
AutoODC: Automated Generation of
Orthogonal Defect Classifications

LiGuo Huang1 Vincent Ng2 Isaac Persing2 Ruili Geng1 Xu Bai1 Jeff Tian1
Department of Computer Science and Engineering, Southern Methodist University1

Human Language Technology Research Institute, University of Texas at Dallas2
Dallas, TX, USA

{lghuang, rgeng, xbai, tian}@smu.edu1, {vince, persingq}@hlt.utdallas.edu2

Abstract—Orthogonal Defect Classification (ODC), the most
influential framework for software defect classification and
analysis, provides valuable in-process feedback to system
development and maintenance. Conducting ODC classification
on existing organizational defect reports is human intensive and
requires experts' knowledge of both ODC and system domains.
This paper presents AutoODC, an approach and tool for
automating ODC classification by casting it as a supervised text
classification problem. Rather than merely apply the standard
machine learning framework to this task, we seek to acquire a
better ODC classification system by integrating experts' ODC
experience and domain knowledge into the learning process via
proposing a novel Relevance Annotation Framework. We
evaluated AutoODC on an industrial defect report from the
social network domain. AutoODC is a promising approach: not
only does it leverage minimal human effort beyond the human
annotations typically required by standard machine learning
approaches, but it achieves an overall accuracy of 80.2% when
using manual classifications as a basis of comparison.

Keywords-Orthogonal Defect Classification (ODC); text
classification; natural language processing

I. INTRODUCTION

The systematic classification and analysis of defect data
bridge the gap between causal analysis and statistical quality
control, provide valuable in-process feedback to system
development or maintenance, as well as help assure and
improve system and software quality. The analysis results
based on systematic defect classifications enable us to
understand the major impact types of system defects and to
pinpoint specific problematic areas for focused problem
resolution and quality improvement. Orthogonal Defect
Classification (ODC) [1], developed initially at IBM, is the
most influential among general frameworks for software defect
classification and analysis. ODC has been successfully used in
various types of industrial and government organizations [2, 3].

Existing defect classification approaches and process are
human intensive, requiring significant knowledge of both
historical projects and ODC taxonomy from domain experts. In
most cases, defect data are reported by users or developers
during system development, operation and maintenance, and
are stored in defect repositories with a customized
classification scheme for an industrial organization or without
being classified. These defect repositories are often called
defect (bug) reports or defect (bug) trackers. Analysts need to

read and understand the textual description of each reported
defect in order to classify them into the ODC taxonomy.
Manual ODC defect classification based on existing defect
repositories is at best a mundane, mind numbing activity. Thus
the types of follow-on ODC-based defect analyses are often
restricted by the limited defect classification results.

To overcome these challenges in software system defect
classification, we have developed AutoODC, an approach and
tool for automatically generating the Orthogonal Defect
Classification (ODC) from the defect report (tracker). This
paper presents our research results to improve state-of-the-art
of ODC generation. We cast the problem as a supervised text
classification problem, where the goal is to train a classifier via
machine learning techniques for automatically classifying a
defect record in the defect report. While one may expect that
classification accuracy consistently increases with the amount
of training data, somewhat surprisingly we observed that this
was not the case for our classification problem. We
hypothesize that the reason could be attributed to the learning
algorithm’s inability to learn from the relevant portions of a
defect report. Specifically, only a subset of the words in a
report may be relevant for classification, and hence learning
from all of the words in the report may introduce noise into the
learning process and eventually deteriorate the performance of
the resulting classification system. Consequently, we propose a
new framework in which the learning algorithm learns from a
richer kind of training data. Rather than simply determine the
category to which a defect record belongs, a human annotator
additionally annotate the segments in the record (e.g., words,
phrases) that indicate why she believes the record should
belong to a particular category. Our experiments demonstrate
that learning from richer training data in our proposed
annotation relevance framework yields a better defect classifier
than one acquired via the standard text classification
framework, with a 23% reduction in relative error.

We applied AutoODC to 403 defect records in an industrial
defect report from Company P1 and compared its performance
with manual ODC classifications on the “impact” attribute2.
Defect impact is an ODC attribute of a defect that shows the
impact type (detailed in Section II) the defect would have had
upon the customer and end users if it had escaped to the field.

1 The name of the industrial company is anonymous in this paper due to

the proprietary rules. It is referred to as Company P in this paper.
2 The definitions and taxonomy of ODC v5.11 attributes are accessible at

http://www.research.ibm.com/softeng/ODC/DETODC.HTM .

Figure 1. AutoODC Overview.

 We evaluated AutoODC by calculating the overall accuracy. In
summary, AutoODC makes the following contributions:
• AutoODC uses the annotation relevance framework, a novel

framework that enables the acquisition of a defect classifier
from a richer kind of training data by injecting experts’
domain knowledge into the classifier so as to robustly
analyze natural language defect descriptions.

• The AutoODC defect classifier achieves an accuracy of
80.2% when using manual defect classification as a basis of
evaluation, where accuracy is computed as the percentage of
defect records correctly classified by AutoODC.

• As a complement to the manual ODC classification,
AutoODC improves the confidence of defect classification
results by reducing the investigation set that a human analyst
has to examine when performing ODC classification.

II. APPROACH

A. Overview

AutoODC accepts a semi-structured text defect report,
where each defect record contains a defect “summary”
(optional) and a “description” (required), and outputs the ODC
classification and the confidence of classification for each
record. It uses a SVM-based text classification system
integrated with our annotation relevance framework to improve
the accuracy of automated ODC classification. Figure 1 depicts
an overview of the AutoODC approach which consists of two
major components: (1) Basic Defect Classification System, and
(2) Annotation Relevance Framework.

The Basic Defect Classification System is developed in
three steps: 1) Pre-processing defect report; 2) Learning ODC;
and 3) Classification. Aiming to improve classification
accuracy, an Annotation Relevance Framework extends the
Basic Classification System by exploiting relevant annotations
in three ways: 1) generating additional instances (known as
pseudo-instances) for training an SVM classifier; 2) generating
additional features; and 3) adding domain knowledge.

B. The Basic Defect Classification System

Step 1: Pre-processing defect report
The input of AutoODC is a defect report consisting of

defect records, each of which contains a textual “description”

and an optional “summary”. We construct a training set from
defect records first by tokenizing the record and stemming each
word using the stemmer that comes with the WordNet [6]
lexical knowledge base3. We then represent each defect record
as a binary-valued vector indicating the presence or absence of
a word in the corresponding record, where each element
corresponds to a distinct word that appears in the training set.
Note that we did not remove stopwords from the vector, as
preliminary experiments indicated that results deteriorated
slightly with their removal. Also associated with the vector is a
class value, which is the analyst-assigned ODC category of the
corresponding record. Finally, to prevent long defect records,
which presumably contain many 1’s in their vectors, from
having an undesirably larger influence on the learning process,
we normalize each vector.

Step 2: Learning ODC
In our experiments, we use a support vector machine

(SVM) [4] as the underlying learning algorithm for classifier
training. Our choice of SVM is motivated in part by the fact
that it has offered impressive performance on a variety of text
classification tasks, and in part by the fact that our annotation
relevance framework aims to improve SVM’s learning
procedure. In order to integrate our extensions into SVM, we
adopt a one-versus-others training scheme, where we train one
SVM classifier for each of the classes. For instance, we train
one classifier for determining whether a defect record belongs
to Reliability, another classifier for determining whether a
record belongs to Usability, etc. In essence, each classifier
represents exactly one ODC class, and the number of SVM
classifiers we train is equal to the number of defect classes.
The training set for training each of these classifiers is
different from each other. Specifically, to train a classifier for
determining whether a record belongs to class i, we take the
pre-processed training set described above, and assign the
class value of each training instance as follows. If the training
instance belongs to class i, its class value is +1; otherwise, its
class value is -1.

Step 3: Classification
After training, we apply the resulting classifiers to classify

each defect record in the test set, where the test instances are
created in the same way as the training instances (see Step 1).
A test record is assigned the class whose classifier returns the
highest absolute value among the set of values returned by all the
classifiers. In addition to the ODC defect category, AutoODC
will return a confidence value associated with the class.
Confidence is measured by the data point’s distance from the
SVM hyperplane either from the “+” or “-” side.

C. Exploiting Relevant Annotations

This section describes our three relevant annotation based
extensions to the basic defect classification system.

Extension 1: Generating pseudo-instances
In the basic defect classification system, we train for each

ODC category c a classifier that identifies defect records
belonging to c, and describe how to create the training set for

3 Other stemmers, such as the Porter stemmer [5], can be used, but we

found that the WordNet stemmer yields slightly better accuracy.

training each of these classifiers. Our first extension involves
augmenting this training set with additional positive and
negative training instances generated from the relevant
annotations and modifying SVM’s learning procedure to
profitably exploit these additional training instances, referred to
as pseudo-instances below.

A relevant annotation is a text fragment that motivates a
human annotator to assign a particular class to a text document.
In AutoODC, a relevant annotation can be a relevant word or
phrase in the defect description that provides hints for analysts
to decide which ODC category a defect should belong to.

To see how relevant annotations can be used to generate
pseudo-instances, let us define some notation. Let xi be the
vector representation of a training defect record Ri. Without
loss of generality, assume that Ri belongs to class ci. Since we
adopt a one-versus-others training scheme for generating
training instances, xi is a positive instance for training the
classifier representing class ci. Given xi, we construct one or
more not-so-positive training instances vij (positive pseudo-
instances). Specifically, we create vij by removing relevant
annotation rij (the relevant words/phrases extracted from the
original defect summary and description in the report) from Ri.
In other words, the number of pseudo-instances vij we create
from each original instance xi is equal to the number of
relevant annotations present in Ri, and each vij is created by
deleting exactly one relevant annotation substring from Ri.
Since vij lacks a relevant annotation and therefore contains less
evidence that a human annotator found relevant for
classification than xi, the correct SVM classifier should be less
confident of a positive classification on vij.

 This idea can be implemented by imposing additional
constraints on a usual SVM classifier, which can be defined in
terms of a weight vector w. The usual SVM constraint on
positive instance xi is (w ⋅ xi – b) ≥ 1, which ensures that xi is
on the positive side of the hyperplane. In addition to these
usual constraints, we desire that for each j, (w ⋅ xi – w ⋅ vij) ≥
µ, where µ ≥ 0. Intuitively, this constraint specifies that xi
should be classified as more positive than vij by a margin of at
least µ.

 We create negative pseudo-instances similarly from each
negative training instance.

Extension 2: Generating additional features
In our second extension to the basic defect classification

system, we exploit the relevant annotations to generate
additional features for training an SVM classifier.

Recall that each defect record in the basic system is
represented as a vector of words. Hence, each word in a defect
report is a feature for the SVM classifier. Since the relevant
annotations (relevant words/phrases) used in Extension 1 are
supposed to be relevant for classification, we hypothesize that
they can also serve as useful features for the SVM classifier.
One way to exploit these relevant annotations as features is as
follows. First, we collect all the relevant annotations from the
defect records in the training set. Then we create one feature
from each relevant annotation and augment the word-based
feature set with these new features. In other words, each
training/test instance that is not a pseudo-instance is now

represented as a binary feature vector consisting of both the
word-based features and the relevant annotation-based features.
Given a defect record, the value of a relevant annotation-based
feature is 1 if and only if the corresponding relevant
word/phrase appears in the defect record.

However, some of these relevant annotation-based features,
especially those long key phrases (e.g., “I would like to
repair”), may not appear at all in the test set. This problem is
commonly known as data sparseness. To combat the data
sparseness, we increase the likelihood of seeing a relevant
annotation-based feature in the test set as follows. Instead of
using a relevant annotation directly as a feature, we create all
possible bigrams (i.e., consecutive words of length two) from
each relevant annotation and use them as additional features.

Extension 3: Exploiting domain knowledge
Another way to combat data sparseness is to apply domain

knowledge to identify the relevant annotations that are
synonymous. Specifically, we (1) collect all the relevant
annotations from the training defect records, (2) have a human
analyst partition them so that each cluster contains all and only
synonymous relevant annotations, and (3) assign a unique id to
each cluster. Given a training/test instance that is not a pseudo-
instance, we exploit this domain knowledge as follows. We
check whether a relevant annotation is present in the
corresponding defect record. If so, we create an additional
feature that corresponds to the id of the cluster containing the
relevant annotation. An example of a synonym cluster from our
defect report is {appear truncated, text cutoff}.

III. EVALUATION

Our evaluation addresses the following research question:
To what extent does our annotation relevance framework,
which comprises the three aforementioned extensions to basic
defect classification system, help improve ODC defect
classification, and are the three extensions all contributing
positively to overall performance?

A. Experimental Setup

AutoODC is experimented on classifying defect records
under the ODC “impact” attribute. To optimize the
performance of AutoODC, we have experimented with
multiple variations of AutoODC by combining the basic defect
classification system with the three extensions.

Data set. We acquired a defect report with 403 defect
records in a social network project domain from the industrial
Company P. To provide training/testing data for AutoODC,
two expert analysts independently classified the 403 defects
into 6 categories under the “impact” attribute with an initial
agreement of 90% and then cross-validated their results to
resolve the disagreements. The classified defects are distributed
over the categories of Capability (284), Security (11),
Performance (1), Reliability (8), Requirements (39), and
Usability (60). The two analysts, who are co-authors of the
paper, had six and three years of ODC classification and
analysis experience in industry, respectively. One of them
worked as an ODC expert at the IBM quality assurance group
for six years. They both marked the words/phrases which they
think are relevant for their assigning a defect record to a

particular ODC category. Moreover, they were asked to
identify the synonyms among these relevant words/phrases.

Evaluation metrics. We employ two evaluation metrics.
First, we report overall accuracy, which is the percentage of
records in the test set correctly classified by AutoODC.
Second, we compute the precision and recall for each ODC
category. Given an ODC category c, its recall is the percentage
of defect records belonging to c that are correctly classified by
AutoODC; and its precision is the percentage of records
classified by AutoODC as c that indeed belong to c.

Evaluation methodology. All performance numbers we
report in Section III.B are obtained via 5-fold cross-validation
experiments. Specifically, we first randomly partition the 403
defect records into five equal-sized subsets (or folds). Then, in
each fold experiment, we reserve one of the five folds for
testing and use the remaining four folds as the training set. We
repeat this five times, each time using a different fold as a test
set. Finally, we average the result obtained over the five folds.

B. Experimental Results on the Basic System and the
Annotation Relevance Framework

The basic defect classification system. We first report the
performance of the basic defect classification system. Each
record is represented as a binary vector with the 1089 unique
words appearing in the data set as features. We use SVMlight to
train a soft-margin SVM classifier on the training set. Results
of the basic defect classification system are shown in Table I,
which reports performance in terms of accuracy, as well as
precision (P), recall (R) and F-score (the harmonic mean of
precision and recall) for each ODC class. Note that the table
contains results for all but the Performance class. We omitted
the results for Performance for the obvious reason: The data set
has only one instance of Performance, and since this instance
can appear in either the training set or the test set for a given
fold experiment, the F-score achieves for this ODC class will
always be zero. As we can see, this basic system achieves an
accuracy of 74.2%, offering the best F-score on Capability due
to its frequent occurrence.

Effectiveness of our three extensions to the basic system.
We begin by incorporating Extension 1 (generating pseudo-
instances for training) into the basic system. Results of this
extension are shown in row 2 of Table I. As we can see, this
extension gives a 2.7% improvement in accuracy over the basic
system. The F-scores on three under-represented classes
(Integrity, Usability, and Requirements) improve considerably.

 Next, we incorporate Extension 2 (employing the relevant
annotations to generate additional features). To better
understand its contribution, we first apply Extension 2 to the
basic system in isolation (row 3 of Table I), and then apply it in
combination with Extension 1 (row 4 of Table I). When

Extension 2 is applied in isolation to the basic system, we see
that it improves not only the accuracy of the basic system by
2.2%, but also the F-scores of all classes except Reliability.
These results demonstrate the effectiveness of Extension 2.
When the two extensions are applied in combination to the
basic system, we can see that performance rises further: in
comparison to the basic system, accuracy improves by 4.7%,
and F-scores on all classes improve. Finally, we incorporate
Extension 3 into the system (classification with domain
knowledge). Specifically, the results in row 5 of Table I are
obtained by applying all three extensions to the basic system.
Comparing the results in rows 4 and 5, we can see that
Extension 3 provides useful knowledge: accuracy improves by
1.3%. In comparison to the basic system, the three extensions
together improve accuracy by 6%, which represents a 23%
reduction in relative error. Overall, these results demonstrate
the effectiveness of each of our extensions.

IV. CONCLUSION AND FUTURE WORK

AutoODC, when used in tandem with traditional manual
approaches, can largely reduce the human effort and improve
an analyst’s confidence in ODC classification. It will have a
significant impact on systematic defect analysis for software
quality assurance. This paper seeks to improve ODC
classification by presenting a novel framework for acquiring a
defect classifier from relevant annotations to robustly analyze
natural language defect descriptions. Based on this framework,
we developed AutoODC, a text classification tool for
automated ODC classification which can be adjusted or
extended to other text classification problems in the software
engineering domain. Our evaluation shows that AutoODC is
accurate in classifying defects by the “impact” attribute with an
accuracy of 80.2% when using manually classified differences
as a basis of evaluation. To envisage our future work, we will
extend AutoODC to perform defect classifications on other
ODC attributes and experiment it on other industrial and open
source defect repositories.

REFERENCES
[1] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus,

B.K. Ray, M.-Y.Wong “Orthogonal Defect Classification-A Concept for
In-Process Measurements,” IEEE TSE. Vol.18, pp. 943-956, Nov. 1992.

[2] R. Lutz and C. Mikulski. “Empirical analysis of safety-critical anomalies
during operations”, IEEE TSE, vol. 30, no. 3, March, 2004.

[3] J. Zheng, L. Williams, N. Nagappan, J. Hudpohl, “On the value of static
analysis tools for fault detection”, IEEE transactions on software
engineering. 2006, vol. 32, no. 44.

[4] V. Vapnik, The Nature of Statistical Learning. Springer, N.Y., 1995.

[5] M.F. Porter, “An algorithm for suffix stripping”, Program, 14(3) pp
130−137, 1980.

[6] C. Fellbaum, WordNet: An electronic lexical database, MIT Press,
Cambridge, MA. 1998.

TABLE I. FIVE-FOLD CROSS-VALIDATION RESULTS.

Experiment Accuracy
Reliability Capability Integrity/Security Usability Requirements

P R F P R F P R F P R F P R F
Basic 74.2 0.0 0.0 0.0 77.6 94.0 85.0 75.0 27.3 40.0 48.9 36.7 41.9 70.0 17.9 28.6

Basic+Ext 1 76.9 0.0 0.0 0.0 80.5 93.3 86.5 71.4 45.5 55.6 60.9 46.7 52.8 57.1 30.8 40.0
Basic+Ext 2 76.4 0.0 0.0 0.0 79.1 94.4 86.0 87.5 63.6 73.7 56.8 41.7 48.1 66.7 20.5 31.4
Basic+Ext1,2 78.9 100.0 12.5 22.2 81.1 95.1 87.5 71.4 45.5 55.6 70.7 48.3 57.4 61.9 33.3 43.3

Basic+Ext1,2,3 80.2 100.0 12.5 22.2 82.8 95.1 88.5 77.8 63.6 70.0 73.3 55.0 62.9 54.5 30.8 39.3

