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Abstract

Recently, researchers have begun explor-
ing methods of scoring student essays with
respect to particular dimensions of qual-
ity such as coherence, technical errors,
and prompt adherence. The work on
modeling prompt adherence, however, has
been focused mainly on whether individ-
ual sentences adhere to the prompt. We
present a new annotated corpus of essay-
level prompt adherence scores and pro-
pose a feature-rich approach to scoring es-
says along the prompt adherence dimen-
sion. Our approach significantly outper-
forms a knowledge-lean baseline prompt
adherence scoring system yielding im-
provements of up to 16.6%.

1 Introduction

Automated essay scoring, the task of employing
computer technology to evaluate and score writ-
ten text, is one of the most important educational
applications of natural language processing (NLP)
(see Shermis and Burstein (2003) and Shermis et
al. (2010) for an overview of the state of the art
in this task). A major weakness of many ex-
isting scoring engines such as the Intelligent Es-
say AssessorTM (Landauer et al., 2003) is that they
adopt a holistic scoring scheme, which summa-
rizes the quality of an essay with a single score and
thus provides very limited feedback to the writer.
In particular, it is not clear which dimension of
an essay (e.g., style, coherence, relevance) a score
should be attributed to. Recent work addresses this
problem by scoring a particular dimension of es-
say quality such as coherence (Miltsakaki and Ku-
kich, 2004), technical errors, organization (Pers-
ing et al., 2010), and thesis clarity (Persing and
Ng, 2013). Essay grading software that provides
feedback along multiple dimensions of essay qual-

ity such as E-rater/Criterion (Attali and Burstein,
2006) has also begun to emerge.

Our goal in this paper is to develop a com-
putational model for scoring an essay along an
under-investigated dimension —prompt adher-
ence. Prompt adherence refers to how related an
essay’s content is to the prompt for which it was
written. An essay with a high prompt adherence
score consistently remains on the topic introduced
by the prompt and is free of irrelevant digressions.

To our knowledge, little work has been done
on scoring the prompt adherence of student essays
since Higgins et al. (2004). Nevertheless, there are
major differences between Higgins et al.’s work
and our work with respect to both the way the task
is formulated and the approach. Regarding task
formulation, while Higgins et al. focus on classi-
fying eachsentence as having eithergood or bad
adherence to the prompt, we focus on assigning
a prompt adherence score to the entireessay, al-
lowing the score to range from one to four points
at half-point increments. As far as the approach
is concerned, Higgins et al. adopt aknowledge-
lean approach to the task, where almost all of
the features they employ are computed based on
a word-based semantic similarity measure known
as Random Indexing (Kanerva et al., 2000). On
the other hand, we employ a large variety of fea-
tures, including lexical and knowledge-based fea-
tures that encode how well the concepts in an es-
say match those in the prompt, LDA-based fea-
tures that provide semantic generalizations of lex-
ical features, and “error type” features that encode
different types of errors the writer made that are
related to prompt adherence.

In sum, our contributions in this paper are two-
fold. First, we develop a scoring model for the
prompt adherence dimension on student essays us-
ing a feature-rich approach. Second, in order to
stimulate further research on this task, we make
our data set consisting of prompt adherence an-



Topic Languages Essays
Most university degrees are the-
oretical and do not prepare stu-
dents for the real world. They are
therefore of very little value.

13 131

The prison system is outdated.
No civilized society should pun-
ish its criminals: it should reha-
bilitate them.

11 80

In his novel Animal Farm,
George Orwell wrote “All men
are equal but some are more
equal than others.” How true is
this today?

10 64

Table 1: Some examples of writing topics.

notations of 830 essays publicly available. Since
progress in prompt adherence modeling is hin-
dered in part by the lack of a publicly annotated
corpus, we believe that our data set will be a valu-
able resource to the NLP community.

2 Corpus Information

We use as our corpus the 4.5 million word Interna-
tional Corpus of Learner English (ICLE) (Granger
et al., 2009), which consists of more than 6000 es-
says written by university undergraduates from 16
countries and 16 native languages who are learn-
ers of English as a Foreign Language. 91% of the
ICLE texts are argumentative. We select a subset
consisting of 830 argumentative essays from the
ICLE to annotate for training and testing of our
essay prompt adherence scoring system. Table 1
shows three of the 13 topics selected for annota-
tion. Fifteen native languages are represented in
the set of annotated essays.

3 Corpus Annotation

We ask human annotators to score each of the 830
argumentative essays along the prompt adherence
dimension. Our annotators were selected from
over 30 applicants who were familiarized with the
scoring rubric and given sample essays to score.
The six who were most consistent with the ex-
pected scores were given additional essays to an-
notate. Annotators evaluated how well each es-
say adheres to its prompt using a numerical score
from one to four at half-point increments (see Ta-
ble 2 for a description of each score). This con-
trasts with previous work on prompt adherence es-
say scoring, where the corpus is annotated with a
binary decision (i.e.,good or bad) (e.g., Higgins
et al. (2004; 2006), Louis and Higgins (2010)).
Hence, our annotation scheme not only provides

Score Description of Prompt Adherence
4 essay fully addresses the prompt andconsis-

tently stays on topic
3 essay mostly addresses the prompt oroccasion-

ally wanders off topic
2 essay does not fully address the prompt orcon-

sistently wanders off topic
1 essay does not address the prompt at all or is

completely off topic

Table 2: Descriptions of the meaning of scores.

a finer-grained distinction of prompt adherence
(which can be important in practice), but also
makes the prediction task more challenging.

To ensure consistency in annotation, we ran-
domly select 707 essays to have graded by mul-
tiple annotators. Analysis reveals that the Pear-
son’s correlation coefficient computed over these
doubly annotated essays is 0.243. Though annota-
tors exactly agree on the prompt adherence score
of an essay only 38% of the time, the scores they
apply fall within 0.5 points in 66% of essays and
within 1.0 point in 89% of essays. For the sake
of our experiments, whenever annotators disagree
on an essay’s prompt adherence score, we assign
the essay the average of all annotations rounded to
the nearest half point. Table 3 shows the number
of essays that receive each of the seven scores for
prompt adherence.

score 1.0 1.5 2.0 2.5 3.0 3.5 4.0
essays 0 0 8 44 105 230 443

Table 3: Distribution of prompt adherence scores.

4 Score Prediction

In this section, we describe in detail our system for
predicting essays’ prompt adherence scores.

4.1 Model Training and Application

We cast the problem of predicting an essay’s
prompt adherence score as 13 regression prob-
lems, one for each prompt. Each essay is repre-
sented as an instance whose label is the essay’s
true score (one of the values shown in Table 3)
with up to seven types of features including base-
line (Section 4.2) and six other feature types pro-
posed by us (Section 4.3). Our regressors may as-
sign an essay any score in the range of 1.0−4.0.

Using regression captures the fact that some
pairs of scores are more similar than others (e.g.,
an essay with a prompt adherence score of 3.5 is
more similar to an essay with a score of 4.0 than it
is to one with a score of 1.0). A classification sys-



tem, by contrast, may sometimes believe that the
scores 1.0 and 4.0 are most likely for a particu-
lar essay, even though these scores are at opposite
ends of the score range.

Using a different regressor for each prompt cap-
tures the fact that it may be easier for an essay to
adhere to some prompts than to others, and com-
mon problems students have writing essays for
one prompt may not apply to essays written in re-
sponse to another prompt. For example, in essays
written in response to the prompt “Marx once said
that religion was the opium of the masses. If he
was alive at the end of the 20th century, he would
replace religion with television,” students some-
times write essays about all the evils of television,
forgetting that their essay is only supposed to be
about whether it is “the opium of the masses”. Stu-
dents are less likely to make an analogous mistake
when writing for the prompt “Crime does not pay.”

After creating training instances for promptpi,
we train a linear regressor,ri, with regularization
parameterci for scoring test essays written in re-
sponse topi using the linear SVM regressor imple-
mented in the LIBSVM software package (Chang
and Lin, 2001). All SVM-specific learning param-
eters are set to their default values exceptci, which
we tune to maximize performance on held-out val-
idation data.

After training the classifiers, we use them to
classify the test set essays. The test instances are
created in the same way as the training instances.

4.2 Baseline Features

Our baseline system for score prediction employs
various features based on Random Indexing.

1. Random Indexing Random Indexing (RI) is
“an efficient, scalable and incremental alterna-
tive” (Sahlgren, 2005) to Latent Semantic Index-
ing (Deerwester et al., 1990; Landauer and Dut-
nais, 1997) which allows us to automatically gen-
erate a semantic similarity measure between any
two words. We train our RI model on over 30 mil-
lion words of the English Gigaword corpus (Parker
et al., 2009) using the S-Space package (Jurgens
and Stevens, 2010). We expect that features based
on RI will be useful for prompt adherence scor-
ing because they may help us find text related
to the prompt even if some of its concepts have
have been rephrased (e.g., an essay may talk about
“jail” rather than “prison”, which is mentioned in
one of the prompts), and because they have al-

ready proven useful for the related task of deter-
mining which sentences in an essay are related to
the prompt (Higgins et al., 2004).

For each essay, we therefore attempt to adapt
the RI features used by Higgins et al. (2004) to
our problem of prompt adherence scoring. We do
this by generating one feature encoding the entire
essay’s similarity to the prompt, another encoding
the essay’s highest individual sentence’s similarity
to the prompt, a third encoding the highest entire
essay similarity to one of the prompt sentences,
another encoding the highest individual sentence
similarity to an individual prompt sentence, and fi-
nally one encoding the entire essay’s similarity to
a manually rewritten version of the prompt that ex-
cludes extraneous material (such as “In his novel
Animal Farm, George Orwell wrote,” which is in-
troductory material from the third prompt in Ta-
ble 1). Our RI feature set necessarily excludes
those features from Higgins et al. that are not
easily translatable to our problem since we are
concerned with an entire essay’s adherence to its
prompt rather than with each of its sentences’ re-
latedness to the prompt. Since RI does not pro-
vide a straightforward way to measure similar-
ity between groups of words such as sentences
or essays, we use Higgins and Burstein’s (2007)
method to generate these features.

4.3 Novel Features

Next, we introduce six types of novel features.

2. N-grams As our first novel feature, we use
the 10,000 most important lemmatized unigram,
bigram, and trigram features that occur in the es-
say. N-grams can be useful for prompt adherence
scoring because they can capture useful words and
phrases related to a prompt. For example, words
and phrases like “university degree”, “student”,
and “real world” are relevant to the first prompt in
Table 1, so it is more likely that an essay adheres
to the prompt if they appear in the essay.

We determine the “most important” n-gram fea-
tures using information gain computed over the
training data (Yang and Pedersen, 1997). Since the
essays vary greatly in length, we normalize each
essay’s set of n-gram features to unit length.

3. Thesis Clarity Keywords Our next set of fea-
tures consists of the keyword features we intro-
duced in our previous work on essay thesis clarity
scoring (Persing and Ng, 2013). Below we give an
overview of these keyword features and motivate



why they are potentially useful for prompt adher-
ence scoring.

The keyword features were formed by first ex-
amining the 13 essay prompts, splitting each into
its component pieces. As an example of what is
meant by a “component piece”, consider the first
prompt in Table 1. The components of this prompt
would be “Most university degrees are theoreti-
cal”, “Most university degrees do not prepare stu-
dents for the real world”, and “Most university de-
grees are of very little value.”

Then the most important (primary) and second
most important (secondary) words were selected
from each prompt component, where a word was
considered “important” if it would be a good word
for a student to use when stating her thesis about
the prompt. So since the lemmatized version of the
third component of the second prompt in Table 1
is “it should rehabilitate they”, “rehabilitate” was
selected as a primary keyword and “society” as a
secondary keyword.

Features are then computed based on these key-
words. For instance, one thesis clarity keyword
feature is computed as follows. The RI similarity
measure is first taken between the essay and each
group of the prompt’s primary keywords. The fea-
ture then gets assigned the lowest of these values.
If this feature has a low value, that suggests that
the student ignored the prompt component from
which the value came when writing the essay.

To compute another of the thesis clarity key-
word features, the numbers of combined primary
and secondary keywords the essay contains from
each component of its prompt are counted. These
numbers are then divided by the total count of pri-
mary and secondary features in their respective
components. The greatest of the fractions gener-
ated in this way is encoded as a feature because if
it has a low value, that indicates the essay’s thesis
may not be very relevant to the prompt.1

4. Prompt Adherence Keywords The thesis
clarity keyword features described above were in-
tended for the task of determining how clear an
essay’s thesis is, but since our goal is instead to de-
termine how well an essay adheres to its prompt,
it makes sense to adapt keyword features to our
task rather than to adopt keyword features ex-

1Space limitations preclude a complete listing of the the-
sis clarity keyword features. See our website athttp:
//www.hlt.utdallas.edu/ ˜ persingq/ICLE/ for
the complete list.

actly as they have been used before. For this
reason, we construct a new list of keywords for
each prompt component, though since prompt ad-
herence is more concerned with what the student
says about the topics than it is with whether or
not what she says about them is stated clearly,
our keyword lists look a little different than the
ones discussed above. For an example, we ear-
lier alluded to the problem of students merely dis-
cussing all the evils of television for the prompt
“Marx once said that religion was the opium of the
masses. If he was alive at the end of the 20th cen-
tury, he would replace religion with television.”
Since the question suggests that students discuss
whether television is analogous to religion in this
way, our set of prompt adherence keywords for
this prompt contains the word “religion” while the
previously discussed keyword sets do not. This
is because a thesis like “Television is bad” can be
stated very clearly without making any reference
to religion at all, and so an essay with a thesis like
this can potentially have a very high thesis clarity
score. It should not, however, have a very high
prompt adherence score, as the prompt asked the
student to discuss whether television is like reli-
gion in a particular way, so religion should be at
least briefly addressed for an essay to be awarded
a high prompt adherence score.

Additionally, our prompt adherence keyword
sets do not adopt the notions of primary and sec-
ondary groups of keywords for each prompt com-
ponent, instead collecting all the keywords for a
component into one set because “secondary” key-
words tend to be things that are important when we
are concerned with what a student is saying about
the topic rather than just how clearly she said it.

We form two types of features from prompt ad-
herence keywords. While both types of features
measure how much each prompt component was
discussed in an essay, they differ in how they en-
code the information. To obtain feature values of
the first type, we take the RI similarities between
the whole essay and each set of prompt adherence
keywords from the prompt’s components. This
results in one to three features, as some prompts
have one component while others have up to three.

We obtain feature values of the second type as
follows. For each component, we count the num-
ber of prompt adherence keywords the essay con-
tains. We divide this number by the number of
prompt adherence keywords we identified from



the component. This results in one to three fea-
tures since a prompt has one to three components.

5. LDA Topics A problem with the features we
have introduced up to this point is that they have
trouble identifying topics that are not mentioned
in the prompt, but are nevertheless related to the
prompt. These topics should not diminish the es-
say’s prompt adherence score because they are at
least related to prompt concepts. For example,
consider the prompt “All armies should consist en-
tirely of professional soldiers: there is no value in
a system of military service.” An essay contain-
ing words like “peace”, “patriotism”, or “training”
are probably not digressions from the prompt, and
therefore should not be penalized for discussing
these topics. But the various measures of keyword
similarities described above will at best not notice
that anything related to the prompt is being dis-
cussed, and at worst, this might have effects like
lowering some of the RI similarity scores, thereby
probably lowering the prompt adherence score the
regressor assigns to the essay. While n-gram fea-
tures do not have exactly the same problem, they
would still only notice that these example words
are related to the prompt if multiple essays use the
same words to discuss these concepts. For this
reason, we introduce Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) features.

In order to construct our LDA features, we
first collect all essays written in response to each
prompt into its own set. Note that this feature type
exploits unlabeled data: it includes all essays in
the ICLE responding to our prompts, not just those
in our smaller annotated 830 essay dataset. We
then use the MALLET (McCallum, 2002) imple-
mentation of LDA to build a topic model of 1,000
topics around each of these sets of essays. This
results in what we can think of as a soft clustering
of words into 1,000 sets for each prompt, where
each set of words represents one of the topics LDA
identified being discussed in the essays for that
prompt. So for example, the five most impor-
tant words in the most frequently discussed topic
for the military prompt we mentioned above are
“man”, “military”, “service”, “pay”, and “war”.

We also use the MALLET-generated topic
model to tell us how much of each essay is spent
discussing each of the 1,000 topics. The model
might tell us, for example, that a particular essay
written on the military prompt spends 35% of the
time discussing the “man”, “military”, “service”,

“pay”, and “war” topic and 65% of the time dis-
cussing a topic whose most important words are
“fully”, “count”, “ordinary”, “czech”, and “day”.
Since the latter topic is discussed so much in the
essay and does not appear to have much to do with
the military prompt, this essay should probably
get a bad prompt adherence score. We construct
1,000 features from this topic model, one for each
topic. Each feature’s value is obtained by using
the topic model to tell us how much of the essay
was spent discussing the feature’s corresponding
topic. From these features, our regressor should
be able to learn which topics are important to a
good prompt adherent essay.

6. Manually Annotated LDA Topics A weak-
ness of the LDA topics feature type is that it may
result in a regressor that has trouble distinguishing
between an infrequent topic that is adherent to the
prompt and one that just represents an irrelevant
digression. This is because an infrequent topic
may not appear in the training set often enough for
the regressor to make this judgment. We introduce
the manually annotated LDA topics feature type to
address this problem.

In order to construct manually annotated LDA
topic features, we first build 13 topic models, one
for each prompt, just as described in the section
on LDA topic features. Rather than requesting
models of 1,000 topics, however, we request mod-
els of only 100 topics2. We then go through all
13 lists of 100 topics as represented by their top
ten words, manually annotating each topic with a
number from 0 to 5 representing how likely it is
that the topic is adherent to the prompt. A topic
labeled 5 is very likely to be related to the prompt,
where a topic labeled 0 appears totally unrelated.

Using these annotations alongside the topic dis-
tribution for each essay that the topic models pro-
vide us, we construct ten features. The first five
features encode the sum of the contributions to an
essay of topics annotated with a number≥ 1, the
sum of the contributions to an essay of topics an-
notated with a number≥ 2, and so on up to 5.

The next five features are similar to the last,
with one feature taking on the sum of the contri-
butions to an essay of topics annotated with the
number 0, another feature taking on the sum of the

2We use 100 topics for each prompt in the manually an-
notated version of LDA features rather than the 1,000 topics
we use in the regular version of LDA features because 1,300
topics are not too costly to annotate, but manually annotating
13,000 topics would take too much time.



contributions to an essay of topics annotated with
the number 1, and so on up to 4. We do not include
a feature for topics annotated with the number 5
because it would always have the same value as
the feature for topics≥ 5.

Features like these should give the regressor a
better idea how much of an essay is composed of
prompt-related arguments and discussion and how
much of it is irrelevant to the prompt, even if some
of the topics occurring in it are too infrequent to
judge just from training data.

7. Predicted Thesis Clarity Errors In our pre-
vious work on essay thesis clarity scoring (Persing
and Ng, 2013), we identified five classes of errors
that detract from the clarity of an essay’s thesis:
Confusing Phrasing. The thesis is phrased oddly,
making it hard to understand the writer’s point.
Incomplete Prompt Response. The thesis leaves
some part of a multi-part prompt unaddressed.
Relevance to Prompt. The apparent thesis’s weak
relation to the prompt causes confusion.
Missing Details. The thesis leaves out an impor-
tant detail needed to understand the writer’s point.
Writer Position. The thesis describes a position
on the topic without making it clear that this is the
position the writer supports.

We hypothesize that these errors, though orig-
inally intended for thesis clarity scoring, could
be useful for prompt adherence scoring as well.
For instance, an essay that has a Relevance to
Prompt error or an Incomplete Prompt Response
error should intuitively receive a low prompt ad-
herence score. For this reason, we introduce fea-
tures based on these errors to our feature set for
prompt adherence scoring3.

While each of the essays in our data set was pre-
viously annotated with these thesis clarity errors,
in a realistic setting a prompt adherence scoring
system will not have access to these manual error
labels. As a result, we first need to predict which
of these errors is present in each essay. To do this,
we train five maximum entropy classifiers for each
prompt, one for each of the five thesis clarity er-
rors, using MALLET’s (McCallum, 2002) imple-
mentation of maximum entropy classification. In-
stances are presented to classifier for promptp for
error e in the following way. If a training essay
is written in response top, it will be used to gen-

3See our website athttp://www.hlt.utdallas.
edu/ ˜ persingq/ICLE/ for the complete list of error an-
notations.

erate a training instance whose label is 1 ife was
annotated for it or 0 otherwise. Since error pre-
diction and prompt adherence scoring are related
problems, the features we associate with this in-
stance are features 1−6 which we have described
earlier in this section. The classifier is then used
to generate probabilities telling us how likely it is
that each test essay has errore.

Then, when training our regressor for prompt
adherence scoring, we add the following features
to our instances. We add a binary feature indicat-
ing the presence or absence of each error. Or in
the case of test essays, the feature takes on a real
value from 0 to 1 indicating how likely the classi-
fier thought it was that the essay had each of the
errors. This results in five additional features, one
for each error.

5 Evaluation

In this section, we evaluate our system for prompt
adherence scoring. All the results we report
are obtained via five-fold cross-validation exper-
iments. In each experiment, we use3

5
of our la-

beled essays for model training, another1

5
for pa-

rameter tuning, and the final1

5
for testing.

5.1 Experimental Setup

5.1.1 Scoring Metrics

We employ four evaluation metrics. As we will see
below,S1, S2, andS3 areerror metrics, so lower
scores imply better performance. In contrast,PC

is a correlation metric, so higher correlation im-
plies better performance.

The simplest metric,S1, measures the fre-
quency at which a system predicts the wrong score
out of the seven possible scores. Hence, a system
that predicts the right score only 25% of the time
would receive anS1 score of 0.75.

The S2 metric measures the average distance
between a system’s score and the actual score.
This metric reflects the idea that a system that pre-
dicts scores close to the annotator-assigned scores
should be preferred over a system whose predic-
tions are further off, even if both systems estimate
the correct score at the same frequency.

The S3 metric measures the average square
of the distance between a system’s score predic-
tions and the annotator-assigned scores. The in-
tuition behind this system is that not only should
we prefer a system whose predictions are close
to the annotator scores, but we should also prefer



one whose predictions are not too frequently very
far away from the annotator scores. These three
scores are given by:

1

N

∑

Aj 6=E′

j

1,
1

N

N∑

i=1

|Aj − Ej |,
1

N

N∑

i=1

(Aj − Ej)
2

whereAj, Ej, andE′
j are the annotator assigned,

system predicted, and rounded system predicted
scores4 respectively for essayj, andN is the num-
ber of essays.

The last metric,PC, computes Pearson’s cor-
relation coefficient between a system’s predicted
scores and the annotator-assigned scores.PC

ranges from−1 to 1. A positive (negative)PC

implies that the two sets of predictions are posi-
tively (negatively) correlated.

5.1.2 Parameter Tuning

As mentioned earlier, for each promptpi, we train
a linear regressorri using LIBSVM with regular-
ization parameterci. To optimize our system’s
performance on the three error measures described
previously, we use held-out validation data to in-
dependently tune each of theci values5. Note that
each of theci values can be tuned independently
because aci value that is optimal for predicting
scores forpi essays with respect to any of the error
performance measures is necessarily also the opti-
mal ci when measuring that error on essays from
all prompts. However, this is not case with Pear-
son’s correlation coefficient, as thePC value for
essays from all 13 prompts cannot be simplified as
a weighted sum of thePC values obtained on each
individual prompt. In order to obtain an optimal
result as measured byPC, we jointly tune theci

parameters to optimize thePC value achieved by
our system on the same held-out validation data.
However, an exact solution to this optimization
problem is computationally expensive, as there are
too many (713) possible combinations ofc values
to exhaustively search. Consequently, we find a
local maximum by employing the simulated an-

4Since our regressor assigns each essay a real value rather
than an actual valid score, it would be difficult to obtain a
reasonableS1 score without rounding the system estimated
score to one of the possible values. For that reason, we round
the estimated score to the nearest of the seven scores the hu-
man annotators were permitted to assign (1.0, 1.5, 2.0, 2.5,
3.0, 3.5, 4.0) only when calculatingS1. For other scoring
metrics, we only round the predictions to 1.0 or 4.0 if they
fall outside the 1.0−4.0 range.

5For parameter tuning, we employ the following values.
ci may be assigned any of the values10

0
10

1, 10
2, 103, 104,

10
5, or 10

6.

System S1 S2 S3 PC

Baseline .517 .368 .234 .233
Our System .488 .348 .197 .360

Table 4: Five-fold cross-validation results for
prompt adherence scoring.

nealing algorithm (Kirkpatrick et al., 1983), alter-
ing oneci value at a time to optimizePC while
holding the remaining parameters fixed.

5.2 Results and Discussion

Five-fold cross-validation results on prompt ad-
herence score prediction are shown in Table 4. On
the first line, this table shows that our baseline sys-
tem, which recall uses only various RI features,
predicts the wrong score 51.7% of the time. Its
predictions are off by an average of .368 points,
and the average squared distance between its pre-
dicted score and the actual score is .234. In addi-
tion, its predicted scores and the actual scores have
a Pearson correlation coefficient of 0.233.

The results from our system, which uses all
seven feature types described in Section 4, are
shown in row 2 of the table. Our system obtains
S1, S2, S3, andPC scores of .488, .348, .197,
and .360 respectively, yielding a significant im-
provement over the baseline with respect toS2,
S3, andPC with p < 0.05,p < 0.01, andp < 0.06
respectively6. While our system yields improve-
ments by all four measures, its improvement over
the baselineS1 score is not significant. These re-
sults mean that the greatest improvements our sys-
tem makes are that it ensures that our score pre-
dictions are not too often very far away from an
essay’s actual score, as making such predictions
would tend to drive upS3, yielding a relative er-
ror reduction inS3 of 15.8%, and it also ensures
a better correlation between predicted and actual
scores, thus yielding the 16.6% improvement in
PC.7 It also gives more modest improvements in
how frequently exactly the right score is predicted
(S1) and is better at predicting scores closer to the
actual scores (S2).

5.3 Feature Ablation

To gain insight into how much impact each of the
feature types has on our system, we perform fea-

6All significance tests are pairedt-tests.
7These numbers are calculatedB−O

B−P
whereB is the base-

line system’s score,O is our system’s score, andP is a per-
fect score. Perfect scores for error measures andPC are 0
and 1 respectively.



ture ablation experiments in which we remove the
feature types from our system one-by-one.

Results of the ablation experiments when per-
formed using the four scoring metrics are shown in
Table 5. The top line of each subtable shows what
our system’s score would be if we removed just
one of the feature types from our system. So to see
how our system performs by theS1 metric if we
remove only predicted thesis clarity error features,
we would look at the first row of results of Ta-
ble 5(a) under the column headed by the number 7
since predicted thesis clarity errors are the seventh
feature type introduced in Section 4. The number
here tells us that our system’sS1 score without
this feature type is .502. Since Table 4 shows that
when our system includes this feature type (along
with all the other feature types), it obtains anS1
score of .488, this feature type’s removal costs our
system .014S1 points, and thus its inclusion has a
beneficial effect on theS1 score.

From row 1 of Table 5(a), we can see that re-
moving feature 4 yields a system with the bestS1
score in the presence of the other feature types in
this row. For this reason, we permanently remove
feature 4 from the system before we generate the
results on line 2. Thus, we can see what happens
when we remove both feature 4 and feature 5 by
looking at the second entry in row 2. And since
removing feature 6 harms performance least in the
presence of row 2’s other feature types, we perma-
nently remove both 4 and 6 from our feature set
when we generate the third row of results. We it-
eratively remove the feature type that yields a sys-
tem with the best performance in this way until we
get to the last line, where only one feature type is
used to generate each result.

Since the feature type whose removal yields the
best system is always the rightmost entry in a line,
the order of column headings indicates the rela-
tive importance of the feature types, with the left-
most feature types being most important to per-
formance and the rightmost feature types being
least important in the presence of the other fea-
ture types. This being the case, it is interesting to
note that while the relative importance of differ-
ent feature types does not remain exactly the same
if we measure performance in different ways, we
can see that some feature types tend to be more im-
portant than others in a majority of the four scor-
ing metrics. Features 2 (n-grams), 3 (thesis clarity
keywords), and 6 (manually annotated LDA top-

(a) Results using theS1 metric

3 5 1 7 2 6 4
.527 .502 .512 .502 .511 .500 .488
.527 .502 .512 .501 .513 .500
.525 .508 .505 .505 .504
.513 .527 .520 .513
.523 .520 .506
.541 .527

(b) Results using theS2 metric

2 6 3 1 4 5 7
.356 .350 .348 .350 .349 .348 .348
.351 .349 .348 .348 .348 .347
.351 .349 .348 .348 .347
.350 .349 .348 .348
.358 .351 .349
.362 .352

(c) Results using theS3 metric

2 6 1 5 4 7 3
.221 .201 .197 .197 .197 .197 .196
.215 .201 .197 .196 .196 .196
.212 .203 .199 .197 .196
.212 .203 .199 .197
.212 .203 .199
.223 .204

(d) Results using thePC metric

6 3 2 1 7 5 4
.326 .332 .303 .344 .348 .348 .361
.326 .332 .304 .343 .348 .348
.324 .337 .292 .345 .352
.322 .337 .297 .346
.316 .321 .323
.218 .325

Table 5: Feature ablation results.In each subtable,

the first row shows how our system would perform if each

feature type was removed. We remove the least important

feature type, and show in the next row how the adjusted sys-

tem would perform without each remaining type. For brevity,

a feature type is referred to by its feature number: (1) RI; (2)

n-grams; (3) thesis clarity keywords; (4) prompt adherence

keywords; (5) LDA topics; (6) manually annotated LDA top-

ics; and (7) predicted thesis clarity errors.

ics) tend to be the most important feature types,
as they tend to be the last feature types removed
in the ablation subtables. Features 1 (RI) and 5
(LDA topics) are of middling importance, with
neither ever being removed first or last, and each
tending to have a moderate effect on performance.
Finally, while features 4 (prompt adherence key-
words) and 7 (predicted thesis clarity errors) may
by themselves provide useful information to our
system, in the presence of the other feature types
they tend to be the least important to performance
as they are often the first feature types removed.

While there is a tendency for some feature types
to always be important (or unimportant) regardless
of which scoring metric is used to measure per-



S1 S2 S3 PC

Gold .25 .50 .75 .25 .50 .75 .25 .50 .75 .25 .50 .75
2.0 3.35 3.56 3.79 3.40 3.52 3.73 3.06 3.37 3.64 3.06 3.37 3.64
2.5 3.43 3.63 3.80 3.25 3.52 3.79 3.24 3.45 3.67 3.24 3.46 3.73
3.0 3.64 3.78 3.85 3.56 3.70 3.90 3.52 3.65 3.74 3.52 3.66 3.79
3.5 3.73 3.81 3.88 3.63 3.78 3.90 3.59 3.70 3.81 3.60 3.74 3.85
4.0 3.76 3.84 3.88 3.70 3.83 3.90 3.63 3.75 3.84 3.66 3.78 3.88

Table 6: Regressor scores for our system.

formance, the relative importance of different fea-
ture types does not always remain consistent if we
measure performance in different ways. For ex-
ample, while we identified feature 3 (thesis clar-
ity keywords) as one of the most important fea-
ture types generally due to its tendency to have a
large beneficial impact on performance, when we
are measuring performance usingS3, it is the least
useful feature type. Furthermore, its removal in-
creases theS3 score by a small amount, meaning
that its inclusion actually makes our system per-
form worse with respect toS3. Though feature 3 is
an extreme example, all feature types fluctuate in
importance, as we see when we compare their or-
ders of removal among the four ablation subtables.
Hence, it is important to know how performance
is measured when building a system for scoring
prompt adherence.

Feature 3 is not the only feature type whose re-
moval sometimes has a beneficial impact on per-
formance. As we can see in Table 5(b), the re-
moval of features 4, 5, and 7 improves our sys-
tem’s S2 score by .001 points. The same effect
occurs in Table 5(c) when we remove features 4,
7, and 3. These examples illustrate that under
some scoring metrics, the inclusion of some fea-
ture types is actively harmful to performance. For-
tunately, this effect does not occur in any other
cases than the two listed above, as most feature
types usually have a beneficial or at least neutral
impact on our system’s performance.

For those feature types whose effect on perfor-
mance is neutral in the first lines of ablation results
(feature 4 inS1, features 3, 5, and 7 inS2, and fea-
tures 1, 4, 5, and 7 inS3), it is important to note
that their neutrality does not mean that they are
unimportant. It merely means that they do not im-
prove performance in the presence of other feature
types. We can see this is the case by noting that
they are not all the least important feature types in
their respective subtables as indicated by column
order. For example, by the time feature 1 gets per-
manently removed in Table 5(c), its removal harms
performance by .002S3 points.

5.4 Analysis of Predicted Scores

To more closely examine the behavior of our sys-
tem, in Table 6 we chart the distributions of scores
it predicts for essays having each gold standard
score. As an example of how to read this table,
consider the number 3.06 appearing in row 2.0 in
the .25 column of theS3 region. This means that
25% of the time, when our system with parameters
tuned for optimizingS3 is presented with a test es-
say having a gold standard score of 2.0, it predicts
that the essay has a score less than or equal to 3.06.

From this table, we see that our system has a
strong bias toward predicting more frequent scores
as there are no numbers less than 3.0 in the table,
and about 93.7% of all essays have gold standard
scores of 3.0 or above. Nevertheless, our system
does not rely entirely on bias, as evidenced by the
fact that each column in the table has a tendency
for its scores to ascend as the gold standard score
increases, implying that our system has some suc-
cess at predicting lower scores for essays with
lower gold standard prompt adherence scores.

Another interesting point to note about this ta-
ble is that the difference in error weighting be-
tween theS2 andS3 scoring metrics appears to be
having its desired effect, as every entry in theS3
subtable is less than its corresponding entry in the
S2 subtable due to the greater penalty theS3 met-
ric imposes for predictions that are very far away
from the gold standard scores.

6 Conclusion

We proposed a feature-rich approach to the under-
investigated problem of predicting essay-level
prompt adherence scores on student essays. In an
evaluation on 830 argumentative essays selected
from the ICLE corpus, our system significantly
outperformed a Random Indexing based baseline
by several evaluation metrics. To stimulate further
research on this task, we make all our annotations,
including our prompt adherence scores, the LDA
topic annotations, and the error annotations pub-
licly available.
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