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Abstract—Orthogonal Defect Classification (ODC), the most 
influential framework for software defect classification and 
analysis, provides valuable in-process feedback to system 
development and maintenance. Conducting ODC classification 
on existing organizational defect reports is human intensive and 
requires experts' knowledge of both ODC and system domains. 
This paper presents AutoODC, an approach and tool for 
automating ODC classification by casting it as a supervised text 
classification problem. Rather than merely apply the standard 
machine learning framework to this task, we seek to acquire a 
better ODC classification system by integrating experts' ODC 
experience and domain knowledge into the learning process via 
proposing a novel Relevance Annotation Framework. We 
evaluated AutoODC on an industrial defect report from the 
social network domain. AutoODC is a promising approach: not 
only does it leverage minimal human effort beyond the human 
annotations typically required by standard machine learning 
approaches, but it achieves an overall accuracy of 80.2% when 
using manual classifications as a basis of comparison.  
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I.  INTRODUCTION 

The systematic classification and analysis of defect data 
bridge the gap between causal analysis and statistical quality 
control, provide valuable in-process feedback to system 
development or maintenance, as well as help assure and 
improve system and software quality. The analysis results 
based on systematic defect classifications enable us to 
understand the major impact types of system defects and to 
pinpoint specific problematic areas for focused problem 
resolution and quality improvement. Orthogonal Defect 
Classification (ODC) [1], developed initially at IBM, is the 
most influential among general frameworks for software defect 
classification and analysis. ODC has been successfully used in 
various types of industrial and government organizations [2, 3].  

Existing defect classification approaches and process are 
human intensive, requiring significant knowledge of both 
historical projects and ODC taxonomy from domain experts. In 
most cases, defect data are reported by users or developers 
during system development, operation and maintenance, and 
are stored in defect repositories with a customized 
classification scheme for an industrial organization or without 
being classified. These defect repositories are often called 
defect (bug) reports or defect (bug) trackers. Analysts need to 

read and understand the textual description of each reported 
defect in order to classify them into the ODC taxonomy. 
Manual ODC defect classification based on existing defect 
repositories is at best a mundane, mind numbing activity. Thus 
the types of follow-on ODC-based defect analyses are often 
restricted by the limited defect classification results.  

To overcome these challenges in software system defect 
classification, we have developed AutoODC, an approach and 
tool for automatically generating the Orthogonal Defect 
Classification (ODC) from the defect report (tracker). This 
paper presents our research results to improve state-of-the-art 
of ODC generation. We cast the problem as a supervised text 
classification problem, where the goal is to train a classifier via 
machine learning techniques for automatically classifying a 
defect record in the defect report. While one may expect that 
classification accuracy consistently increases with the amount 
of training data, somewhat surprisingly we observed that this 
was not the case for our classification problem. We 
hypothesize that the reason could be attributed to the learning 
algorithm’s inability to learn from the relevant portions of a 
defect report. Specifically, only a subset of the words in a 
report may be relevant for classification, and hence learning 
from all of the words in the report may introduce noise into the 
learning process and eventually deteriorate the performance of 
the resulting classification system. Consequently, we propose a 
new framework in which the learning algorithm learns from a 
richer kind of training data. Rather than simply determine the 
category to which a defect record belongs, a human annotator 
additionally annotate the segments in the record (e.g., words, 
phrases) that indicate why she believes the record should 
belong to a particular category. Our experiments demonstrate 
that learning from richer training data in our proposed 
annotation relevance framework yields a better defect classifier 
than one acquired via the standard text classification 
framework, with a 23% reduction in relative error.  

We applied AutoODC to 403 defect records in an industrial 
defect report from Company P1  and compared its performance 
with manual ODC classifications on the “impact” attribute2. 
Defect impact is an ODC attribute of a defect that shows the 
impact type (detailed in Section II) the defect would have had 
upon the customer and end users if it had escaped to the field. 

                                                           
1 The name of the industrial company is anonymous in this paper due to 

the proprietary rules. It is referred to as Company P in this paper. 
2 The definitions and taxonomy of ODC v5.11 attributes are accessible at 

http://www.research.ibm.com/softeng/ODC/DETODC.HTM . 



  

Figure 1.  AutoODC Overview. 

 We evaluated AutoODC by calculating the overall accuracy. In 
summary, AutoODC makes the following contributions: 
• AutoODC uses the annotation relevance framework, a novel 

framework that enables the acquisition of a defect classifier 
from a richer kind of training data by injecting experts’ 
domain knowledge into the classifier so as to robustly 
analyze natural language defect descriptions. 

• The AutoODC defect classifier achieves an accuracy of 
80.2% when using manual defect classification as a basis of 
evaluation, where accuracy is computed as the percentage of 
defect records correctly classified by AutoODC. 

• As a complement to the manual ODC classification, 
AutoODC improves the confidence of defect classification 
results by reducing the investigation set that a human analyst 
has to examine when performing ODC classification. 

II.  APPROACH 

A. Overview 

AutoODC accepts a semi-structured text defect report, 
where each defect record contains a defect “summary” 
(optional) and a “description” (required), and outputs the ODC 
classification and the confidence of classification for each 
record. It uses a SVM-based text classification system 
integrated with our annotation relevance framework to improve 
the accuracy of automated ODC classification. Figure 1 depicts 
an overview of the AutoODC approach which consists of two 
major components: (1) Basic Defect Classification System, and 
(2) Annotation Relevance Framework. 

The Basic Defect Classification System is developed in 
three steps: 1) Pre-processing defect report; 2) Learning ODC; 
and 3) Classification. Aiming to improve classification 
accuracy, an Annotation Relevance Framework extends the 
Basic Classification System by exploiting relevant annotations 
in three ways: 1) generating additional instances (known as 
pseudo-instances) for training an SVM classifier; 2) generating 
additional features; and 3) adding domain knowledge. 

B. The Basic Defect Classification System 

Step 1: Pre-processing defect report 
The input of AutoODC is a defect report consisting of 

defect records, each of which contains a textual “description” 

and an optional “summary”. We construct a training set from 
defect records first by tokenizing the record and stemming each 
word using the stemmer that comes with the WordNet [6] 
lexical knowledge base3. We then represent each defect record 
as a binary-valued vector indicating the presence or absence of 
a word in the corresponding record, where each element 
corresponds to a distinct word that appears in the training set. 
Note that we did not remove stopwords from the vector, as 
preliminary experiments indicated that results deteriorated 
slightly with their removal. Also associated with the vector is a 
class value, which is the analyst-assigned ODC category of the 
corresponding record. Finally, to prevent long defect records, 
which presumably contain many 1’s in their vectors, from 
having an undesirably larger influence on the learning process, 
we normalize each vector. 

Step 2: Learning ODC  
In our experiments, we use a support vector machine 

(SVM) [4] as the underlying learning algorithm for classifier 
training. Our choice of SVM is motivated in part by the fact 
that it has offered impressive performance on a variety of text 
classification tasks, and in part by the fact that our annotation 
relevance framework aims to improve SVM’s learning 
procedure. In order to integrate our extensions into SVM, we 
adopt a one-versus-others training scheme, where we train one 
SVM classifier for each of the classes. For instance, we train 
one classifier for determining whether a defect record belongs 
to Reliability, another classifier for determining whether a 
record belongs to Usability, etc. In essence, each classifier 
represents exactly one ODC class, and the number of SVM 
classifiers we train is equal to the number of defect classes. 
The training set for training each of these classifiers is 
different from each other. Specifically, to train a classifier for 
determining whether a record belongs to class i, we take the 
pre-processed training set described above, and assign the 
class value of each training instance as follows. If the training 
instance belongs to class i, its class value is +1; otherwise, its 
class value is -1. 

Step 3: Classification 
After training, we apply the resulting classifiers to classify 

each defect record in the test set, where the test instances are 
created in the same way as the training instances (see Step 1). 
A test record is assigned the class whose classifier returns the 
highest absolute value among the set of values returned by all the 
classifiers. In addition to the ODC defect category, AutoODC 
will return a confidence value associated with the class. 
Confidence is measured by the data point’s distance from the 
SVM hyperplane either from the “+” or “-” side. 

C. Exploiting Relevant Annotations 

This section describes our three relevant annotation based 
extensions to the basic defect classification system. 

Extension 1: Generating pseudo-instances 
In the basic defect classification system, we train for each 

ODC category c a classifier that identifies defect records 
belonging to c, and describe how to create the training set for 

                                                           
3 Other stemmers, such as the Porter stemmer [5], can be used, but we 

found that the WordNet stemmer yields slightly better accuracy. 



training each of these classifiers.  Our first extension involves 
augmenting this training set with additional positive and 
negative training instances generated from the relevant 
annotations and modifying SVM’s learning procedure to 
profitably exploit these additional training instances, referred to 
as pseudo-instances below. 

A relevant annotation is a text fragment that motivates a 
human annotator to assign a particular class to a text document. 
In AutoODC, a relevant annotation can be a relevant word or 
phrase in the defect description that provides hints for analysts 
to decide which ODC category a defect should belong to. 

To see how relevant annotations can be used to generate 
pseudo-instances, let us define some notation. Let xi be the 
vector representation of a training defect record Ri. Without 
loss of generality, assume that Ri belongs to class ci. Since we 
adopt a one-versus-others training scheme for generating 
training instances, xi is a positive instance for training the 
classifier representing class ci. Given xi, we construct one or 
more not-so-positive training instances vij (positive pseudo-
instances). Specifically, we create vij by removing relevant 
annotation rij (the relevant words/phrases extracted from the 
original defect summary and description in the report) from Ri. 
In other words, the number of pseudo-instances vij we create 
from each original instance xi is equal to the number of 
relevant annotations present in Ri, and each vij is created by 
deleting exactly one relevant annotation substring from Ri. 
Since vij lacks a relevant annotation and therefore contains less 
evidence that a human annotator found relevant for 
classification than xi, the correct SVM classifier should be less 
confident of a positive classification on vij. 

     This idea can be implemented by imposing additional 
constraints on a usual SVM classifier, which can be defined in 
terms of a weight vector w. The usual SVM constraint on 
positive instance xi is (w ⋅ xi – b) ≥ 1, which ensures that xi is 
on the positive side of the hyperplane. In addition to these 
usual constraints, we desire that for each j, (w ⋅ xi – w ⋅ vij) ≥ 
µ, where µ ≥ 0. Intuitively, this constraint specifies that xi 
should be classified as more positive than vij by a margin of at 
least µ.  

     We create negative pseudo-instances similarly from each 
negative training instance.  

Extension 2: Generating additional features 
In our second extension to the basic defect classification 

system, we exploit the relevant annotations to generate 
additional features for training an SVM classifier. 

Recall that each defect record in the basic system is 
represented as a vector of words. Hence, each word in a defect 
report is a feature for the SVM classifier. Since the relevant 
annotations (relevant words/phrases) used in Extension 1 are 
supposed to be relevant for classification, we hypothesize that 
they can also serve as useful features for the SVM classifier. 
One way to exploit these relevant annotations as features is as 
follows. First, we collect all the relevant annotations from the 
defect records in the training set. Then we create one feature 
from each relevant annotation and augment the word-based 
feature set with these new features. In other words, each 
training/test instance that is not a pseudo-instance is now 

represented as a binary feature vector consisting of both the 
word-based features and the relevant annotation-based features. 
Given a defect record, the value of a relevant annotation-based 
feature is 1 if and only if the corresponding relevant 
word/phrase appears in the defect record.  

However, some of these relevant annotation-based features, 
especially those long key phrases (e.g., “I would like to 
repair”), may not appear at all in the test set. This problem is 
commonly known as data sparseness. To combat the data 
sparseness, we increase the likelihood of seeing a relevant 
annotation-based feature in the test set as follows. Instead of 
using a relevant annotation directly as a feature, we create all 
possible bigrams (i.e., consecutive words of length two) from 
each relevant annotation and use them as additional features. 

Extension 3: Exploiting domain knowledge 
Another way to combat data sparseness is to apply domain 

knowledge to identify the relevant annotations that are 
synonymous. Specifically, we (1) collect all the relevant 
annotations from the training defect records, (2) have a human 
analyst partition them so that each cluster contains all and only 
synonymous relevant annotations, and (3) assign a unique id to 
each cluster. Given a training/test instance that is not a pseudo-
instance, we exploit this domain knowledge as follows. We 
check whether a relevant annotation is present in the 
corresponding defect record. If so, we create an additional 
feature that corresponds to the id of the cluster containing the 
relevant annotation. An example of a synonym cluster from our 
defect report is {appear truncated, text cutoff}. 

III.  EVALUATION 

Our evaluation addresses the following research question: 
To what extent does our annotation relevance framework, 
which comprises the three aforementioned extensions to basic 
defect classification system, help improve ODC defect 
classification, and are the three extensions all contributing 
positively to overall performance? 

A. Experimental Setup 

AutoODC is experimented on classifying defect records 
under the ODC “impact” attribute. To optimize the 
performance of AutoODC, we have experimented with 
multiple variations of AutoODC by combining the basic defect 
classification system with the three extensions.    

Data set. We acquired a defect report with 403 defect 
records in a social network project domain from the industrial 
Company P. To provide training/testing data for AutoODC, 
two expert analysts independently classified the 403 defects 
into 6 categories under the “impact” attribute with an initial 
agreement of 90% and then cross-validated their results to 
resolve the disagreements. The classified defects are distributed 
over the categories of Capability (284), Security (11), 
Performance (1), Reliability (8), Requirements (39), and 
Usability (60). The two analysts, who are co-authors of the 
paper, had six and three years of ODC classification and 
analysis experience in industry, respectively. One of them 
worked as an ODC expert at the IBM quality assurance group 
for six years. They both marked the words/phrases which they 
think are relevant for their assigning a defect record to a 



particular ODC category. Moreover, they were asked to 
identify the synonyms among these relevant words/phrases.  

Evaluation metrics. We employ two evaluation metrics. 
First, we report overall accuracy, which is the percentage of 
records in the test set correctly classified by AutoODC. 
Second, we compute the precision and recall for each ODC 
category. Given an ODC category c, its recall is the percentage 
of defect records belonging to c that are correctly classified by 
AutoODC; and its precision is the percentage of records 
classified by AutoODC as c that indeed belong to c.  

Evaluation methodology. All performance numbers we 
report in Section III.B are obtained via 5-fold cross-validation 
experiments. Specifically, we first randomly partition the 403 
defect records into five equal-sized subsets (or folds). Then, in 
each fold experiment, we reserve one of the five folds for 
testing and use the remaining four folds as the training set. We 
repeat this five times, each time using a different fold as a test 
set. Finally, we average the result obtained over the five folds. 

B. Experimental Results on the Basic System and the 
Annotation Relevance Framework  

The basic defect classification system. We first report the 
performance of the basic defect classification system. Each 
record is represented as a binary vector with the 1089 unique 
words appearing in the data set as features. We use SVMlight to 
train a soft-margin SVM classifier on the training set. Results 
of the basic defect classification system are shown in Table I, 
which reports performance in terms of accuracy, as well as 
precision (P), recall (R) and F-score (the harmonic mean of 
precision and recall) for each ODC class. Note that the table 
contains results for all but the Performance class. We omitted 
the results for Performance for the obvious reason: The data set 
has only one instance of Performance, and since this instance 
can appear in either the training set or the test set for a given 
fold experiment, the F-score achieves for this ODC class will 
always be zero. As we can see, this basic system achieves an 
accuracy of 74.2%, offering the best F-score on Capability due 
to its frequent occurrence.  

Effectiveness of our three extensions to the basic system. 
We begin by incorporating Extension 1 (generating pseudo-
instances for training) into the basic system. Results of this 
extension are shown in row 2 of Table I. As we can see, this 
extension gives a 2.7% improvement in accuracy over the basic 
system. The F-scores on three under-represented classes 
(Integrity, Usability, and Requirements) improve considerably. 

 Next, we incorporate Extension 2 (employing the relevant 
annotations to generate additional features). To better 
understand its contribution, we first apply Extension 2 to the 
basic system in isolation (row 3 of Table I), and then apply it in 
combination with Extension 1 (row 4 of Table I). When 

Extension 2 is applied in isolation to the basic system, we see 
that it improves not only the accuracy of the basic system by 
2.2%, but also the F-scores of all classes except Reliability. 
These results demonstrate the effectiveness of Extension 2. 
When the two extensions are applied in combination to the 
basic system, we can see that performance rises further: in 
comparison to the basic system, accuracy improves by 4.7%, 
and F-scores on all classes improve. Finally, we incorporate 
Extension 3 into the system (classification with domain 
knowledge). Specifically, the results in row 5 of Table I are 
obtained by applying all three extensions to the basic system. 
Comparing the results in rows 4 and 5, we can see that 
Extension 3 provides useful knowledge: accuracy improves by 
1.3%. In comparison to the basic system, the three extensions 
together improve accuracy by 6%, which represents a 23% 
reduction in relative error. Overall, these results demonstrate 
the effectiveness of each of our extensions. 

IV.  CONCLUSION AND FUTURE WORK 

AutoODC, when used in tandem with traditional manual 
approaches, can largely reduce the human effort and improve 
an analyst’s confidence in ODC classification. It will have a 
significant impact on systematic defect analysis for software 
quality assurance. This paper seeks to improve ODC 
classification by presenting a novel framework for acquiring a 
defect classifier from relevant annotations to robustly analyze 
natural language defect descriptions. Based on this framework, 
we developed AutoODC, a text classification tool for 
automated ODC classification which can be adjusted or 
extended to other text classification problems in the software 
engineering domain. Our evaluation shows that AutoODC is 
accurate in classifying defects by the “impact” attribute with an 
accuracy of 80.2% when using manually classified differences 
as a basis of evaluation. To envisage our future work, we will 
extend AutoODC to perform defect classifications on other 
ODC attributes and experiment it on other industrial and open 
source defect repositories. 
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TABLE I.  FIVE-FOLD CROSS-VALIDATION  RESULTS. 

Experiment Accuracy 
Reliability Capability Integrity/Security Usability  Requirements 

P R F P R F P R F P R F P R F 
Basic 74.2 0.0 0.0 0.0 77.6 94.0 85.0 75.0 27.3 40.0 48.9 36.7 41.9 70.0 17.9 28.6 

Basic+Ext 1 76.9 0.0 0.0 0.0 80.5 93.3 86.5 71.4 45.5 55.6 60.9 46.7 52.8 57.1 30.8 40.0 
Basic+Ext 2 76.4 0.0 0.0 0.0 79.1 94.4 86.0 87.5 63.6 73.7 56.8 41.7 48.1 66.7 20.5 31.4 
Basic+Ext1,2 78.9 100.0 12.5 22.2 81.1 95.1 87.5 71.4 45.5 55.6 70.7 48.3 57.4 61.9 33.3 43.3 

Basic+Ext1,2,3 80.2 100.0 12.5 22.2 82.8 95.1 88.5 77.8 63.6 70.0 73.3 55.0 62.9 54.5 30.8 39.3 
 


