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Abstract

We propose an unsupervised probabilistic
model for zero pronoun resolution. To our
knowledge, this is the first such model that
(1) is trained on zero pronouns in an unsu-
pervised manner; (2) jointly identifies and
resolves anaphoric zero pronouns; and (3)
exploits discourse information provided by
a salience model. Experiments demon-
strate that our unsupervised model signif-
icantly outperforms its state-of-the-art un-
supervised counterpart when resolving the
Chinese zero pronouns in the OntoNotes
corpus.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that
is found when a phonetically null form is used to
refer to a real-world entity. An anaphoric zero pro-
noun (AZP) is a ZP that corefers with one or more
preceding mentions in the associated text. Below
is an example taken from the Chinese TreeBank
(CTB), where the ZP (denoted as *pro*) refers to
俄罗斯 (Russia).

[俄罗斯] 作为米洛舍夫维奇一贯的支持者，
*pro*曾经提出调停这场政治危机。
([Russia] is a consistent supporter of Milošević,
*pro* has proposed to mediate the political crisis.)

As we can see, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such as
number and gender. This makes ZP resolution
more challenging than overt pronoun resolution.
Automatic ZP resolution is typically composed

of two steps. The first step, AZP identification, in-
volves extracting ZPs that are anaphoric. The sec-
ond step, AZP resolution, aims to identify an an-
tecedent of an AZP. State-of-the-art ZP resolvers
have tackled both of these steps in a supervised
manner, training one classifier for AZP identifica-

tion and another for AZP resolution (e.g., Zhao and
Ng (2007), Kong and Zhou (2010)).
More recently, we have proposed an unsuper-

vised AZP resolution model (henceforth the CN14
model) that rivals its supervised counterparts in
performance (Chen and Ng, 2014). The idea is to
resolve AZPs by using a probabilistic pronoun res-
olution model trained on overt pronouns in an un-
supervisedmanner. This is an appealing approach,
as its language-independent generative process en-
ables it to be applied to languages where data an-
notated with ZP links are not available.
In light of the advantages of unsupervised mod-

els, we examine in this paper the possibility of ad-
vancing the state of the art in unsupervised AZP
resolution. The design of our unsupervised model
is motivated by a key question: can we resolve
AZPs by using a probabilistic model trained on
zero pronouns in an unsupervised manner? As
mentioned above, the CN14 model was trained on
overt pronouns, but it is not clear how much this
helped its resolution performance. In particular,
the contexts in which overt and zero pronouns oc-
cur may not statistically resemble each other. For
example, a ZP is likely to be closer to its antecedent
than its overt counterpart. As another example,
the verbs governing a ZP and its antecedent are
more likely to be identical than the verbs govern-
ing an overt pronoun and its antecedent. Given
such differences, it is not clear whether the knowl-
edge learned from overt pronouns is always appli-
cable to the resolution of AZPs. For this reason,
we propose to train an unsupervised AZP resolu-
tion model directly on zero pronouns. Moreover,
while we previously employed a pipeline architec-
ture where we (1) used a set of heuristic rules for
AZP identification, and then (2) applied their prob-
abilistic model to all and only those ZPs that were
determined to be anaphoric (Chen and Ng, 2014),
in this work we identify and resolve AZPs in a
joint fashion. To our knowledge, the model we are



proposing here is the first unsupervised model for
joint AZP identification and resolution.1
In addition, motivated bywork on overt pronoun

resolution, we hypothesize that AZP resolution can
be improved by exploiting discourse information.
Specifically, we design a model of salience and in-
corporate salience information into our model as a
feature. Inspired by traditional work on discourse-
based anaphora resolution (e.g., Lappin and Leass
(1994)), we compute salience based on the corefer-
ence clusters constructed so far using a rule-based
coreference resolver. While ZPs have been ex-
ploited to improve coreference resolution (Kong
and Ng, 2013), we are the first to improve AZP
resolution using coreference information.
When evaluated on the Chinese portion of the

OntoNotes corpus, our AZP resolver outperforms
the CN14model, achieving state-of-the-art results.

2 Related Work

Early approaches to AZP resolution employed
heuristic rules to resolve AZPs in Chinese (e.g.,
Converse (2006), Yeh and Chen (2007)) and Span-
ish (e.g., Ferrández and Peral (2000)). More re-
cently, supervised approaches have been exten-
sively employed to resolve AZPs in Chinese (e.g.,
Zhao and Ng (2007), Kong and Zhou (2010),
Chen and Ng (2013)), Korean (e.g., Han (2006)),
Japanese (e.g., Seki et al. (2002), Isozaki and Hi-
rao (2003), Iida et al. (2003; 2006; 2007), Ima-
mura et al. (2009), Iida and Poesio (2011), Sasano
and Kurohashi (2011)), and Italian (e.g., Iida and
Poesio (2011)). As mentioned before, in order
to reduce reliance on annotated data, we recently
proposed an unsupervised probabilistic model for
Chinese AZP resolution that rivaled its supervised
counterparts in performance (Chen and Ng, 2014).

3 The Generative Model

Next, we present our model for jointly identifying
and resolving AZPs in an unsupervised manner.

3.1 Notation
Let z be a ZP. C, the set of candidate antecedents
of z, contains (1) the maximal or modifier NPs that
precede z in the associated text that are at most
two sentences away from it; and (2) a dummy can-
didate antecedent d (to which z will be resolved

1Note that Iida and Poesio (2011) perform joint infer-
ence over an AZP identification model and an AZP resolution
model trained separately, not joint learning of the two tasks.

if it is non-anaphoric). k is the context surround-
ing z as well as every candidate antecedent c in
C; kc is the context surrounding z and candidate
antecedent c; and l is a binary variable indicating
whether c is the correct antecedent of z.

3.2 Training

Our model estimates P (z, k, c, l), the probability
of seeing (1) the ZP z; (2) the context k surround-
ing z and its candidate antecedents; (3) a candidate
antecedent c of z; and (4) whether c is the correct
antecedent of z. Since we estimate this probability
from a raw, unannotated corpus, we are treating z,
k, and c as observed data2 and l as hidden data.
Motivated in part by previous work on En-

glish overt pronoun resolution (e.g., Cherry and
Bergsma (2005) and Charniak and Elsner (2009)),
we estimate the model parameters using the
Expectation-Maximization algorithm (Dempster
et al., 1977). Specifically, we use EM to iteratively
(1) estimate the model parameters from data in
which each ZP is labeled with the probability that
it corefers with each of its candidate antecedents,
and (2) apply the resulting model to re-label each
ZP with the probability that it corefers with each of
its candidate antecedents. Below we describe the
details of the E-step and the M-step.

3.2.1 E-Step
The goal of the E-step is to compute
P (l=1|z, k, c), the probability that a candi-
date antecedent c is the correct antecedent of
z given context k. Applying the definition of
conditional probability and the Theorem of Total
Probability, we can rewrite P (l=1|z, k, c) as
follows:

P (l=1|z, k, c) = P (z, k, c, l=1)

P (z, k, c, l=1) + P (z, k, c, l=0)
(1)

Assuming that exactly one of z's candidate an-
tecedents is its correct antecedent, we can rewrite
P (z, k, c, l=0) as follows:

P (z, k, c, l=0) =
∑

c′∈C,c′ ̸=c

P (z, k, c′, l=1) (2)

Given Equation (2), we can rewrite

2Here, we treat z as observed data because we assume that
the set of ZPs has been identified by a separate process. We
adopt the heuristics for ZP identification that we introduced
in Chen and Ng (2014).



P (l=1|z, k, c) as follows:

P (l=1|z, k, c) = P (z, k, c, l=1)∑
c′∈C P (z, k, c′, l=1)

(3)

Applying the Chain Rule, we can rewrite
P (z, k, c, l=1) as follows:

P (z, k, c, l=1) = P (z|k, c, l=1) ∗ P (l=1|k, c)
∗ P (c|k) ∗ P (k)

(4)
Next, since z is a phonetically null form (and

therefore is not represented by any linguistic at-
tributes), we assume that each of its candidate an-
tecedents and the associated context has the same
probability of generating it. So we can rewrite
P (z|k, c, l=1) as follows:

P (z|k, c, l=1) = P (z|k, c′, l=1) ∀ c, c′ ∈ C
(5)

Moreover, we assume that (1) given z and c's
context, the probability of c being the antecedent
of z is not affected by the context of the other can-
didate antecedents; and (2) kc is sufficient for de-
termining whether c is the antecedent of z. So,

P (l=1|k, c) ≈ P (l=1|kc, c) ≈ P (l=1|kc) (6)

Next, applying Bayes Rule to P (l=1|kc), we
get:

P (kc|l=1)P (l=1)

P (kc|l=1)P (l=1) + P (kc|l=0)P (l=0)
(7)

Representing kc as a set of n features f1
c , . . . f

n
c

and assuming that each f i
c is conditionally inde-

pendent given l, we can approximate Expression
(7) as: ∏

i P (f i
c|l=1)P (l=1)∏

i P (f i
c|l=1)P (l=1) +

∏
i P (f i

c|l=0)P (l=0)
(8)

Furthermore, we assume that given context k,
each candidate antecedent of z is generated with
equal probability. In other words,

P (c|k) = P (c′|k) ∀ c, c′ ∈ C (9)

Given Equations (4), (5), (8) and (9), we can
rewrite P (l=1|z, k, c) as:

P (l=1|z, k, c) = P (z, k, c, l=1)∑
c′∈C P (z, k, c′, l=1)

=
P (z|k, c, l=1)∗P (l=1|k, c)∗P (c|k)∑

c′∈C P (z|k, c′, l=1)∗P (l=1|k, c′)∗P (c′|k)

≈ P (l=1|kc)∑
c′∈C P (l=1|kc′)

≈

∏
i P (f i

c|l=1)
Zc∑

c′∈C

∏
i P (f i

c′ |l=1)

Zc′

(10)

where

Zx=
∏
i

P (f i
x|l=1)P (l=1)+

∏
i

P (f i
x|l=0)P (l=0)

(11)
As we can see from Equation (10), our model

has one group of parameters, namely P (f i
c|l=1).

Using Equation (10) and the current parameter es-
timates, we can compute P (l=1|z, k, c).
A point deserves mention before we describe

the M-step. By including d as a dummy candidate
antecedent for each z, we effectively model AZP
identification and resolution in a joint fashion. If
the model resolves z to d, it means that the model
posits z as non-anaphoric; on the other hand, if
the model resolves z to a non-dummy candidate
antecedent c, it means that the model posits z as
anaphoric and c as z's correct antecedent.

3.2.2 M-Step
Given P (l=1|z, k, c), the goal of the M-step is to
(re)estimate the model parameters, P (f i

c|l=1), us-
ing maximum likelihood estimation. Specifically,
P (f i

c|l=1) is estimated as follows:

P (f i
c|l = 1) =

Count(f i
c, l=1) + θ

Count(f i
c) + θ ∗ |f i

c|
(12)

where Count(f i
c) is the number of times f i

c ap-
pears in the training data, Count(f i

c, l=1) is
the expected number of times feature f i

c appears
within the context surrounding an AZP and its an-
tecedent c, |f i

c| is the number of possible values
of feature f i

c , and θ is the Laplace smoothing pa-
rameter, which we set to 1. Given feature f i

c
′, we

compute Count(f i
c
′
, l=1) as follows:

Count(f i
c
′
, l=1) =

∑
k:f i

c=f i
c
′

P (l=1|z, k, c) (13)

To start the induction process, we initialize all
parameters with uniform values. Specifically,
P (f i

c|l=1) is set to 1
|f i

c|
. Then we iteratively run

the E-step and the M-step until convergence.
There is an important question we have not ad-

dressed: what feature f i
c shouldwe use to represent

context kc, which we need to estimate P (f i
c|l=1)?

We answer this question in Section 4.

3.3 Inference
After training, we can apply the resulting model to
resolve ZPs. Given a test document, we process its
ZPs in a left-to-right manner. For each ZP z enoun-
tered, we determine its antecedent as follows:



ĉ = argmax
c∈C

P (l=1|z, k, c) (14)

whereC is the set of candidate antecedents of z. If
we resolve a ZP to a preceding NP c, we fill its gap
with c. Hence, when we process a ZP z, all of its
preceding AZPs in the associated text have already
been resolved, having had their gaps filled with
their associated NPs. To resolve z, we create test
instances between z and its candidate antecedents
in the samewaywe described before. The only dif-
ference is that z's candidate antecedents may now
include the NPs to which previous AZPs were re-
solved. In other words, this incremental resolution
procedure may increase the number of candidate
antecedents of each ZP z. Some of these addi-
tional candidate antecedents are closer to z than
were their parent NPs, thus facilitating the resolu-
tion of z to the NPs in the following way: If the
model resolves z to the additional candidate an-
tecedent that fills the gap left behind by, say, AZP
z′, we postprocess the output by resolving z to the
NP that z′ is resolved to.3

4 Context Features

To fully specify our model, we need to describe
how to represent kc, which is needed to compute
P (f i

c|l=1). Recall that kc encodes the context sur-
rounding candidate antecedent c and the associated
ZP z. As described below, we represent kc using
eight features. Note that (1) all but feature 1 are
computed based on syntactic parse trees, and (2)
features 2, 3, and 6 are ternary-valued features.

1. the sentence distance between c and z;
2. whether the node spanning c has an ancestor

NP node; if so, whether this NP node is a de-
scendant of c's lowest ancestor IP node;

3. whether the node spanning c has an ancestor
VP node; if so, whether this VP node is a de-
scendant of c's lowest ancestor IP node;

4. whether vp has an ancestor NP node, where
vp is the VP node spanning the VP that fol-
lows z;

5. whether vp has an ancestor VP node;
6. whether z is the first word of a sentence; if

not, whether z is the first word of an IP clause;
7. whether c is a subject whose governing verb

is lexically identical to the verb governing z;
3This postprocessing step is needed because the additional

candidate antecedents are only gap fillers.

Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 110,034
AZPs − 1,713

Table 1: Statistics on the training and test sets.

8. c's salience rank (see Section 5).

Note that features 1, 2, 3 and 7 are not directly
applicable to the dummy candidate. To compute
the feature values of the dummy candidate, we first
find the highest ranking non-dummy entity E in
the salience list, and then set the values of these
four features of the dummy candidate to the corre-
sponding feature values of the rightmost mention
of E. The motivation is that we want the dummy
candidate to compete with the most salient non-
dummy candidate.

5 Adding Salience

Recall from Section 4 that feature 8 requires the
computation of salience. Intuitively, salient enti-
ties are more likely to contain the antecedent of an
AZP.
We model salience as follows. For each ZP z,

we compute the salience score for each (partial)
entity preceding z.4 To reduce the size of the list
of preceding entities, we only consider a partial
entity active if one of its mentions appears within
two sentences of the active ZP z. We compute the
salience score of each active entity w.r.t. z using
the following equation:∑

m∈E
g(m) ∗ decay(m) (15)

where m is a mention belonging to active entity
E, g(m) is a grammatical score which is set to
4, 2, or 1 depending on whether m's grammati-
cal role is Subject, Object, or Other, respec-
tively, and decay(m) is decay factor that is set to
0.5dis (where dis is the sentence distance between
m and z). After computing the scores, we first sort
the list of the active entities in descending order of
salience. Then, within each active entity, we sort
the mentions in increasing order of distance from
z. Finally, we set the salience rank of eachmention
m to its position in the sorted list, but cap the rank

4We compute the list of preceding entities automatically
using SinoCoreferencer, a publicly available Chinese en-
tity coreference resolver. See http://www.hlt.utdallas.
edu/~yzcchen/coreference/.



Setting 1: Gold Parses, Gold AZPs Setting 2: Gold Parses, System AZPs Setting 3: System Parses, System AZPs
Baseline Our Model Baseline Our Model Baseline Our Model

Source R P F R P F R P F R P F R P F R P F
Overall 47.5 47.9 47.7 50.0 50.4 50.2 35.4 21.0 26.4 35.7 26.2 30.3 19.9 12.9 15.7 19.6 15.5 17.3
NW 41.7 41.7 41.7 46.4 46.4 46.4 29.8 24.8 27.0 32.1 28.1 30.0 11.9 13.0 12.4 11.9 14.3 13.0
MZ 34.0 34.2 34.1 38.9 39.1 39.0 24.1 14.5 18.1 29.6 19.6 23.6 6.2 5.2 5.7 4.9 4.7 4.8
WB 47.9 47.9 47.9 51.8 51.8 51.8 37.3 18.7 24.9 39.1 22.9 28.9 19.0 11.3 14.2 20.1 14.3 16.7
BN 52.8 52.8 52.8 53.8 53.8 53.8 31.5 28.1 29.7 30.8 30.7 30.7 18.2 19.5 18.8 18.2 22.3 20.0
BC 49.8 50.3 50.0 49.2 49.6 49.4 38.0 21.0 27.0 35.9 26.6 30.6 20.6 12.4 15.5 19.4 14.6 16.7
TC 45.2 46.7 46.0 51.9 53.5 52.7 42.4 20.3 27.4 43.5 28.7 34.6 32.2 13.3 18.8 31.8 17.0 22.2

Table 2: AZP resolution results of the baseline and our model on the test set.

at 5 in order to reduce sparseness during parameter
estimation.
Note that the above list contains only non-

dummy entities. We model the salience of a
dummy entityD, which contains only the dummy
candidate for z, as follows. Intuitively, if z is non-
anaphoric, D should be the most salient entity.
Hence, we put D at the top of the list if z satisfies
any of the following three conditions, all of which
are strong indicators of non-anaphoricity: (1) z ap-
pears at the beginning of a document; (2) the verb
following z is 有 (there is) or 没有 (there is not)
with part of speech VE; or (3) the VP node in the
syntactic parse tree following z does not span any
verb. If none of these conditions is satisfied, we
put D at the bottom of the list.

6 Evaluation

6.1 Experimental Setup

Datasets. We employ the Chinese portion of the
OntoNotes 5.0 corpus that was used in the official
CoNLL-2012 shared task (Pradhan et al., 2012).
In the CoNLL-2012 data, the training set and de-
velopment set contain ZP coreference annotations,
but the test set does not. Therefore, we train our
models on the training set and perform evaluation
on the development set. Statistics on the datasets
are shown in Table 1. The documents in these
datasets come from six sources, namely Broadcast
News (BN), Newswires (NW), Broadcast Conver-
sations (BC), Telephone Conversations (TC), Web
Blogs (WB), and Magazines (MZ).

Evaluation measures. We express results in
terms of recall (R), precision (P), and F-score (F)
on resolvingAZPs, considering anAZP z correctly
resolved if it is resolved to any NP in the same
coreference chain as z.

Evaluation settings. Following Chen and Ng
(2014), we evaluate our model in three settings. In
Setting 1, we assume the availability of gold syn-

tactic parse trees and gold AZPs.5 In Setting 2, we
employ gold syntactic parse trees and system (i.e.,
automatically identified) AZPs. Finally, in Set-
ting 3 (the end-to-end setting), we employ system
syntactic parse trees and system AZPs. The gold
and system syntactic parse trees, as well as the gold
AZPs, are obtained from the CoNLL-2012 shared
task dataset, while the system AZPs are identified
by our generative model.

6.2 Results
As our baseline, we employ the CN14 system,
which has achieved the best result to date on our
test set. Table 2 shows results obtained using both
the baseline system and our model on the entire
test set as well as on each of the six sources. As
we can see, our model significantly6 outperforms
the baseline under all three settings by 2.5%, 3.9%
and 1.6% respectively in terms of overall F-score.

7 Conclusion

We proposed a novel unsupervised model for Chi-
nese zero pronoun resolution by (1) training on
zero pronouns; (2) jointly identifying and resolv-
ing anaphoric zero pronouns; and (3) exploit-
ing salience information. Experiments on the
OntoNotes 5.0 corpus showed that our unsuper-
vised model achieved state-of-the-art results.
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