AutoODC: Automated Generation of
Orthogonal Defect Classifications

LiGuo Huang Vincent Ng

Isaac Persirfg Ruili Geng Xu Bal Jeff Tiarl

Department of Computer Science and Engineeringth@on Methodist University
Human Language Technology Research Institute, Wsityeof Texas at Dallds
Dallas, TX, USA
{lghuang, rgeng, xbai, tian}@smu.elu {vince, persingg}@hilt.utdallas.etiu

Abstract—Orthogonal Defect Classification (ODC), the most
influential framework for software defect classifiation and

analysis, provides valuable in-process feedback teystem
development and maintenance. Conducting ODC clas&ihtion

on existing organizational defect reports is humanntensive and
requires experts' knowledge of both ODC and systerdomains.

This paper presents AutoODC, an approach and tool of

automating ODC classification by casting it as a qervised text
classification problem. Rather than merely apply tke standard

machine learning framework to this task, we seek t@cquire a
better ODC classification system by integrating exgrts' ODC

experience and domain knowledge into the learningrpcess via
proposing a novel Relevance Annotation Framework. &
evaluated AutoODC on an industrial defect report fom the

social network domain. AutoODC is a promising apprach: not

only does it leverage minimal human effort beyondhe human

annotations typically required by standard machine learning

approaches, but it achieves an overall accuracy &0.2% when
using manual classifications as a basis of compaois.

Keywords-Orthogonal Defect Classification
classification; natural language processing

(ODC); xte

I INTRODUCTION

The systematic classification and analysis of detkta
bridge the gap between causal analysis and statisfuality
control, provide valuable in-process feedback tcstem
development or maintenance, as well as help asaodcke
improve system and software quality. The analysisults
based on systematic defect classifications enalde tai
understand the major impact types of system defawats to
pinpoint specific problematic areas for focused bjgm
resolution and quality improvement. Orthogonal [Refe
Classification (ODC) [1], developed initially at Mg is the
most influential among general frameworks for saftevdefect
classification and analysis. ODC has been sucdbssfed in
various types of industrial and government orgaiora [2, 3].

Existing defect classification approaches and mecae
human intensive, requiring significant knowledge lodth
historical projects and ODC taxonomy from domaipesss. In
most cases, defect data are reported by userswvelogers
during system development, operation and maintenased
are stored in defect
classification scheme for an industrial organizatio without
being classified. These defect repositories arenoftalled
defect (bug) reports or defect (bug) trackers. pstal need to

repositories with a customized

read and understand the textual description of eapbrted
defect in order to classify them into the ODC taxwory.
Manual ODC defect classification based on existilgfect
repositories is at best a mundane, mind numbingigctThus
the types of follow-on ODC-based defect analyses aiten
restricted by the limited defect classificationuis

To overcome these challenges in software systeractlef
classification, we have developed AutoODC, an agghoand
tool for automatically generating the Orthogonal féae
Classification (ODC) from the defect report (tragkeThis
paper presents our research results to improve-stahe-art
of ODC generation. We cast the problem as a sugmhviext
classification problem, where the goal is to traidassifier via
machine learning techniques for automatically dlgisg a
defect record in the defect report. While one meyeet that
classification accuracy consistently increases with amount
of training data, somewhat surprisingly we obserifet this
was not the case for our classification problem. We
hypothesize that the reason could be attributettheédearning
algorithm’s inability to learn from the relevantrgions of a
defect report. Specifically, only a subset of therds in a
report may be relevant for classification, and leetearning
from all of the words in the report may introduagse into the
learning process and eventually deteriorate theopeance of
the resulting classification system. Consequemttypropose a
new framework in which the learning algorithm leafrom a
richer kind of training data. Rather than simplyedmine the
category to which a defect record belongs, a huararotator
additionally annotate the segments in the recomgl,(&ords,
phrases) that indicate why she believes the restmlld
belong to a particular category. Our experimentatestrate
that learning from richer training data in our pospd
annotation relevance framework yields a betterdeflassifier
than one acquired via the standard text clasdificat
framework, with a 23% reduction in relative error.

We applied AutoODC to 403 defect records in an stidal
defect report from Company' Pand compared its performance
with manual ODC classifications on the “impact’ridiite?.
Defect impact is an ODC attribute of a defect tlmdws the
impact type (detailed in Section Il) the defect Wohave had
upon the customer and end users if it had escaptetfield.

1 The name of the industrial company is anonymoukigpaper due to
the proprietary rules. It is referred to as CompRrig this paper.

2The definitions and taxonomy of ODC v5.11 attritsutee accessible at
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

Basic Defect Classification Framework

Step 1
Pre-

Defect |$processing I:>
HEp defect

report

Step 2
Learning
oDc
Classification

obc

Step 3
Classification Classmc
ation

Annotation Relevance Framework

Extension 3
Exploiting
domain
knowledge
(synonyms)

Extension 2

Generating

additional
features

Extension1
Generating

pseudo-
instances

Relevant Annotations

Figure 1. AutoODC Overview.

We evaluated AutoODC by calculating the overallusacy. In

summary, AutoODC makes the following contributions:

* AutoODC uses the annotation relevance frameworigwe|
framework that enables the acquisition of a defassifier
from a richer kind of training data by injecting pexts’

and an optional “summary”. We construct a traingeg from
defect records first by tokenizing the record atedngning each
word using the stemmer that comes with the Wordégt
lexical knowledge badeWe then represent each defect record
as a binary-valued vector indicating the presemabeence of
a word in the corresponding record, where each eim
corresponds to a distinct word that appears intréiaing set.
Note that we did not remove stopwords from the aecas
preliminary experiments indicated that results detated
slightly with their removal. Also associated wittetvector is a
class value, which is the analyst-assigned ODCgoayeof the
corresponding record. Finally, to prevent long defecords,
which presumably contain many 1's in their vectdrem
having an undesirably larger influence on the le@yprocess,
we normalize each vector.

Step 2: Learning ODC

In our experiments, we use a support vector machine
(SVM) [4] as the underlying learning algorithm fdassifier
training. Our choice of SVM is motivated in part the fact
that it has offered impressive performance on &taof text
classification tasks, and in part by the fact at annotation

domain knowledge into the classifier so as to ropus relévance framework aims to improve SVM's learning

analyze natural language defect descriptions.

» The AutoODC defect classifier achieves an accuraty

80.2% when using manual defect classification aasas of
evaluation, where accuracy is computed as the pege of
defect records correctly classified by AutoODC.

* As a complement to the manual ODC classification,

AutoODC improves the confidence of defect clasatfan
results by reducing the investigation set that mdmu analyst
has to examine when performing ODC classification.

II. APPROACH

A. Overview

procedure. In order to integrate our extensions 8M, we
adopt a one-versus-others training scheme, wherteaiveone
SVM classifier for each of the classes. For instanee train
one classifier for determining whether a defecbrddelongs
to Reliability, another classifier for determining whether a
record belongs tdJsability, etc. In essence, each classifier
represents exactly one ODC class, and the numb&vi
classifiers we train is equal to the number of defdasses.
The training set for training each of these cléssf is
different from each other. Specifically, to trairclassifier for
determining whether a record belongs to ciasse take the
pre-processed training set described above, anidnasise
class value of each training instance as folloWthe training
instance belongs to clagsits class value is +1; otherwise, its

AutoODC accepts a semi-structured text defect tgporclass value is -1.

where each defect record contains a defect “sunimary,

(optional) and a “description” (required), and autpthe ODC
classification and the confidence of classificatifon each
record. It uses a SVM-based text classificationtesys
integrated with our annotation relevance frameworiknprove
the accuracy of automated ODC classification. Fidudepicts
an overview of the AutoODC approach which consitévo

major components: (1) Basic Defect Classificatigat&m, and
(2) Annotation Relevance Framework.

The Basic Defect Classification Systenis developed in
three steps: 1) Pre-processing defect report; 8jriieg ODC,;
and 3) Classification. Aiming to improve classifioa
accuracy, arAnnotation Relevance Frameworkextends the
Basic Classification System by exploiting relevantotations
in three ways: 1) generating additional instande®wn as
pseudo-instances) for training an SVM classifi@rg@nerating
additional features; and 3) adding domain knowledge

B. TheBasic Defect Classification System

Step 1: Pre-processing defect report

The input of AutoODC is a defect report consistioig
defect records, each of which contains a textuaktdption”

Step 3: Classification

After training, we apply the resulting classifi¢osclassify
each defect record in the test set, where thernsistnces are
created in the same way as the training instarsses$tep 1).
A test record is assigned the class whose classifi@ms the
highest absolute value among the set of valuesnediby all the
classifiers.In addition to the ODC defect category, AutoODC
will return a confidence value associated withdless.
Confidence is measured by the data point’s disténore the
SVM hyperplane either from the “+” or “-” side.

C. Exploiting Relevant Annotations

This section describes our three relevant annotdiased
extensions to the basic defect classification syste

Extension 1: Generating pseudo-instances

In the basic defect classification system, we tfaineach
ODC categoryc a classifier that identifies defect records
belonging toc, and describe how to create the training set for

3 Other stemmers, such as the Porter stemmer Bheased, but we
found that the WordNet stemmer yields slightly éeticcuracy.

training each of these classifiers. Our first egten involves
augmenting this training set with additional paestiand
negative training instances generated from the vaele
annotations and modifying SVM’s learning procedure
profitably exploit these additional training instes, referred to
as pseudo-instances below.

A relevant annotation is a text fragment that naitg a
human annotator to assign a particular class ¢atadocument.
In AutoODC, a relevant annotation can be a relevamt or
phrase in the defect description that providesshiot analysts
to decide which ODC category a defect should betong

To see how relevant annotations can be used torafene
pseudo-instances, let us define some notation.xLée the
vector representation of a training defect recBrdWithout
loss of generality, assume tHatelongs to class. Since we
adopt a one-versus-others training scheme for géngr
training instancesy; is a positive instance for training the
classifier representing class Givenx;, we construct one or
more not-so-positive training instances (positive pseudo-
instancel Specifically, we create;; by removing relevant

represented as a binary feature vector consistinigoth the
word-based features and the relevant annotatioedbf@stures.
Given a defect record, the value of a relevant tatiom-based
feature is 1 if and only if the corresponding relet
word/phrase appears in the defect record.

However, some of these relevant annotation-bassdrkes,
especially those long key phrases (e.g., “lI wolile Ito
repair”), may not appear at all in the test setisTiroblem is
commonly known as data sparseness. To combat ttee da
sparseness, we increase the likelihood of seeimglevant
annotation-based feature in the test set as follbmatead of
using a relevant annotation directly as a featwe create all
possible bigrams (i.e., consecutive words of lertgth) from
each relevant annotation and use them as addifieataires.

Extension 3: Exploiting domain knowledge

Another way to combat data sparseness is to amgphath
knowledge to identify the relevant annotations tree
synonymous. Specifically, we (1) collect all thelexant
annotations from the training defect records, @)eha human
analyst partition them so that each cluster costalhand only

annotationr;; (the relevant words/phrases extracted from theynonymous relevant annotations, and (3) assigricue id to

original defect summary and description in the redoom R.

In other words, the number of pseudo-instangewe create
from each original instance; is equal to the number of
relevant annotations present®) and eachv; is created by
deleting exactly one relevant annotation substfign R.
Sincevj; lacks a relevant annotation and therefore contass

each cluster. Given a training/test instance thabt a pseudo-
instance, we exploit this domain knowledge as ¥alloWe
check whether a relevant annotation is present hia t
corresponding defect record. If so, we create aditiadal
feature that corresponds to the id of the clustetaining the
relevant annotation. An example of a synonym clusten our

evidence that a human annotator found relevant fogefect report is {appear truncated, text cutoff}.

classification tharx;, the correct SVM classifier should be less

confident of a positive classification @

This idea can be implemented by imposing &t
constraints on a usual SVM classifier, which cardéfined in
terms of a weight vectow. The usual SVM constraint on
positive instance; is (W [x; —b) = 1, which ensures thatis
on the positive side of the hyperplane. In additionthese
usual constraints, we desire that for epofwv Ox; —w Ov;) 2
M, wherep = 0. Intuitively, this constraint specifies that
should be classified as more positive thgty a margin of at
leasty.

We create negative pseudo-instances simifaoym each
negative training instance.

Extension 2: Generating additional features

In our second extension to the basic defect claasifn
system, we exploit the relevant annotations to geae
additional features for training an SVM classifier.

Recall that each defect record in the basic system
represented as a vector of words. Hence, each wadlefect
report is a feature for the SVM classifier. Sinbe televant
annotations (relevant words/phrases) used in Eixterks are
supposed to be relevant for classification, we bygsize that
they can also serve as useful features for the S\ddsifier.
One way to exploit these relevant annotations asifes is as
follows. First, we collect all the relevant annaas from the
defect records in the training set. Then we create feature
from each relevant annotation and augment the Wwasdéd
feature set with these new features. In other woedgh
training/test instance that is not a pseudo-ingaisc now

. EVALUATION

Our evaluation addresses the following researchktipre
To what extent does our annotation relevance fraoriew
which comprises the three aforementioned extendmssic
defect classification system, help improve ODC defe
classification, and are the three extensions afitrimuting
positively to overall performance?

A. Experimental Setup

AutoODC is experimented on classifying defect rdsor
under the ODC “impact” attribute. To optimize the
performance of AutoODC, we have experimented with
multiple variations of AutoODC by combining the lzadefect
classification system with the three extensions.

Data set. We acquired a defect report with 403 defect
records in a social network project domain from itdustrial
Company P. To provide training/testing data for XDDC,
two expert analysts independently classified th8 défects
into 6 categories under the “impact” attribute wih initial
agreement of 90% and then cross-validated theinltsego
resolve the disagreements. The classified defeetdistributed
over the categories of Capability (284), Securityl)(
Performance (1), Reliability (8), Requirements (3@nd
Usability (60). The two analysts, who are co-authof the
paper, had six and three years of ODC classificaand
analysis experience in industry, respectively. Qiiethem
worked as an ODC expert at the IBM quality assugagroup
for six years. They both marked the words/phradgisiwthey
think are relevant for their assigning a defectordcto a

TABLE I.

FIVE-FOLD CROSS-VALIDATION RESULTS

Experiment Accuracy Reliability Capability Integrity/Security Usability Requirements
P R F P R F P R F P R F P R F
Basic 74.2 0.0 0.0 0.0 776 940 850 73.0 2y.3 040.48.9 36.7| 419 70.0 17.9 286
Basic+Ext 1 76.9 0.0 0.0 0.0 806 93|13 865 714 54555.6| 60.9| 46.7| 528 57.1 30i8 400
Basic+Ext 2 76.4 0.0 0.0 0.0 791 94/4 86.0 8y.5 .668373.7| 56.8] 41.7| 48.1 66.7 205 314
Basic+Ext1,2 78.9 1009 12% 222 811 951 8F5 .471455| 55.6| 70.7] 483 574 61.9 333 433
Basic+Ext1,2,3 80.2 100.G 125 22]2 828 9%1 88378 | 636| 70.0 733 55.0 62.9 54.6 30.8 39.3

particular ODC category. Moreover, they were asked
identify the synonyms among these relevant worda4#s.

Evaluation metrics. We employ two evaluation metrics.
First, we report overall accuracy, which is thecpatage of
records in the test set correctly classified by o®DC.
Second, we compute the precision and recall foh €aDC
category. Given an ODC categaryits recall is the percentage
of defect records belonging tothat are correctly classified by
AutoODC; and its precision is the percentage ofords
classified by AutoODC asthat indeed belong t©

Evaluation methodology. All performance numbers we
report in Section Ill.B are obtained via 5-fold ssevalidation
experiments. Specifically, we first randomly paotit the 403
defect records into five equal-sized subsetddals). Then, in
each fold experiment, we reserve one of the fiviesfdor
testing and use the remaining four folds as thaitrg set. We
repeat this five times, each time using a diffefefd as a test
set. Finally, we average the result obtained dwefive folds.

B. Experimental Results on the Basic System and the
Annotation Relevance Framework

The basic defect classification systenwe first report the
performance of the basic defect classification esystEach
record is represented as a binary vector with O%9 lunique
words appearing in the data set as features. W&UM" to
train a soft-margin SVM classifier on the trainisgt. Results
of the basic defect classification system are shimwhable I,
which reports performance in terms of accuracywali as
precision (P), recall (R) and F-score (the harmon&an of
precision and recall) for each ODC class. Note thattable
contains results for all but the Performance cl¥gs. omitted
the results for Performance for the obvious rea$be: data set
has only one instance of Performance, and sineeiriktance
can appear in either the training set or the tesfa a given
fold experiment, the F-score achieves for this O@é3s will
always be zero. As we can see, this basic systéiewess an
accuracy of 74.2%, offering the best F-score onaBéipy due
to its frequent occurrence.

Effectiveness of our three extensions to the basgstem.
We begin by incorporating Extension 1 (generatiisgyglo-
instances for training) into the basic system. Resof this
extension are shown in row 2 of Table I. As we sa#f, this
extension gives a 2.7% improvement in accuracy thebasic
system. The F-scores on three under-representeskesla
(Integrity, Usability, and Requirements) improvensierably.

Next, we incorporate Extension 2 (employing thevant
annotations to generate additional features). Tdtebe
understand its contribution, we first apply ExtemsR to the
basic system in isolation (row 3 of Table 1), ahdrt apply it in
combination with Extension 1 (row 4 of Table). &mh

Extension 2 is applied in isolation to the basistsgn, we see
that it improves not only the accuracy of the basistem by
2.2%, but also the F-scores of all classes excefinlility.
These results demonstrate the effectiveness ofnEixie 2.
When the two extensions are applied in combinat@mrihe
basic system, we can see that performance riséisefurin
comparison to the basic system, accuracy improyed. %o,
and F-scores on all classes improve. Finally, weriporate
Extension 3 into the system (classification withmdin
knowledge). Specifically, the results in row 5 ddble | are
obtained by applying all three extensions to theidaystem.
Comparing the results in rows 4 and 5, we can be¢
Extension 3 provides useful knowledge: accuracyawvgs by
1.3%. In comparison to the basic system, the thxensions
together improve accuracy by 6%, which represen23%
reduction in relative error. Overall, these resualésnonstrate
the effectiveness of each of our extensions.

IV. CONCLUSIONAND FUTUREWORK

AutoODC, when used in tandem with traditional mdnua
approaches, can largely reduce the human effortirapcove
an analyst's confidence in ODC classification. ftl lwave a
significant impact on systematic defect analysis Joftware
quality assurance. This paper seeks to improve ODC
classification by presenting a novel framework deguiring a
defect classifier from relevant annotations to stlyuanalyze
natural language defect descriptions. Based orfrdnisework,
we developed AutoODC, a text classification toolr fo
automated ODC classification which can be adjusted
extended to other text classification problemshe software
engineering domain. Our evaluation shows that AMGGs
accurate in classifying defects by the “impactfiatite with an
accuracy of 80.2% when using manually classifigtedinces
as a basis of evaluation. To envisage our futunkwee will
extend AutoODC to perform defect classifications ather
ODC attributes and experiment it on other induktia open
source defect repositories.

REFERENCES

R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. iday, D.S. Moebus,
B.K. Ray, M.-Y.Wong “Orthogonal Defect Classifiaat-A Concept for
In-Process Measurements,” IEEE TSE. Vol.18, pp-88& Nov. 1992.

R. Lutz and C. Mikulski. “Empirical analysis of s&f-critical anomalies
during operations”, IEEE TSE, vol. 30, no. 3, Mar2@04.

J. Zheng, L. Williams, N. Nagappan, J. Hudpohl, ‘tBe value of static
analysis tools for fault detection”, IEEE transan8 on software
engineering. 2006, vol. 32, no. 44,

[4] V. Vapnik, The Nature of Statistical Learning. $ger, N.Y., 1995.

[5] M.F. Porter, “An algorithm for suffix stripping”, rBgram, 14(3) pp
130-137, 1980.

C. Fellbaum, WordNet: An electronic lexical datahadlIT Press,
Cambridge, MA. 1998.

(1]

