingystem for determining why an essay receives its
computer technology to evaluate and score writscore. We believe the feedback provided by this
ten text, is one of the most important educationasystem will be more informative to a student than
applications of natural language processing (NLPYvould a thesis clarity score alone, as it will help
(see Shermis and Burstein (2003) and Shermis dter understand which aspects of her writing need
al. (2010) for an overview of the state of the artto be improved in order to better convey her the-
in this task). A major weakness of many ex-sis. To this end, we identify five common errors
isting scoring engines such as the Intelligent Esthat impact thesis clarity, and our system’s pur-
say AssesséP"(Landauer et al., 2003) is that they pose is to determine which of these errors occur
adopt a holistic scoring scheme, which summain a given essay. We evaluate our thesis clarity
rizes the quality of an essay with a single score angcoring model and error identification system on a
thus provides very limited feedback to the writer.data set of 830 essays annotated with both thesis
In particular, it is not clear which dimension of clarity scores and errors.

an essay (e.g., style, coherence, relevance) a scoreln sum, our contributions in this paper are three-
should be attributed to. Recent work addresses thigld. First, we develop a scoring model and error
problem by scoring a particular dimension of es-identification system for the thesis clarity dimen-
say quality such as coherence (Miltsakaki and Kusion on student essays. Second, we use features
kich, 2004), technical errors, relevance to prompexplicitly designed for each of the identified error
(Higgins et al., 2004), and organization (Persing

etal., 2010). Essay grading software that provides An essay’s thesis is the overall message ofetttire es-
feedback along multiple dimensions of essay qualsay- This concept is unbound from the the concept of thesis
ity such as Erater/Criterion (Attali and Burstein, sentences, as even an essay that never explicitly stathe-its

sis in any of its sentences may still have an overall message
2006) has also begun to emerge. that can be inferred from the arguments it makes.

1 Introduction



Topic Languages| Essays Score | Description of Thesis Clarity

Most university degrees are the- 13 131 4 essay presents\ery clear thesisand requires
oretical and do not prepare sti- little or no clarification

dents for the real world. They arg 3 essay presents moderately clear thesisbut
therefore of very little value. could benefit from some clarification

The prison system is outdated. 11 80 2 essay presents amnclear thesis and would
No civilized society should pun greatly benefit from further clarification

ish its criminals: it should reha 1 essay presentso thesis of any kindand it is
bilitate them. difficult to see what the thesis could be

In his novel Animal Farm, 10 64

George Orwell wrote “All men Table 2: Descriptions of the meaning of scores.
are equal but some are more

equal than others.” How true is

this today? annotated with a binary decision (i.gaod or bad)

Table 1: Some examples of writing topics. ~ for a given scoring dimension (e.g., Higgins et al.
(2004)). Hence, our annotation scheme not only

provides a finer-grained distinction of thesis clar-

types in order to train our scoring model, in con—_t hich be | ant i i but al
trast to many existing systems for other scoring dilY (which can be important in practice), but also

mensions, which use more general features deveflekes the prediction task more challenging.

oped without the concept of error classes. Third, To ensure consistency in annotation, we ran-

we make our data set consisting of thesis clarit)ﬂomly select 100 essays to have graded by both

annotations of 830 essays publicly available in Or_annotators. Analysis of these essays reveals that,

der to stimulate further research on this task. Sinc&hou?h_annotatorsf only exacg)é;grfeehon_the ”;]e'
progress in thesis clarity modeling is hindered S!S clarity score of an essay ° 0 t © time, the
scores they apply are within 0.5 points in 62% of

part by the lack of a publicly annotated corpus, we d within 1.0 point in 85% of T

believe that our data set will be a valuable resourc&>SaYS and within L.upoint in o ol essays. Ta-

to the NLP community le 3 shows the number of essays that receive each
' of the seven scores for thesis clarity.

2 Corpus Information score | 1.0 | 15| 2.0 | 2.5 | 3.0 | 35 | 4.0

essays| 4 | 9 | 52| 78 | 168 | 202 | 317

We use as our corpus the 4.5 million word Interna-

tional Corpus of Learner English (ICLE) (Granger  Table 3: Distribution of thesis clarity scores.
et al., 2009), which consists of more than 6000 es-

says written by university undergraduates from 16, jgentification.  To identify what kinds of

countries and 16 native languages who are 'earrlérrors make an essay’s thesis unclear, we ask one

ers of English as a Foreign Language. 91% of the¢ o\ annotators to write 1-4 sentence critiques

ICLE texts are argumentative. \We select a Subyt ihesis clarity on 527 essays, and obtain our list

set consisting of 830 argumentative essays ffoNy¢ ie common error classes by categorizing the
_the ICLE to annotate and use for_ tralnl_ng and test’[hings he found to criticize. We present our anno-
ing of our models of essay thesis clarity. Table 1,q \yith descriptions of these five error classes

shows three of the thirteen topics selected for an(See Table 4), and ask them to assign zero or more
notation. Fifteen native languages are represente& the error ty’pes to each essay

in the set of essays selected for annotation. It is important to note that we ask our anno-

tators to mark an essay with one of these errors
only when the error makes the thesis less clear. So
For each of the 830 argumentative essays, we aslr example, an essay whose thesis is irrelevant to
two native English speakers to (1) score it alonghe prompt but is explicitly and otherwise clearly
the thesis clarity dimension and (2) determine thestated would not be marked as having a Relevance
subset of the five pre-defined errors that detracteos Prompt error. If the irrelevant thesis is stated
from the clarity of its thesis. in such a way that its inapplicability to the prompt
Scoring. Annotators evaluate the clarity of each causes the reader to be confused about what the
essay’s thesis using a numerical score from 1 t@ssay’s purpose is, however, then the essay would
4 at half-point increments (see Table 2 for a de-be assigned a Relevance to Prompt error.

scription of each score). This contrasts with pre- To measure inter-annotator agreement on error
vious work on essay scoring, where the corpus igdentification, we ask both annotators to identify

3 Corpus Annotation



Id | Error Description
CP | Confusing Phrasing The thesis is phrased oddly, making it hard to understandither’s point.
IPR | Incomplete Prompt Response| The thesis seems to leave some part of a multi-part prompuiduassed.
R | Relevance to Prompt The apparent thesis’s weak relation to the prompt causdsgion.
MD | Missing Details The thesis leaves out important detail needed to understendriter’s point.
WP | Writer Position The thesis describes a position on the topic without makietear that this is
the position the writer supports.

Table 4: Descriptions of thesis clarity errors.

the errors in the same 100 essays that were doublyvere all negative—0.6 for CP,—0.5998 for IPR,
annotated with thesis clarity scores. We then com-0.8992 for R,—0.6 for MD, —0.8 for WP, and
pute Cohen’s Kappa (Carletta, 1996) on each er-0.1 for the bias. These results are consistent
ror from the two sets of annotations, obtaining anwith our intuition that each of the enumerated er-
average Kappa value of 0.75, which indicates fairror classes has a negative impact on thesis clarity
agreement. Table 5 shows the number of essaygcore. In particular, each has a demonstrable neg-
assigned to each of the five thesis clarity errorsative impact, costing essays an average of more
As we can see, Confusing Phrasing, Incompletehan 0.59 points when it occurs. Moreover, this set
Prompt Response, and Relevance to Prompt am& errors accounts for a large majority of all errors

the major error types. impacting thesis clarity because unenumerated er-
rors cost essays an average of only one-tenth of
error | CP | IPR| R | MD | WP | . hyf . gh . Iy_ |
essays| 152 | 123 | 142 | 47 | 39 | one point on the four-point thesis clarity scale.

Table 5: Distribution of thesis clarity errors. 4  Error Classification

In this section, we describe in detail our system for

Relationship between clarity scores and error | o i -
identifying thesis clarity errors.

classes. To determine the relationship between
thesis clarity scores and the five error classes, W81  Model Training and Application

train a linear SVM regressor using the SYmtt L .
software package (Joachims, 1999) with the fiveWe recast the problem of identifying which the-

error types as independent variables and the rers clarity errors apply to an essay as a multi-label

duction in thesis clarity score due to errors as thé:l"’ISSIfICatIon problem, wherein each essay may be

dependent variable. More specifically, each train—ass'gned ZEro ormore of the five pre-Qefl_ned er
or types. To solve this problem, we train five bi-

ing example consists of a target, which we set td . .
ary classifiers, one for each error type, using a

the essay’s thesis clarity score minus 4.0, and Si¥ Il sch So in the bi lassifi
binary features, each of the first five representing ¢ o' ou>-all SCEME. S0/n the binary classiil-

the presence or absence of one of the five errors i%atlon problem for identifying errog;, we create

the essay, and the sixth being a bias feature whicR"€ tr?lr;lnbg ;_rlste}[ﬂce_ frc;m each essgi( n f[fhtehtraln—
we always set to 1. Representing the reduction if'd S€L [abeling th€ Instance as positive 1T the es-

an essay'’s thesis clarity score with its thesis clarityS ay haée ‘ ?18' orle of |t_s labels, antd gebgatlve OtTer'
score minus 4.0 allows us to more easily interpre IS€. Each Instance IS represented by Seven ypes

the error and bias weights of the trained systemc,)f features, including two types of baseline fea-

as under this setup, each error’s weight should be%iIres (Section 4.2) and five types of feafures we

negative number reflecting how many points an esl_ntroduce for_error '.d (_entlf_lcatlon (Section 4.3).
After creating training instances for errer, we

say loses due to the presence of that error. The bias . bi lassifi for identifyi hich
feature allows for the possibility that an essay ma;{ra'tn a binary C?S.S' et \7\; 1aen 'fsy\'/n&g% flc
lose points from its thesis clarity score for prob- est essays contain erroy. We use or

. . classifier training with the regularization param-
lems not accounted for in our five error classes. S 9 ) 9 i _0 P
eter, C, set toc;. To improve classifier perfor-

By setting this bias feature to 1, we tell our learner : .
rgance, we perform feature selection. While we

that an essay’s default score may be less than 4. | h  feat Secti 4.0
because these other problems may lower the avef POy SEVEN Lypes of teatures (see Sections 4.

age score of otherwise perfect essays. and 4.3), only the word n-gram features are sub-
After training, we examined the weight param—JeCt to feature selectioh Specifically, we employ

eters of the learned regressor and found that they 2we do not apply feature selection to the remaining fea-



the topn; n-gram features as selected according tand Dutnais, 1997) which allows us to automat-
information gain computed over the training dataically generate a semantic similarity measure be-
(see Yang and Pedersen (1997) for details). Fitween any two words. We train our random in-
nally, since each classifier assigns a real value tdexing model on over 30 million words of the En-
each test essay presented to it indicating its conglish Gigaword corpus (Parker et al., 2009) using
fidence that the essay should be assigned efror the S-Space package (Jurgens and Stevens, 2010).
we employ a classification thresholdto decide We expect that features based on random index-
how high this real value must be in order for ouring may be particularly useful for the Incomplete
system to conclude that an essay contains eftor Prompt Response and Relevance to Prompt errors
Using held-out validation data, we jointly tune because they may help us find text related to the
the three parameters in the previous paragraph, prompt even if some of its components have been
n;, andt;, to optimize the F-score achieved by rephrased (e.g., an essay may talk about “jail”
for errore;.3 However, an exact solution to this op- rather than “prison”, which is mentioned in one
timization problem is computationally expensive.of the prompts). For each essay, we therefore gen-
Consequently, we find a local maximum by em-erate four random indexing features, one encoding
ploying the simulated annealing algorithm (Kirk- the entire essay’s similarity to the prompt, another
patrick et al., 1983), altering one parameter at @&ncoding the essay’s highest individual sentence’s
time to optimize F-score by holding the remaining similarity to the prompt, a third encoding the high-
parameters fixed. est entire essay similarity to one of the prompt sen-
After training the classifiers, we use them totences, and finally one encoding the highest indi-
classify the test set essays. The test instances avilual sentence similarity to an individual prompt
created in the same way as the training instancessentence. Since random indexing does not pro-
vide a straightforward way to measure similar-
ity between groups of words such as sentences
Our Baseline system for error classification em-or essays, we use Higgins and Burstein’s (2007)
ploys two types of features. First, since labelingmethod to generate these features.
essays with thesis clarity errors can be viewed as
a text categorization task, we employ lemmatized.3 Novel Features
word unigram, bigram, and trigram features thatN
occur in the essay that have not been removed by
the feature selection parameter. Because the Spelling. One problem we note when examining
essays vary greatly in length, we normalize eacfihe information gain top-ranked features for the
essay’s set of word features to unit length. Confusing Phrasing error is that there are very few
The second type of baseline features is based gfPmmon confusing phrases that can contribute to
random indexing (Kanerva et al., 2000). Randonthis error. Errors of this type tend to be unique, and
indexing is “an efficient, scalable and incremen-hence are not very useful for error classification
tal alternative” (Sahlgren, 2005) to Latent Seman{because we are not likely to see the same error

tic Indexing (Deerwester et al., 1990; Landauerin the training and test sets). We notice, however,

—_—— . that there are a few misspelled words at the top of
ture types since each of them includes only a small numbe{h i hi K b hesi
of overall features that are expected to be useful. e list. This makes sense because a thesis sen-

3For parameter tuning, we employ the following values.tence containing excessive misspellings may be

c; may be assigned any of the value’, 10°, 10%,10°, or |ess clear to the reader. Even the most common
10°. n; may be assigned any of the values 3000, 4000, 5000$ li h dtob Eurth
or ALL, whereALL means all features are used. Fgrwe pelling errors, however, tend to be rare. Further-

split the range of classification valuesreturns for the testset  more, we ask our annotators to only annotate an

into tenths.t; may take the values 0.0, 0.1, 0.2, 1.0,and arror jf it makes the thesis less clear. The mere
X, where 0.0 classifies all instances as negative, 0.1 clessifi

only instances; assigned values in the top tenth of the rangePreésence of an awkward phrase or misspelling is

as positive, and so on, andis the default threshold, labeling not enough to justify the Confusing Phrasing label.
essays as positive instances:pbnly if b; returns forlthem a Hence, we introduce misspelling feature whose
value greater than 0. It was necessary to assigmthis way ; . . ,
because the range of values classifiers return varies greatvalue is the number of spelling errors in an essay’s
depending on which error type we are classifying and whichmost-misspelled sentente.

other parameters we use. This method gives us reasonal

fine-grained thresholds without having to try an unreasiynab “We employ SCOWL Ittp://wordlist.

large number of values far. sourceforge.net/ ) as our dictionary, assuming that a

4.2 Baseline Features

ext, we introduce five types of novel features.



Keywords. Improving the prediction of major- errors. For this reason, it now makes sense for
ity classes can greatly enhance our system’s ovens to introduce a feature tailored to help our sys-
all performance. Hence, since we have introducedem do better at identifying the least-frequent error
the misspelling feature to enhance our system’sypes, Missing Details and Writer Position, each
performance on one of the more frequently occurof which occurs in fewer than 50 essays. To help
ring errors (Confusing Phrasing), it makes senseavith identification of these error classes, we in-
to introduce another type of feature to improvetroduce aggregatediord n-gram features. While
performance on the other two most frequent erwe mention in the previous section one of the rea-
rors, Incomplete Prompt Response and Relevancens regular word n-gram features can be expected
to Prompt. For this reason, we introddceyword to help with these error classes, one of the prob-
features. To use this feature, we first examine eaclems with regular word n-gram features is that it is
of the 13 essay prompts, splitting it into its com-fairly infrequent for the exact same useful phrase
ponent pieces. For our purposes, a component @b occur too frequently. Additionally, since there
a prompt is a prompt substring such that, if an esare numerous word n-grams, some infrequent ones
say does not address it, it may be assigned the Inmay just by chance only occur in positive train-
complete Prompt Response label. Then, for eachng set instances, causing the learner to think they
component, we manually select the most imporindicate the positive class when they do not. To
tant (primary) and second most important (secaddress these problems, for each of the five error
ondary) words that it would be good for a writer classeg;, we construct two Aggregated word fea-
to use to address the component. To give an extures Aw-+; and Aw—;. For each essaydw+;
ample, the lemmatized version of the third com-counts the number of word n-grams we believe in-
ponent of the second essay in Table 1 is “it shouldlicate that an essay is a positive example:of
rehabilitate they”. For this component we selectedand Aw—; counts the number of word n-grams
“rehabilitate” as a primary keyword and “society” we believe indicate an essay is not an example of
as a secondary keyword. To compute one of oue;. Aw+ n-grams for the Missing Details error
keyword features, we compute the random indextend to include phrases like “there is something”
ing similarity between the essay and each group obr “this statement”, whileAw— n-grams are of-
primary keywords taken from components of theten words taken directly from an essay’s prompt.
essay’s prompt and assign the feature the lowedt-grams used for Writer Position'dw-+ tend to

of these values. If this feature has a low value, thasuggest the writer is distancing herself from what-
suggests that the essay may have an Incompletyver statement is being made such as “every per-
Prompt Response error because the essay probsen”, but n-grams for this errorslw— feature

bly did not respond to the part of the prompt fromare difficult to find. SinceAw+; and Aw—; are
which this value came. To compute another of theso error specific, they are only included in an es-
keyword features, we count the numbers of comsay’s feature representation when it is presented to
bined primary and secondary keywords the essalgarnerb;. So while aggregated word n-grams in-
contains from each component of its prompt, androduce ten new features, each leariyenly sees
divide each number by the total number of primarytwo of these Aw+; and Aw—;).

and secondary features for that component. If the

greatest of these fractions has a low value, that in- We construct the lists of word n-grams that are

dicates the essay’s thesis might not be very Releaggregated for use as théw+ and Aw— fea-
vant to the Prompt. ture values in the following way. For each error

classe;, we sort the list of all features occurring

Aggregated word n-grams. Other ways we t least ten ti in the traini t by inf i
could measure our system'’s performance (such A castientimes inhe training set by information
gain. A human annotator then manually inspects

macro F-score) would consider our system’s per: . T
) y P the top thousand features in each of the five lists

formance on the less frequent errors no less im- . . )
. nd sorts each list’s features into three categories.
portant than its performance on the most freque ! o .
he first category foe;’s list consists of features

word that does not appear in the dictionary is misspelled.  that indicate an essay may be a positive instance.
®Space limitations preclude a complete listing of the key-Each word n-gram from this list that occurs in an
word features. See our website fatp://www.hlt. . ,
essay increases the essay's)+; value by one.

utdallas.edu/ ~ persingg/ICLE/ for the complete 220 ¢
list. Similarly, any word n-gram sorted into the second



category, which consists of features the annotatoelse. Hence, this feature along with several oth-
thinks indicate a negative instanceepf increases ers like “Awareness-Cognizer-we all” are useful
the essay’sAiw— value by one. The third category when constructing the lists of frame features for
just contains all the features the annotator did noWriter Position’s aggregatedame features! f+;
believe were useful enough to either class, and wand Af—;. Like every other aggregated feature,
make no further use of those features. For most etd f+; and A f —; are generated for every errey.

ror types, only about 12% of the top 1000 features

get sorted into one of the first two categories. 5 Score Prediction

Aggregated POS n-grams. We might further

improve our system’s performance on the MissingBecause essays containing thesis clarity errors
Details error type by introducing a feature that agtend to have lower thesis clarity scores than essays
gregategart-of-speech (POS) tag n-grams in thewith fewer errors, we believe that thesis clarity
same way that thelw features aggregate word n- scores can be predicted for essays by utilizing the
gram features. For this reason, we include POSame features we use for identifying thesis clarity
tag 1, 2, 3, and 4-grams in the set of features werrors. Because our score prediction system uses
sort in the previous paragraph. For each eeor the same feature types we use for thesis error iden-
we select POS tag n-grams from the top thousantification, each essay’s vector space representation
features of the information gain sorted list to countremains unchanged. Only its label changes to one
toward theAp-+; and Ap—; aggregation features. of the values in Table 2 in order to reflect its thesis
We believe this kind of feature may help improve clarity score. To make use of the fact that some
performance on Missing Details because the lispairs of scores are more similar than others (e.g.,
of features aggregated to generate thet; fea- an essay with a score of 3.5 is more similar to an
ture’s value includes POS n-gram features like CGessay with a score of 4.0 than it is to one with a
“NN ” (scare quotes). This feature type may alsoscore of 1.0), we cast thesis clarity score predic-
help with Confusing Phrasing because the list otion as a regression rather than classification task.
POS tag n-grams our annotator generated for its Treating thesis clarity score prediction as a re-
Ap+i contains useful features like DT NNS VBZ gression problem removes our need for a classi-
VBN (e.g., “these signals has been”), which cap-ication threshold parameter like the one we use
tures noun-verb disagreement. in the error identification problem, but if we use

Aggregated frames. Our last aggregated fea- SVM!9h’s regression option, it does not remove
ture is generated using FrameNet-style semanti'® need for tuning a regularization parameter,
role labels obtained using SEMAFOR (Das et al.Or @ feature selection parameter’ We jointly
2010). For each sentence in our data set, SHUNe these two parameters to optimize perfor-
MAFOR identifies each semantic frame occurringMance on held-out validation data by performing
in the sentence as well as each frame element tha! €xhaustive search in the parameter space.
participates in it. For example, a semantic frame After we select the features, construct the essay
may describe an event that occurs in a sentenc#)stances, train a regressor on training set essays,
and the event's frame elements may be the peand tune parameters on validation set essays, we
ple or objects that participate in the event. Forcan use the regressor to obtain thesis clarity scores
a more concrete example, consider the sentencen test set essays.

“They said they do not believe that the prison sys-

tem is outdated”. This sentence contains a State- Sgefore tuning the feature selection parameter, we have to
ment frame because a statement is made in it. Qreort the list of n-gram features occurring the training Jet.

of the frame elements participating in the frame isfrgg?leeatgﬁ (;’izfir?gt";grrgzt'soirt‘sggv'\?nacsl;gg sorting critewe,

the Speaker “they”. From this frame, we would  "The absence of the classification threshold parameter and

extract a feature pairing the frame together withthe fact that we do not need to train multiple learners, one fo
; “ each score, make it feasible for us to do two things. First, we
its frame element to get the feature Statement'explore a wider range of values for the two parameters: we

Speaker-they”. This feature indicates that the esallow C to take any value from0°, 10*, 102, 10%, 10*, 10°,

say it occurs in might be a positive instance of thel0’, or 107, and we allown to take any value from 1000,

Writer Positi . it tell th iter i 2000, 3000, 4000, 5000, @nL. Second, we exhaustively
”_er ' osition error since | _e S us the writer IS explore the space defined by these parameters in order to ob-

attributing some statement being made to someone&in an exact solution to the parameter optimization proble



6 Evaluation Error Identification Scoring
System P R F F S1 | S2 | S3
In this section, we evaluate our systems for errgr_E 24.8 44.7 31.1 24.0] 65§ .517 .403
. . : ) y é Bm 242 442 31.2[ 25.3] 654 515 .402
identification and scoring. All the results we res Fgmk 9.0 442 349 267 663 490 369
port are obtained via five-fold cross-validation ex+| Bmkw 28.5] 49.6) 35.5 31.4| .651 .484 .374
; ; Bmkwp || 34.2] 49.6] 40.4 34.6)| 671 .483 .37
periments. In each experlme.nF, we use 3/5 of 0 Bmkwpf [ 3.0 54.4 414 373 672 486382
labeled essays for model training, another 1/5 for
parameter tuning, and the final 1/5 for testing.  Table 6: Five-fold cross-validation results for the-

sis clarity error identification and scoring.

6.1 Error Identification

Evaluation metrics. To evaluate our thesis clar- gnd remains unaffected by very low F-scores on
ity error type identification system, we computethe two remaining infrequent class¥s.

precision, recall, micro F-score, and macro F- \yhen we add themisspelling feature to the
score, which are calculated as follows. iptbe  paseline, resulting in the system callé@im

the number of test essays correctly labeled as pos(row 2), the micro F-score sees a very small, in-
tive by errore;'s binary classifieb;; p; be the total  sjgnjficant improvement! What is pleasantly sur-
number of test essays labeled as positivé;band prising, however, is that, even though the mis-
g be the total number of test essays that belong t@pe|ling features were developed for the Confus-
e; according to the gold standard. Then, the precimg Phrasing error type, they actually have more
sion (P;), recall ®;), and F-scoreK;) for b; and  of 3 positive impact on Missing Details and Writer
the macro F-scoret) of the combined system for pggsition, bumping their individual error F-scores

one test fold are calculated by up by about 5 and 3 percent respectively. This sug-
tpi tpi PR, - >,F; gests that spelling difficul_ti_es may bg correlat_ed

Pi=—Ri=—,Fi=5 - F = - with these other essay-writing difficulties, despite
pl gz Pz + RZ 5

_ their apparent unrelatedness. This effect is strong

However, the macro F-score calculation can bgnough to generate the small, though insignificant,
seen as giving too much weight to the less frequer@ain in macro F-score shown in the table.

for each system the micro precision, recall, and Frjcro F-score increases significantly by 3.7 points

score (P, R, and F), where (row 3). The micro per-class results reveal that,
S tpi S tpi PR, as intended, keyword features improve Incomplete
P = ZZ P R = ZZ " =5 R Prompt Response and Relevance to Prompt's F-

i Pi 1 9i

scores reveals that they do by 6.4 and 9.2 percent-
Since we perform five-fold cross-validation, age points respectively. The macro F-scores reveal
each value we report for each of these measuragis too, though the macro F-score gains are 3.2
is an average over its values for the five fofds. points and 11.5 points respectively. The macro F-
Results and discussion. Results on error iden- score of the overall system would likely have im-
tification, expressed in terms of precision, recall,proved more than shown in the table if the addition
micro F-score, and macro F-score are shown if keyword features did not simultaneously reduce
the first four columns of Table 6. Owaseline Missing Details’s score by several points.
system, which only uses word n-gram and random While we hoped that adding aggregatedrd
indexing features, seems to perform uniformlyn-gram features to the system (row 4) would be
poorly across both micro and macro F-scores (Rable to improve performance on Confusing Phras-
and F; see row 1). The per-class res8ishow ing due to the presence of phrases such as “in uni-
that, since micro F-score places more weight orversity be” in the error'sAw+; list, there turned
the correct identification of the most frequent er-out to be few such common phrases in the data set,
rors, the system’s micro F-score (31.1%) is fairly—;—— o _
Since parameters for optimizing micro F-score and

close to the average of the scores obtained on thﬁacro F-score are selected independently, the per-class F-

three most frequent error classes, CP, IPR, and Rgores associated with micro F-score are different thasetho

- used for calculating macro F-score. Hence, when we discuss
8This averaging explains why the formula for F does notper-class changes influencing micro F-score, we refer to the

exactly hold in the Table 6 results. former set, and otherwise we refer to the latter set.
%Per-class results are not shown due to space limitations. All significance tests are pairgetests, withp < 0.05.



so performance on this class remains mostly unnone in itsAf—; list. The few that are in the for-
changed. This feature type does, however, resuther list, however, occur fairly often and look like
in major improvements to micro and macro perfor-fairly good indicators of this error (both the exam-
mance on Missing Details and Writer Position, theples “Event-Event-it” and “Categorization-ltem-
other two classes this feature was designed to helphat” occur in the positive list, and both do seem
Indeed, the micro F-score versions of Missing Devague, indicating more details are to be desired).
tails and Writer Position improve by 15.3 and 10.8 Overall, this system improves our base-
percentage points respectively. Since these are mline’'s macro F-score performance significantly by
nority classes, however, the large improvementd43.3% and its micro F-score performance signifi-
result in only a small, insignificant improvement cantly by 10.3%. As we progressed, adding each
in the overall system’s micro F-score. The macronew feature type to the baseline system, there was
F-score results for these classes, however, improveo definite and consistent pattern to how the pre-
by 6.5% and 17.6% respectively, giving us a nearlycisions and recalls changed in order to produce
5-point, statistically significant bump in macro F- the universal increases in the F-scores that we ob-
score after we add this feature. served for each new system. Both just tended to

Confusing Phrasing has up to now stubbornlferk”y progress upward as new feature types were

resisted any improvement, even when we addeadded' This confirms our intuition abOL_Jt these_fea—
tures — namely that they do not all uniformly im-

features explicitly designed to help our system do . .
rove our performance in the same way. Some aim

better on this error type. When we add aggregate§ . ision by tell h
part of speech n-gram features on top of the pre—0 'Mprove precision by telling us when essays are

vious system, that changes dramatically. Addindess likely to be positive instances of an error class,

these features makes both our system’s F-scores. chasany O.f thdw—;, Ap—;, Or A f—; featu.res,

on Confusing Phrasing shoot up almost 8%, re-i.inOI others aim to teI_I us when an essay is more
sulting in a significant, nearly 4.9% improvement"k(;‘\Iy to be a positive instance of an error.
in overall micro F-score and a more modest bulg 2 Scoring

insignificant 3.2% improvement in macro F-score

(row 5). The micro F-score improvement can . ) .
. oo metrics to measure the error of our thesis clarity
also be partly attributed to a four point improve- . .
scoring system. Th&1 metric measures the fre-

ment in Incomplete Prompt Response’s micro F- uency at which a system predicts the wrong score
score. The 13.7% macro F-score improvement of! y y b 9

the Missing Details error plays a larger role in theoUt of the seven possible scores. Hence, a system

. . that predicts the right score only 25% of the time
overall system’s macro F-score improvement than

) L would receive arb1 score of 0.75.
Confusing Phrasing’s improvement, however. : :
The S2 metric measures the average distance

The improvement we see in micro F-score wherbetween the system’s score and the actual score.
we add aggregatefitame features (row 6) can be This metric reflects the idea that a system that
attributed almost solely to improvements in classi-estimates scores close to the annotator-assigned
fication of the minority classes. This is surprisingscores should be preferred over a system whose
because, as we mentioned before, minority classasstimations are further off, even if both systems
tend to have a much smaller impact on overallestimate the correct score at the same frequency.
micro F-score. Furthermore, the overall micro Finally, the S3 metric measures the average
F-score improvement occurrs despite declines igquare of the distance between a system’s the-
the performances on two of the majority class ersis clarity score estimations and the annotator-
rors. Missing Details and Writer Position’s mi- assigned scores. The intuition behind this metric
cro F-score performances increase by 19.1% anid that not only should we prefer a system whose
13.4%. The latter is surprising only because ofestimations are close to the annotator scores, but
the magnitude of its improvement, as this featureve should also prefer one whose estimations are
type was explicitly intended to improve its perfor- not too frequently very far away from the annota-
mance. We did not expect this aggregated featurgr scores. These three scores are given by:
type to be especially useful for Missing Details er- | N | N
ror identification because very few of these typesﬁ Z 1, NZ |A; — Ejl, NZ (A; — Ej)?
of features occur in itsdf+; list, and there are Aj#E) i=1 i=1

Scoring metrics. We design three evaluation



whereAj,Ej,andE;- are the annotator assigned ST (Bmkw) 52 (Bmkwp) 53 (BmKk)
system estimated, and rounded system estima ?g'd 25| 50| .75]| 25| 50| .75] .25| 50| .75

score$? respectively for essay, and N is the 1525/ 3.0[ 30[ 2.8/ 3.1 3.2 2.6 3.0] 3.2
number of essays. 2.0 || 3.0] 3.0] 35| 3.0] 3.2] 35| 3.0] 3.1] 34

Results and discussion. Results on scoring are (351307 3535 31 34 35 31 3.3 35
shown in the last three columns of Table 6. We35 |[ 3.5] 3.5] 4.0]] 3.2] 3.4] 36] 3.2] 34 35
see that the thesis clarity score predicting variation™

of theBaseline system, which employs as featurestap|e 7: Regressor scores for top three systems.
only word n-grams and random indexing features,

predicts the wrong score 65.8% of the time. Its

. . . larity scoring.
predicted score is on average 0.517 points off OF To more closely examine the behavior of the
the actual score, and the average squared distanBe

between the predicted and actual scores is O'403tr(iabsl;[ti)cr?sng?siﬁ:—:‘esr?s,e n :_:(;5[ Zo:v:a(ér]aréltgitgl:—-
We observed earlier that a high number of mis- yP g

. . . dard score. As an example of how to read this ta-
spellings may be positively correlated with ON€y .o consider the number 2.8 appearing in row 1.5
or more unrelated errors. Adding th@sspelling ’ | '

. in the .25 column of thé&2 (Bmkwp) region. This
feature to the scoring systems, however, only .

. . S . . ’means that 25% of the time, when systBmkwp
yields minor, insignificant improvements to their

. . (which obtains the best2 score) is presented with
performances under the three scoring metrics.

. . . atest essay having a gold standard score of 1.5,
While addingkeyword features on top of this . . y gag
: . It predicts that the essay has a score less than or
system does not improve the frequency with which :
. : : . equal to 2.8 for th&52 metric.
the right score is predicted, it both tends to move .
T . From this table, we see that each of the best sys-
the predictions closer to the actual thesis clar- . .
. . .. tems has a strong bias toward predicting more fre-
ity score value (as evidenced by the significant
) ) : guent scores as there are no numbers less than 3.0
improvement inS2) and ensures that predicted .
. in the 50% columns, and about 82.8% of all essays
scores will not too often stray too far from the

actual value (as evidenced by the significant im_have gold standard scores of 3.0 or above. Never-

) ) theless, no system relies entirely on bias, as evi-
provement inS3). Overall, the scoring model em- y y

. . denced by the fact that each column in the table
ploying theBmk feature set performs significantly .
. : : has a tendency for its scores to ascend as the gold
better than theBaseline scoring model with re-

. ) standard score increases, implying that the sys-
spect to two out of three scoring metrics. Pying Y

- ... _tems have some success at predicting lower scores
The only remaining feature type whose addition

ields a significant performance improvement isfor essays with lower gold standard scores.
y 9 P P Finally, we note that the difference in error

the aggregatediord feature type, which improves weighting between th&2 and.S3 scoring metrics

Z)rqsitrfsrianri?itZri?rzczrcet zg:‘::zy;g:’nvzgﬁczavmg appears to be having its desired effect, as there is a
9 P ' strong tendency for each entry in tl§8 subtable

Neither of the remaining aggregative featuresi . .
. - . . 0 be less than or equal to its corresponding entry
yields any significant improvements in perfor- .

s - - . in the S2 subtable due to the greater penalty the
mance. This is a surprising finding since, up UN"53 metric imposes for predictions that are very far
til we introduced aggregatequhrt-of-speech tag n- P P y

) " way from the gold standard scores.
gram features into our regressor, each addmonaFiI y 9
feature that helped With_error cla_lssification made;  conclusion
at least a small but positive contribution to at least
two out of the threeS scores. These aggregative We examined the problem of modeling thesis clar-
features, which proved to be very powerful whenity errors and scoring in student essays. In addition

assigning error labels, are not as useful for thesit developing these models, we proposed novel
12since our regressor assigns each essay a real value rat features for use in our thesis clarity error model
than an actual valid thesis clarity score, it would be difficu %ﬁd _e.mploye.d these features, each of which was
to obtain a reasonabl§l score without rounding the system explicitly designed for one or more of the error
estimated score to one of the possible values. For that regypes, to train our scoring model. We make our
son, we round the estimated score to the nearest of the Sev%ﬁeSiS clarity annotations publicly available in or-

scores the human annotators were permitted to assign (1. ! )
1.5, 2.0, 2.5, 3.0, 3.5, 4.0) only when calculatifit, der to stimulate further research on this task.
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