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Abstract

We present PAIRSPANBERT, a SPANBERT-
based pre-trained model specialized for bridg-
ing resolution. PAIRSPANBERT is pre-trained
with a novel objective that aims to learn the
contexts in which two mentions are implic-
itly linked to each other from a large amount
of data automatically generated either heuristi-
cally or via distance supervision with a knowl-
edge graph. Despite the noise inherent in the
automatically generated data, we achieve the
best results reported to date on three evaluation
datasets for bridging resolution when replacing
SPANBERT with PAIRSPANBERT in a state-
of-the-art resolver that jointly performs entity
coreference resolution and bridging resolution.

1 Introduction

Bridging is essential for establishing coherence
among the entities within a text through non-
identical semantic or encyclopedic relations (Clark,
1975; Prince, 1981). As demonstrated in Example
1, local coherence is established via the implicit
link between the bridging anaphor (prices) and its
antecedent (meat, milk and grain).

(1) In June, farmers held onto meat, milk and
grain, waiting for July’s usual state directed price
rises. The Communists froze prices instead.

The task of bridging resolution, which involves
identifying all the bridging anaphors in a text and
linking them to their antecedents, is crucial for
machine comprehension of the relations between
discourse entities for various downstream applica-
tions, such as question answering (Anantha et al.,
2021) and dialogue systems (Tseng et al., 2021).

The most successful natural language learning
paradigm to date is arguably the “pre-train and fine-
tune" paradigm, where a model is first pre-trained
on very large amounts of data in a task-agnostic,
self-supervised manner and then fine-tuned using a
potentially small amount of task-specific training

data in the usual supervised manner. This paradigm
is ideally applicable to bridging resolution, where
the amount of annotated training data is relatively
small, especially in comparison to the related task
of entity coreference resolution. In fact, by using
SPANBERT (Joshi et al., 2020) to encode the input
and fine-tuning it using bridging-annotated data,
Kobayashi et al. (2022b) have managed to achieve
the best results reported to date on two commonly-
used evaluation datasets for bridging resolution,
namely ISNotes (Markert et al., 2012) and BASHI
(Rösiger, 2018).

A natural question is: how can we build upon the
successes of this pre-train and fine-tune framework
for bridging resolution? Apart from achieving state-
of-the-art results, Kobayashi et al. (2022b) show
that bridging resolution performance deteriorates
when SPANBERT is replaced with BERT (Devlin
et al., 2019) as the encoder. While it is perhaps
not surprising that SPANBERT achieves better res-
olution results than BERT given its superior per-
formance on a wide variety of natural language
processing tasks, it is important to understand the
reason. Recall that SPANBERT is an extension of
BERT that is motivated by entity-based information
extraction tasks such as entity coreference resolu-
tion and relation extraction. These tasks typically
involve the extraction of entity mentions, which are
text spans. In order to learn span (as opposed to
word) representations, SPANBERT is pre-trained
with span-level masking and objectives. The key
point here is that a pre-trained model tends to work
better for a downstream task (which in our case
is bridging resolution) if it is pre-trained with an
objective that is in some sense related to the down-
stream task.

Motivated by this observation, we design a novel
pre-training objective for bridging resolution that
allows a model to learn the contexts in which two
mentions are implicitly linked to each other. We
subsequently use our objective to further pre-train



SPANBERT in combination with its original ob-
jectives, yielding PAIRSPANBERT, a pre-trained
model that is specialized for bridging resolution.
Note that an important factor that contributes to
the success of pre-training is the sheer amount of
data on which the model is pre-trained: since pre-
training tasks are designed to be self-supervised
learning tasks, a very large amount of annotated
training data can be automatically generated, thus
allowing the model to potentially acquire a lot of
linguistic and commonsense knowledge. To enable
our model to learn the contexts that are indicative
of bridging, we employ a large amount of data that
can be automatically generated either heuristically
(Hou, 2018a) or via distance supervision using a
knowledge graph.

While the vast majority of existing bridging re-
solvers are evaluated in the rather unrealistic setting
where gold mentions are assumed as input, we fol-
low Kobayashi et al.’s (2022b) recommendation
and evaluate our bridging resolver in both the (real-
istic) end-to-end setting, where we assume raw text
as input, and the gold mention setting, where gold
mentions are given. When replacing SPANBERT
with PAIRSPANBERT in Kobayashi et al’s bridg-
ing resolver, we achieve the best results reported
to date on three datasets for bridging resolution,
ISNotes, BASHI, and ARRAU RST (Poesio and
Artstein, 2008), in both evaluation settings despite
the large amount of noise inherent in our automati-
cally generated data. To our knowledge, this is the
first work that reports end-to-end bridging resolu-
tion results on the ARRAU RST dataset.

2 Related Work

Bridging resolution. The two sub-tasks of bridg-
ing resolution, namely bridging anaphora recogni-
tion and bridging anaphora resolution, have been
tackled separately. One line of research has mod-
eled bridging anaphora recognition as a part of
the information status (IS) classification problem
where each discourse entity is assigned an IS cat-
egory, with bridging being one of the categories
(Rahman and Ng, 2011, 2012; Hou et al., 2013a;
Hou, 2020b). In contrast, bridging anaphora resolu-
tion focuses on identifying the antecedents for gold
bridging anaphors (Poesio et al., 2004; Hou et al.,
2013b; Pandit et al., 2020). There have been several
studies addressing full bridging resolution, which
involves recognizing bridging anaphors and deter-
mining their antecedents. These works include

rule-based approaches (Hou et al., 2014; Rösiger
et al., 2018), learning-based approaches (Hou et al.,
2018; Yu and Poesio, 2020), and hybrid approaches
(Kobayashi and Ng, 2021; Kobayashi et al., 2022a).
A comprehensive overview of these approaches can
be found in Kobayashi and Ng (2020).

Recent studies have begun tackling bridging
resolution and its sub-tasks in the end-to-end set-
ting. For example, Hou (2021) uses a combina-
tion of neural mention extraction and IS classifi-
cation models for bridging anaphora recognition.
Furthermore, Hou (2020a) proposes an approach
of rephrasing bridging anaphors as questions and
training question-answering models to directly ex-
tract antecedents from their previous contexts. Fi-
nally, there are a few works that propose models
for full bridging resolution in the end-to-end set-
ting (Kim et al., 2021; Kobayashi et al., 2021; Li
et al., 2022) in the 2021 and 2022 CODI-CRAC
shared tasks on Anaphora, Bridging, and Discourse
Deixis in Dialogue (Khosla et al., 2021; Yu et al.,
2022). Recently, Kobayashi et al. (2022b) conduct
a systematic evaluation of bridging resolvers us-
ing different standard encoders, including BERT
(Devlin et al., 2019) and SPANBERT (Joshi et al.,
2020), in the end-to-end setting.

Enhanced pre-trained language models. BERT
(Devlin et al., 2019), which is based on the Trans-
former architecture (Vaswani et al., 2017), has re-
cently attracted significant attention. Researchers
have proposed methods to enhance it for a wide
range of downstream tasks. One line of research
focuses on improving the masking schemes and the
training objectives when pre-training models for
tasks such as question answering and sentence se-
lection (Ram et al., 2021; Ye et al., 2020; Di Liello
et al., 2022). Another line of work focuses on in-
corporating external knowledge into pre-trained
models to solve knowledge-driven problems such
as relation extraction (Liu et al., 2020; Qin et al.,
2021).

3 The Current State of the Art

State-of-the-art results on ISNotes and BASHI
are reported in Kobayashi et al. (2022b), who ex-
tend Yu and Poesio’s (2020) multi-task learning
(MTL) approach to bridging resolution by (1) us-
ing SPANBERT to encode the input and (2) in-
corporating the predictions made by a rule-based
resolver into the MTL framework. Since we aim to
create PAIRSPANBERT, which specializes SPAN-
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Figure 1: The MTL framework for bridging resolution.

BERT for bridging resolution, and eventually re-
place SPANBERT with PAIRSPANBERT in the
MTL framework, in this section we present Y&P’s
MTL framework (Section 3.1), Kobayashi et al.’s
extensions to the framework (Section 3.2), and the
inner workings of SPANBERT (Section 3.3).

3.1 The Multi-Task Learning Framework
Y&P’s model takes as input a document D repre-
sented as a sequence of word tokens and the associ-
ated set of mentions (which can be gold mentions
or automatically extracted mentions), and performs
joint bridging resolution and coreference resolu-
tion, which we define below, in a MTL framework.

The bridging resolution task involves assigning
span i an antecedent yb ∈ {1, ..., i − 1, ϵ}, where
the value of yb is the id of span i’s antecedent,
which can be a dummy antecedent ϵ (i.e., i is not
anaphoric) or one of the preceding spans. Y&P
define the following scoring function:

sb(i, j) =

{
0 j = ϵ

sa(i, j) j ̸= ϵ
(1)

where sa(i, j) is a pairwise bridging score that in-
dicates how likely span i refers to a preceding span
j. The model predicts the antecedent of i to be
y∗b = argmaxj∈Yb(i)

sb(i, j), where Yb(i) is the
set of candidate antecedents of i.

The entity coreference resolution task involves
identifying the entity mentions that refer to the
same real-world entity. Specifically, the goal is to
find an antecedent for each span using a scoring
function that can be defined in a similar way as the
sb function in the bridging resolution task.

Figure 1 illustrates the structure of the MTL
framework, which we describe in detail below.

Span Representation Layer To encode the to-
kens and the surrounding contexts of a gold men-
tion, Y&P use a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) that takes as in-
put the BERT and GloVe embeddings. They
define gi, the representation of span i, as
[xstart(i); xend(i); xhead(i);ϕi], where xstart(i) and
xend(i) are the hidden vectors of the start and end
tokens of i, xhead(i) is an attention-based head vec-
tor and ϕi is a span width feature embedding.
Bridging Prediction Layer To predict bridging
links, Y&P first calculate the pairwise score be-
tween spans i and j as follows:

sa(i, j) = FFNNb([gi; gj ; gi ◦ gj ;ψij ]) (2)

where FFNNb(·) represents a standard feedforward
neural network, and ◦ denotes element-wise mul-
tiplication. This pairwise score includes gi ◦ gj ,
which encodes the similarity of i and j, and ψij ,
which denotes the distance between them.
Coreference Prediction Layer To predict coref-
erence links, Y&P calculate a pairwise score be-
tween two spans that is defined analogously as
in Equation 2 using another FFNN, FFNNc. The
model shares the first few hidden layers of FFNNb

and FFNNc as well as the span representations.

3.2 Extensions to the MTL Framework
Kobayashi et al. (2022b) extend the MTL frame-
work by replacing the LSTM encoder in Y&P with
a SPANBERT encoder and proposing a hybrid ap-
proach to bridging resolution that augments the
MTL model with the predictions made by Rösiger
et al.’s (2018) rule-based bridging resolver. To im-
plement the hybrid approach, they first define a
rule score function r(i, j) whose value is the preci-
sion of the rule that posits a bridging link between
spans i and j, and then incorporate this rule score
function into Equation 1 as follows:

sb′(i, j) =

{
0 j = ϵ

sb(i, j) + αr(i, j) j ̸= ϵ
(3)

where α is a positive constant that controls the im-
pact of the rule information on s′b. The model then
uses s′b(i, j) to rank the candidate antecedents of
span i. Note that (1) if no rule posits i and j as
bridging, r(i, j) is 0; (2) rule precision is computed
on the training set; and (3) α is tuned on the devel-
opment set.

The loss function is the weighted sum of the
losses of the bridging task (Lb) and the coreference



task (Lc). Lb and Lc are defined as the negative
marginal log-likelihood of all correct bridging an-
tecedents and coreference antecedents, respectively.
The weights associated with the losses are tuned
using grid search to maximize the average bridging
resolution F-scores on development data.

3.3 SpanBERT

The SPANBERT pre-trained model is an exten-
sion of BERT aimed at better learning of the rep-
resentations of text spans.1 Like BERT, SPAN-
BERT takes as input a sequence of subword tokens
T = [t1, ..., tn] and produces a sequence of con-
textualized vector representations T = [t1, ..., tn].
Unlike BERT, which randomly selects individual
tokens for masking (where each token selected for
masking is replaced with a special [MASK] to-
ken), SPANBERT employs a span masking scheme
where spans of tokens are masked in order to better
learn span representations. SPANBERT employs
two pre-training objectives:

Masked Language Modeling (MLM) Given
a masked span consisting of contiguous tokens
(ts, ..., te), the model is asked to predict for each
masked token ti in the span the original token us-
ing ti. The MLM loss, LMLM , is the cross entropy
loss.

Span Boundary Objective (SBO) Given a
masked span consisting of contiguous tokens
(ts, ..., te), the model is asked to predict for each
token ti in the masked span the original token using
the contextualized vectors of two tokens, namely
the token to the left of the span boundary and the
one to the right of its span boundary (i.e., ts−1

and te+1), as well as the position embedding of
the target token pi. The SBO loss, LSBO, is the
cross-entropy loss.

Figure 2 illustrates how MLM and SBO work
via an example.

4 PAIRSPANBERT

Next, we present PAIRSPANBERT, an extension
of SPANBERT specialized for bridging resolution.
To create PAIRSPANBERT, we use SPANBERT
as a starting point and add a pre-training step to it
that would enable the model to learn the contexts
in which two mentions are implicitly linked to each

1Although SPANBERT is often viewed as an extension
of BERT, not everything in BERT appears in SPANBERT.
For example, while BERT is pre-trained on the so-called next
sentence prediction (NSP) task, SPANBERT is not.
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Figure 2: An illustration of the masking scheme and
the objectives in SPANBERT. Span masking masks all
the subword tokens in the span "severe food restriction".
Given the masked token "food", MLM makes predic-
tions based on the contextualized vector t5, whereas
SBO makes predictions based on the external boundary
tokens of the masked span, t3 and t7, as well as the
position embedding p2, which indicates that "food" is
the second token after t3.

other from data that is automatically generated ei-
ther heuristically or via distant supervision with the
help of a knowledge graph. To do so, we will de-
scribe how we obtain automatically generated data
(Section 4.1), the masking scheme (Section 4.2),
and the pre-training task (Section 4.3).

4.1 Labeled Data Creation

We aim to collect automatically labeled data that
would enable the model to learn the contexts in
which two mentions are implicitly linked. As noted
in the introduction, a pre-training task tends to be
more effective for improving a target task (which in
our case is bridging resolution) if the pre-training
task resembles the target task. Hence, we seek
to collect automatically labeled data in which the
two implicitly linked mentions are likely to have a
bridging relation. We begin by (1) collecting noun
pairs that are likely involved in a bridging relation
in a context-independent manner, and then (2) using
these pairs to automatically label sentences.

4.1.1 Collecting Noun Pairs
We obtain noun pairs that are likely to be involved
in a bridging relation heuristically (via the syntactic
structures of noun phrases (NPs)) and via distance
supervision (with ConceptNet), as described below.

Syntactic Structures of NPs Following Hou
(2018b), we extract noun pairs from the automati-
cally parsed Gigaword corpus (Napoles et al., 2012)
by using the syntactic structures of NPs. Specifi-



cally, we first extract two NPs, X and Y, that are
involved in the prepositional structure X preposi-
tion Y (e.g., "the door of the red house") or the
possessive structure Y ′s X (e.g., "Japan’s prime
minister"), since Hou (2018b) has shown that these
structures encode a variety of bridging relations.
Then, we create a noun pair from each extracted
(X, Y) pair using the head noun of X and the head
noun of Y. Note that the bridging relations captured
in the resulting noun pairs, if any, are asymmetric.
Typically, X corresponds to an anaphor while Y
corresponds to its antecedent. For example, in "the
door of the red house", the extracted X and Y would
be "the door" and "the house", respectively.

ConceptNet Next, we show how to extract noun
pairs that are likely involved in a bridging relation
from ConceptNet (Speer et al., 2017). The exploita-
tion of knowledge bases for bridging resolution has
largely focused on deriving features from WordNet
(e.g., computing the lexical distance between two
mentions) (Poesio et al., 2004) and using these fea-
tures to improve weak baselines (e.g., Pandit et al.
(2020) incorporate knowledge-based features into
an SVM model rather than a neural model).

ConceptNet is a knowledge graph that connects
phrases with labeled edges. It is built on various
sources such as Open Mind Common Sense (Singh,
2002), Open Multilingual WordNet (Bond and Fos-
ter, 2013), and "Games with a purpose" (Von Ahn
et al., 2006). There are 34 relations (i.e., edge
labels) in ConceptNet 5.5. For example, gearshift-
car has a PARTOF relation label, meaning gearshift
is part of a car. We obtain NP pairs in which two
NPs are related through these ConceptNet relations,
and for each NP pair (X,Y), we create a noun pair
using the head noun of X and the head noun of Y.

Since not all ConceptNet relations are useful
for bridging resolution, we empirically identify the
useful relations w.r.t. each evaluation dataset (e.g.,
ISNotes) as follows. First, for each ConceptNet
relation type r, we apply the noun pairs extracted
from r (see the previous paragraph) to the train-
ing portion of the dataset, positing a bridging link
between two nouns in a training document if (1)
their heads are related according to r and (2) they
appear within two sentences of each other. Then,
we compute a bridging resolution F-score w.r.t. r
using the resulting bridging links. Finally, we sort
the relation types in decreasing order of F-score
and retain the top k relation types that collectively
maximize the bridging resolution F-score on the

training set. Only the noun pairs that are related
through the selected relation types will be used to
create automatically labeled data.

The ConceptNet relation types selected for the
three datasets (ISNotes, BASHI, ARRAU RST)
can be found in Appendix A. The relation types
that are used in all three datasets include RELAT-
EDTO, SYNONYM, HASA, ISA, ATLOCATION,
CAPABLEOF, and PARTOF. Intuitively, all of these
relation types are closely related to bridging.

4.1.2 Generating Labeled Data
The success of pre-training stems in part from learn-
ing from very large amounts of labeled data. Au-
tomatic generation of labeled data will enable us
to easily generate a large amount of (noisily) la-
beled data and allow the model to learn a variety
of contexts in which two mentions are likely to
have a bridging relation. In this subsection, we
describe how we create automatically labeled in-
stances, each of which is composed of one of the
noun pairs collected in the previous subsection
(through syntactic structures or ConceptNet) and
the surrounding context.

For each document in parsed Gigaword, we auto-
matically posit a bridging link between two nouns
if two conditions are satisfied. First, they appear
in one of the noun pairs collected in the previous
subsection. Second, they are no more than two sen-
tences apart from each other (this is motivated by
the observation that bridging links typically appear
in a two-sentence window). There is a small caveat,
however. Recall that the two nouns in a noun pair
(X, Y) extracted from the syntactic structures play
an asymmetric role, where X is an anaphor and
Y is its antecedent. So, when applying the first
condition to the pairs collected from the syntactic
structures, we consider the condition satisfied only
if X appears after Y in the associated document.
For the noun pairs collected from ConceptNet, we
do not have such a restriction since we do not mark
which noun is the anaphor and which noun is the
antecedent for each ConceptNet relation type.

4.2 Masking

Using the method described in the previous subsec-
tion, we will be able to automatically annotate each
Gigaword document with bridging links. Next, we
describe the two masking schemes we employ in
PAIRSPANBERT, based on which we will define
the pre-training tasks to predict the masked tokens
in the next subsection.



PAIRSPANBERT assumes as input a segment
of up to 512 tokens (which in our case is taken
from an automatically annotated Gigaword docu-
ment). We define two masking schemes to mask
the tokens in a given segment. First, we employ
span masking, as described in the SBO task in
Section 3.3 where randomly selected spans of to-
kens are replaced with the [MASK] tokens. This
masking strategy does not rely on the automatically
identified bridging relations. Second, we define
an anchor masking strategy, where we randomly
choose the antecedents (i.e., anchors) in our auto-
matically identified bridging relations and replace
each (subword) token in each selected antecedent
with the [MASK] token.

We consider both masking schemes important
for PAIRSPANBERT. As bridging resolution in-
volves identifying relations between spans, span
masking will ensure that the model learns good
span representations. In contrast, anchor masking
is designed to eventually enable the model to learn
the contexts in which two nouns are likely involved
in a bridging relation.

Following previous work (Joshi et al., 2020),
we mask at most 15% of the tokens in each input
segment. In addition, we ensure that (1) among the
masked tokens, p% will be masked using anchor
masking, and the remaining ones will be masked
using span masking; and (2) the tokens masked by
the two masked schemes do not overlap. Based on
experiments on development data, we set p to 20.

4.3 Pre-Training Tasks

PAIRSPANBERT employs three pre-training tasks,
MLM, SBO, and Associative Noun Objective
(ANO). The MLM and SBO tasks are the same
as those used in SPANBERT (see Section 3.3): we
apply them to predict the tokens masked by both
span masking and anchor masking.

ANO is a novel pre-training task we define
specifically to enable the model to learn knowledge
of bridging. Unlike MLM and SBO, which we ap-
ply to the masked tokens produced by both masking
schemes, ANO is applicable only to the masked
tokens produced by anchor masking. Specifically,
given a sequence of input tokens T = [t1, ..., tn]
and a masked anchor anc consisting of subword
tokens (ts1, ..., te1), the goal of ANO is to pre-
dict an anaphor ana consisting of subword tokens
(ts2, ..., te2).2 The probability that ana is associ-

2An anchor may be associated with more than one anaphor.
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Figure 3: An illustration of anchor masking and ANO.
Given the masked anchor "company", LANO calculates
the probability that "office" is associated with "com-
pany" using the contextualized vectors of the start and
end subword tokens of (masked) "company" and "of-
fice", t2 and t7, according to Equation 5. In this ex-
ample, neither words are divided into subwords, so the
start and end tokens are the same.

ated with anc is defined using their boundary to-
kens (i.e., start and end tokens) as follows.

P (ana|anc) = P (ts2|ts1) · P (te2|te1) (4)

We calculate the probability of token ti given to-
ken tj in the sequence T using the contextualized
vectors T = [t1, ..., tn] produced by SPANBERT.

P (ti|tj) =
exp(s(ti, tj))∑

tk∈T exp(s(tk, tj))
(5)

where s(ti, tj), the similarity of ti and tj , is com-
puted as (w ◦ ti) · tj , w is a trainable vector of
parameters, · is the dot product, and ◦ is element-
wise multiplication. Figure 3 illustrates ANO and
anchor masking with an example.

Given a set of masked anchors anc ∈ A and
anaphors associated with each anchor ana ∈ C,
we define the loss LANO as follows.

LANO = − log
∏

anc∈A

∑
ana∈C

P (ana|anc) (6)

Finally, we compute the loss for PAIRSPAN-
BERT L as the sum of the losses of its three pre-
training objectives.

L = LMLM + LSBO + LANO (7)

5 Evaluation

5.1 Experimental Setup
Corpora. For evaluation, we employ three com-
monly used corpora for bridging resolution, namely



Corpora Docs Tokens Mentions Anaphors
ISNotes 50 40,292 11,272 663
BASHI 50 57,709 18,561 459

ARRAU RST 413 228,901 72,013 3,777

Table 1: Statistics on different corpora.

ISNotes, BASHI, and ARRAU RST. Table 1 shows
statistics on these corpora. Because ISNotes and
BASHI lack a standard train-test split, we perform
five-fold cross validation on these corpora, using
70% of the documents for model training, 10% for
development, and 20% for model evaluation. For
ARRAU RST, we use the official train-test split.

Evaluation settings. We report results for bridg-
ing resolution in the end-to-end setting, where only
raw documents are given, and the gold mention set-
ting, where gold mentions are given. In the end-to-
end setting, we apply a mention detector to extract
mentions.3 In the gold mention setting, we employ
the harsh evaluation method (see Appendix B).

Evaluation metrics. Bridging anaphor recogni-
tion and resolution results are reported in precision,
recall, and F-score. Recognition (Resolution) preci-
sion is the proportion of predicted anaphors that are
correctly recognized (resolved). Recognition (Res-
olution) recall is the proportion of gold anaphors
that are correctly recognized (resolved).

Baseline systems. We employ five baselines.
The first baseline is a state-of-the-art rule-based

approach by Rösiger et al. (2018), denoted as
Rules(R) in Table 2. For ISNotes and BASHI, we
use Kobayashi et al.’s (2022b) re-implementation of
Rules(R). For ARRAU RST, no publicly-available
implementation of Rules(R) that can be applied to
automatically extracted mentions is available, so
we re-implement Rules(R) for ARRAU RST for
both the end-to-end and gold mention settings.4

As our second baseline, we design a heuristic
system based on the noun pairs extracted from the
syntactic structures and ConceptNet5, denoted as
Rules(H). Specifically, we apply these noun pairs to
the test set of each evaluation corpus as follows. If
the two nouns in a pair appear within two sentences
of each other in a test document, we check whether
the cosine similarity of their representations (ob-

3For ISNotes and ARRAU RST, we extract mentions using
Hou’s (2021) neural mention extractor; for BASHI, we extract
mentions from syntactic parse trees produced by Stanford
CoreNLP (Manning et al., 2014)

4See Appendix C for the re-implementation details.
5See Appendix D for statistics on the noun pairs extracted

from the syntactic structures and ConceptNet.

tained using Hou’s (2018a) word embedding algo-
rithm) exceeds a certain threshold.6 If so, we posit
a bridging link between them. If the anaphor is
being linked to more than one antecedent, we pick
the antecedent that has the highest cosine similarity
with it. Note that we use the noun pairs collected
from both the syntactic structures and ConceptNet.

The remaining baselines are all SPANBERT-
based. The third and fourth baselines are the state-
of-the-art SPANBERT-based resolver and its hy-
brid version introduced in Section 3.2 (denoted as
SBERT and SBERT(R) respectively in Table 2).
The final baseline incorporates the similarity value
computed by Rules(H) for each mention pair into
SBERT(R), denoted as SBERT(R,H), as a set of 9
binary features. Specifically, each binary feature
is associated with a threshold, and a binary fea-
ture fires if the similarity value is greater than the
threshold associated with it. The 9 thresholds are
–0.8, –0.6, –0.4, –0.2, 0.0, 0.2, 0.4, 0.6, and 0.8.

Implementation details. To pre-train
PAIRSPANBERT, we initialize it with the
SPANBERT-large checkpoint and continue pre-
training on the Gigaword documents automatically
labeled with bridging links. Recall that these links
are created using the noun pairs extracted from
two sources: syntactic structures and ConceptNet.
Rather than always use both sources to create
bridging links, we use dev data to determine
whether we should use one (and if so, which one)
or both of them. We optimize PAIRSPANBERT
using Adam (Kingma and Ba, 2014) for 4k
steps with a batch size of 2048 through gradient
accumulation, a maximum learning rate of 1e-4,
and a linear warmup of 400 steps followed by a
linear decay of the learning rate. The remaining
parameters are the same as those in SPANBERT.
Pre-training is performed on a machine with four
A100 GPUs and lasts for a day.

We fine-tune both SPANBERT and PAIRSPAN-
BERT for up to 400 epochs with Adam (Kingma
and Ba, 2014) in each dataset, with early stop-
ping based on the development set. The version
of SPANBERT we use is SPANBERT-large. The
learning rates for SPANBERT and PAIRSPAN-
BERT are searched out of {1e-5, 2e-5, 3e-5},
while the task learning rates are searched out of
{1e-4, 2e-4, 3e-4, 4e-4}. We split each document
into segments of length 384. Each model consid-

6We set the threshold to 0.2 in all three datasets after tuning
on each development set in the range of {0.0, 0.1, 0.2, 0.4}.



ers up to the K closest preceding candidate an-
tecedents. We search K out of {50, 80, 100, 120,
150}. We search the weight parameter for the rule
score out of {50, 100, 150, 200}. Following Yu and
Poesio (2020), we downsample negative examples.
The downsampling rate is searched out of {0.2,
0.4, 0.6, 0.8}. The remaining parameter values
are the same as those reported in Kobayashi et al.
(2022b). Fine-tuning is performed on a QUADRO
RTX 6000 GPU machine and lasts for six hours.

5.2 Results and Discussion

End-to-end setting. The top half of each sub-
table in Table 2 shows the end-to-end results. Con-
sider first the baseline results. Two points deserve
mention. First, in terms of F-score, SBERT(R,H)
is considerably worse than SBERT(R) on all three
datasets. These results suggest that using automati-
cally extracted noun pairs as additional features for
SBERT(R) fails to improve its performance, prob-
ably because the noun pairs are too noisy to offer
benefits when incorporated as features. Second,
SBERT outperforms SBERT(R) on ARRAU RST.
An inspection of the results reveals the reason: the
rules designed by Rösiger et al. (2018) for ARRAU
RST have low precision, thus adversely affecting
the performance of SBERT(R) on ARRAU RST.

The best resolution F-score is achieved by PS-
BERT(R), which is created by replacing SPAN-
BERT with PAIRSPANBERT in SBERT(R), on
ISNotes and BASHI and by PSBERT, which is
created by replacing SPANBERT with PAIRSPAN-
BERT in SBERT, on ARRAU RST. PAIRSPAN-
BERT considerably improves the best baseline in
resolution F-score by 2.3 points on ISNotes, 1.3
points on BASHI, and 1.5 points on ARRAU RST.
PAIRSPANBERT’s recognition F-scores are also
generally higher than those of the SPANBERT-
based resolvers. Although the noun pairs fail to
improve SBERT when used as features, our results
show that using these noun pairs to create automati-
cally labeled data for pre-training is a better method
to exploit such noisy information. Overall, we man-
age to achieve the best results to date on the three
datasets using either PSBERT or PSBERT(R).

Gold mention setting. Results for the gold men-
tion setting are shown in the bottom half of each
subtable in Table 2.7 Our observations on the end-
to-end results are more or less applicable to the
gold mention results, except that PSBERT(R) man-

7See Appendix E for a discussion of the Rules(R) results.

(a) ISNotes

Model
Recognition Resolution

P R F P R F
End-to-End Setting

1 Rules(R) 49.4 17.4 25.7 31.8 11.2 16.5
2 Rules(H) 9.2 21.1 12.8 3.4 7.8 4.7
3 SBERT 34.4 30.9 32.6 22.3 20.1 21.1
4 SBERT(R) 39.7 31.6 35.1 27.0 21.5 23.9
5 SBERT(R,H) 34.6 37.1 35.8 22.8 24.4 23.6
6 PSBERT 36.3 36.8 36.6 22.3 22.6 22.5
7 PSBERT(R) 40.2 39.5 39.9 26.4 25.9 26.2

Gold Mention Setting
8 Rules(R) 52.7 19.2 28.1 34.0 12.4 18.1
9 Rules(H) 9.5 22.9 13.4 3.6 8.6 5.0

10 SBERT 37.1 33.1 35.0 24.5 21.9 23.1
11 SBERT(R) 43.8 34.6 38.6 30.4 24.1 26.8
12 SBERT(R,H) 37.6 39.8 38.7 25.6 27.2 26.4
13 PSBERT 38.7 38.8 38.7 24.9 24.9 24.9
14 PSBERT(R) 41.8 41.5 41.6 28.0 27.8 27.9

(b) BASHI

Model
Recognition Resolution

P R F P R F
End-to-End Setting

1 Rules(R) 33.1 22.5 26.8 15.2 10.3 12.3
2 Rules(H) 3.5 15.1 5.7 1.0 4.3 1.6
3 SBERT 34.7 29.4 31.8 15.3 12.9 14.0
4 SBERT(R) 36.0 27.5 31.2 19.7 15.0 17.0
5 SBERT(R,H) 34.3 29.6 31.8 17.8 15.4 16.5
6 PSBERT 41.5 29.1 34.2 17.7 12.7 14.8
7 PSBERT(R) 43.0 25.6 32.1 25.4 14.3 18.3

Gold Mention Setting
8 Rules(R) 35.8 23.6 28.5 17.8 11.7 14.1
9 Rules(H) 3.6 15.5 5.8 1.1 4.9 1.9

10 SBERT 35.0 29.7 32.1 16.1 13.7 14.8
11 SBERT(R) 37.6 28.8 32.6 21.6 16.6 18.7
12 SBERT(R,H) 34.9 30.3 32.4 19.2 16.7 17.9
13 PSBERT 43.7 30.3 35.8 19.3 13.4 15.8
14 PSBERT(R) 44.5 27.0 33.6 27.3 15.3 19.6

(c) ARRAU AST

Model
Recognition Resolution

P R F P R F
End-to-End Setting

1 Rules(R) 12.4 15.5 13.7 6.8 8.5 7.6
2 Rules(H) 6.6 14.5 9.0 1.6 3.6 2.2
3 SBERT 29.7 24.9 27.1 19.0 15.9 17.3
4 SBERT(R) 25.9 22.7 24.2 15.1 13.4 14.2
5 SBERT(R,H) 21.6 24.4 22.9 11.5 13.0 12.2
6 PSBERT 31.1 26.5 28.6 21.2 16.9 18.8
7 PSBERT(R) 28.1 23.2 25.4 16.7 14.1 15.3

Gold Mention Setting
8 Rules(R) 18.0 31.5 22.9 12.1 21.1 15.3
9 Rules(H) 7.3 15.6 10.0 1.8 3.9 2.5

10 SBERT 31.3 26.3 28.6 20.6 17.3 18.8
11 SBERT(R) 29.9 27.8 28.8 20.3 18.8 19.5
12 SBERT(R,H) 25.2 29.5 27.2 16.0 18.8 17.3
13 PSBERT 32.7 30.0 31.3 22.6 18.1 20.1
14 PSBERT(R) 32.9 27.6 30.0 22.9 18.9 20.7

Table 2: Results of different resolvers (averaged over
two runs). The highest recognition and resolution F-
scores for each dataset and each setting are boldfaced.



ages to achieve the best resolution F-score on all
three datasets. These are the best resolution results
obtained to date on these datasets for this setting.

We conclude this subsection with two points
that we believe deserve mention. First, all the
PAIRSPANBERT results reported in Table 2 are
obtained using the version of the model that is
trained on noun pairs from both the syntactic struc-
tures and ConceptNet, as using the pairs from both
sources always yields better resolution F-scores on
the dev set than using the pairs from either source.
Second, in order to confirm that PAIRSPANBERT’s
superiority over SPANBERT is indeed attributable
to the addition of ANO rather than the additional
pre-training steps it receives, we further pre-train
SPANBERT using MLM and SBO for as many
epochs as we pre-train PAIRSPANBERT and show
that SPANBERT’s performance changes after fur-
ther pre-training are negligible (see Appendix F).

5.3 Analysis of Results

Error analysis of the best end-to-end models.
We conduct an error analysis of our top-performing
end-to-end models, PSBERT(R) for ISNotes and
BASHI and PSBERT for ARRAU RST, to gain ad-
ditional insights into them. Overall, it appears that
these models struggle to recognize the majority of
the bridging anaphors, with the recall scores rang-
ing between 25.6% and 39.5% on the three datasets.
In addition, only a small percentage of the recall
errors in bridging anaphora recognition are due
to mention prediction errors: 3%, 1.3%, and 2%
of the gold bridging anaphors are misclassified as
non-mentions in ISNotes, BASHI, and ARRAU
RST, respectively. These models consistently make
more recall errors at identifying definite bridging
anaphors (i.e., NPs modified by the definite arti-
cle “the”) than other bridging anaphors across all
datasets. For instance, on ISNotes, the recall scores
of identifying definite bridging anaphors and other
bridging anaphors are 31% and 45%, respectively.

Next, we analyze the precision errors on ISNotes
and ARRAU RST, as BASHI does not have men-
tion annotations. Mention prediction errors (i.e.,
misclassifying non-mentions as bridging anaphors)
account for 8.7% and 10.9% of the precision errors
on ISNotes and ARRAU RST, respectively. On
ISnotes, the majority of the precision errors are
caused by misclassifying new and old mentions as
bridging anaphors, accounting for 43% and 25% of
the precision errors, respectively. On ARRAU RST,

71% of the precision errors are due to new mentions
being misclassified as bridging anaphors. These
findings corroborate the results reported in previ-
ous research on bridging recognition (Hou et al.,
2018), which suggest that models often struggle
to distinguish bridging anaphors from generic new
mentions with simple syntactic structures.

Comparison of PSBERT(R) and SBERT(R) on
ISNotes and BASHI. We further compare our
best end-to-end resolver, PSBERT(R), with the
previous state-of-the-art resolver, SBERT(R). On
ISNotes, PSBERT(R) predicts 35% more bridg-
ing pairs than SBERT(R), resulting in a higher
recall for recognizing bridging anaphors (39.5%
vs. 31.6%). Overall, PSBERT(R) is better than
SBERT(R) at predicting bridging pairs in which
the bridging anaphors are not modified by any deter-
miners (i.e., bare NPs), such as “guests” or “walls”.
On BASHI, however, the trend is the opposite. PS-
BERT(R) predicts 18% less bridging pairs than
SBERT(R) but achieves a higher precision score for
bridging anaphora recognition (43.0% vs. 36.0%).

Comparison of PSBERT and SBERT on AR-
RAU RST. On ARRAU RST, we compare PS-
BERT with SBERT in the end-to-end setting. Both
models predict a similar number of bridging pairs,
but PSBERT achieves a higher precision for bridg-
ing anaphor recognition (31.1% vs. 29.7%). We
observe that PSBERT is better than SBERT at rec-
ognizing bridging anaphors that are bare NPs, es-
pecially proper names such as “Seoul”.

6 Conclusion

We designed a novel pre-training task for bridg-
ing resolution using automatically annotated docu-
ments that contain noun pairs that are likely to be
linked via implicit relations, and demonstrated that
our newly pre-trained model, PAIRSPANBERT8,
effectively captures bridging relations. On three
commonly-used datasets for bridging resolution,
our new resolver based on PAIRSPANBERT out-
performed the previous state-of-the-art models and
other strong baselines for full bridging resolution.

In future work, we plan to apply PAIRSPAN-
BERT to other language processing tasks, particu-
larly relation extraction tasks, since the noun pairs
extracted from the syntactic structures and Con-
ceptNet are likely to have non-identical relations.

8The model checkpoint can be downloaded from https:
//huggingface.co/utd/pairspanbert.

https://huggingface.co/utd/pairspanbert
https://huggingface.co/utd/pairspanbert
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A ConceptNet Relation Types

Table 3 shows the list of ConceptNet relation types
selected for each of the three evaluation datasets
based on their respective training data. Recall that
we conduct five-fold cross-validation experiments
on ISNotes and BASHI owing to the lack of an
official train-test split. As a result, for ISNotes and
BASHI, we end up with five sets of ConceptNet
relation types, one from each of the five train-test
splits. Rather than showing all five sets, we show in
the table both the union and the intersection of the
five sets of relation types for ISNotes and BASHI.

B Harsh Evaluation Method

When evaluating the resolvers in the gold men-
tion setting, we use the "harsh" evaluation method
that is also employed in some previous work (e.g.,
Hou et al. (2018), Kobayashi et al. (2022b)). More
specifically, in ISNotes and BASHI, some bridging
anaphors have clausal antecedents that correspond
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Dataset Relation Types

ISNotes Union RELATEDTO, SYNONYM, USEDFOR, HASA, ISA, ATLOCATION, CAPABLEOF, PARTOF,
INSTANCEOF, HASCONTEXT, FORMOF, DERIVEDFROM

Intersection RELATEDTO, SYNONYM, USEDFOR, HASA, ISA, ATLOCATION, CAPABLEOF, PARTOF

BASHI
Union

RELATEDTO, SYNONYM, USEDFOR, HASA, ISA, ATLOCATION, CAPABLEOF, PARTOF,
INSTANCEOF, HASCONTEXT, HASFIRSTSUBEVENT, HASPREREQUISITE, DISTINCT-
FROM

Intersection RELATEDTO, SYNONYM, HASA, ISA, ATLOCATION, CAPABLEOF, PARTOF, IN-
STANCEOF

ARRAU RST RELATEDTO, SYNONYM, USEDFOR, HASA, ISA, ATLOCATION, CAPITAL, CAPABLEOF,
PARTOF, INSTANCEOF

Table 3: ConceptNet relation types selected for each evaluation dataset.

to events. While clausal antecedents are annotated,
they are not annotated as gold mentions, and pre-
vious studies differ in terms of how they should
be handled. Some previous work (e.g., Hou et al.
(2014), Hou et al. (2018)) chose not to include
these clausal antecedents in the list of candidate an-
tecedents while others (e.g., Rösiger et al. (2018),
Yu and Poesio (2020)) did. Obviously, the setting
in which gold clausal antecedents are not included
in training/evaluation is harsher because it implies
that anaphors with clausal antecedents will always
be resolved incorrectly. We believe that including
gold clausal antecedents during evaluation does
not represent a realistic setting, and therefore only
report results using the "harsh" setting when evalu-
ating on gold mentions in this paper.

C Re-Implementation of Rules(R) for
ARRAU AST

Recall that our first baseline, Rules(R), is Rösiger
et al.’s (2018) rule-based resolver. As mentioned
in Section 5.1, for ARRAU RST, no publicly-
available implementation of Rules(R) that can be
applied to automatically extracted mentions is avail-
able. Consequently, we re-implement Rösiger et
al.’s (2018) resolver, which was designed to oper-
ate on gold mentions, and extend it so that it can
operate on automatically extracted mentions. The
extension, which is motivated by Kobayashi et al.
(2022b), is fairly straightforward. While Rö̈siger et
al. use gold annotations (i.e., gold POS tags, gold
parse trees, and gold entity types) when comput-
ing the information needed by the rules, we use
Stanford CoreNLP (Manning et al., 2014) to pro-
vide automatic constituency and dependency parse
trees and spaCy (Honnibal and Montani, 2017) to
provide automatic part-of-speech tags and entity
types. We apply the resulting rules to the mentions
extracted by Hou’s (2021) neural mention extractor.

The results in Table 4 show that our re-

Model Bridging
Recognition Resolution

Rösiger et al. (2018) 23.7 15.2
Our re-implementation 22.9 15.3

Table 4: Comparison of Rösiger et al’s (2018) resolver
and our re-implementation on ARRAU AST.

implementation of Rules(R) is comparable to
Rösiger et al.’s (2018) implementation in recog-
nition and resolution F-scores when applied to gold
mentions. Note that since Rösiger et al. do not re-
port end-to-end results, we are unable to compare
the two resolvers in the end-to-end setting.

When applying our re-implmentation to automat-
ically extracted mentions, we find that resolution
F-score drops by 7.7%. This performance drop
stems primarily from mention extraction errors and
imperfect feature computations. Below we pro-
vide examples of recall errors and precision errors
resulting from the application of our rules to auto-
matically extracted mentions.

A category of recall errors arises from imper-
fect computation of semantic category informa-
tion. As mentioned above, when applied to au-
tomatically extracted mentions, the rules rely on
the semantic category information automatically
obtained using spaCy. However, when applied to
gold mentions, the rules rely on the gold seman-
tic categories defined in ARRAU RST, which are
different from those provided by spaCy. For ex-
ample, "abstract" and "concrete" are two semantic
categories defined in ARRAU RST that indicate
whether an entity refers to an abstract object or a
concrete object, but neither of these category la-
bels exist in spaCy. Consequently, when applied
to gold mentions, the "Subset/Element-of" rule,
which resolves an anaphor modified by an adjec-
tive, a noun, or a relative clause to the closest candi-
date antecedent in the preceding three sentences if
the two mentions have the same semantic category
and the same head, correctly identifies the bridging



Noun Pairs Bridging Links
Syntactic Structures

9,776,957 1,712,180,318
ConceptNet

1,804,399–1,872,782 65,091,952–65,766,480

Table 5: Statistics on (1) the number of noun pairs
extracted from the syntactic structures and ConceptNet
and (2) the number of bridging links obtained by apply-
ing the resulting noun pairs to the Gigaword documents.

link between "rents" and "Manhattan retail rents",
as both mentions possess the gold semantic cate-
gory "abstract". On the other hand, no category
labels are provided by spaCy for these two men-
tions, so the rule does not posit these two mentions
as having a bridging relation when it is applied to
automatically extracted mentions. The rules in the
end-to-end setting underperform their counterparts
in the gold mention setting by 9.6% in recognition
recall and by 7.1% in resolution recall.

A category of precision errors arises from erro-
neously identified mentions. For example, an end-
to-end rule (wrongly) posits "federal district court
in Dallas" and "the Fifth U.S. Circuit Court" as
having a bridging relation, but "the Fifth U.S. Cir-
cuit Court" is not a gold mention. The rules in the
end-to-end setting underperform their counterparts
in the gold mention setting by 5.3% in recognition
precision and by 4.1% in resolution precision.

D Statistics on Noun Pairs

Recall from Section 4.1.1 that we collect noun pairs
from both the syntactic structures and ConceptNet,
which are subsequently applied to the Gigaword
documents to automatically annotate them with
bridging relations (Section 4.1.2). Table 5 shows
the statistics on (1) the number of noun pairs that
can be extracted from each of the two knowledge
sources and (2) the number of bridging links that
we obtain when applying the resulting noun pairs
to the Gigaword documents. Since the ConceptNet
relations we use to extract noun pairs from different
datasets are not the same, the number of bridging
links we can establish will depend on which set of
relations we use. Hence, only the ranges are shown
for ConceptNet in the table.

E Results of Rules(R) for the Gold
Mention Setting

It is worth mentioning that the results of Rules(R)
for the gold mention setting in Table 2 are
lower than the corresponding results in Rösiger

Model
ISNotes BASHI ARRAU

Rec. Res. Rec. Res. Rec. Res.
End-to-End Setting

SBERT(R) 35.1 23.9 31.2 17.0 24.8 14.8
CSBERT(R) 34.4 23.6 30.8 16.7 24.0 14.9

Gold Mention Setting
SBERT(R) 38.6 26.8 32.6 18.7 29.4 20.1

CSBERT(R) 37.4 26.9 31.9 18.5 30.0 20.3

Table 6: Comparison of SPANBERT (SBERT) and
SPANBERT with additional pre-training (CSBERT) in
the end-to-end and gold mention settings. Each result is
the average of two runs.

et al.’s (2018) paper. We attribute the performance
differences to two reasons. First, we evaluate
Rules(R) using the harsh evaluation method. Sec-
ond, Rösiger et al. post-process their resolver’s
output with gold coreference information.

F Continued Pre-training of SPANBERT

One may argue that the comparison between
PAIRSPANBERT and SPANBERT in our exper-
iments is not entirely fair. Specifically, PAIRSPAN-
BERT may have an unfair advantage over SPAN-
BERT because it is pre-trained for more epochs
than SPANBERT. To investigate whether the per-
formance improvement of PAIRSPANBERT stems
from the additional pre-training steps, we conduct
an experiment to determine if SBERT(R) can be
improved with additional pre-training. Specifically,
we additionally pre-train SBERT(R) using MLM
and SBO on the same dataset as PAIRSPANBERT
for as many epochs as we pre-train PAIRSPAN-
BERT.

Table 6 shows the SBERT(R) results on anaphor
recognition and resolution (expressed in terms of
F-score) before and after the additional pre-training
steps. In the end-to-end setting, additionally pre-
training SBERT(R) causes resolution F-score to
change by –0.3–0.1 points. In the gold mention
setting, the corresponding changes in resolution F-
score are –0.2–0.2 points. Given that these changes
are negligible, we conclude that PAIRSPANBERT’s
superior performance can be attributed to the addi-
tion of ANO rather than the additional pre-training
steps.


