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ABSTRACT
It is time-consuming and labor-intensive to learn and locate the
correct API for programming tasks. Thus, it is beneficial to perform
API recommendation automatically. The graph-based statistical
model has been shown to recommend top-10 API candidates ef-
fectively. It falls short, however, in accurately recommending an
actual top-1 API. To address this weakness, we propose RecRank,
an approach and tool that applies a novel ranking-based discrim-
inative approach leveraging API usage path features to improve
top-1 API recommendation. Empirical evaluation on a large corpus
of (1385+8) open source projects shows that RecRank significantly
improves top-1 API recommendation accuracy and mean recipro-
cal rank when compared to state-of-the-art API recommendation
approaches.
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1 INTRODUCTION
During daily software development, Application Programming In-
terfaces (APIs) are provided as functional building blocks to pro-
gram software systems. APIs are classes, methods, and fields pro-
vided by the library’s designers [25] to enable developers to access
the functionality of a code library. However, developers need to
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spend a lot of effort on familiarizing themselves with the capabil-
ities provided by a large number of APIs in the library and pick
the correct API for development tasks. For instance, developers
need to manually browse a long list of APIs to identify Buffered-
Writer.write(), the API that enables them to efficiently write to a
file by buffering the characters in Java memory. As another exam-
ple, developers have to choose from a list of 67 candidate member
methods of String in the Java Development Kit (JDK) to identify the
appropriate API for converting all of the corresponding characters
to upper case (i.e., String.toUpperCase()). To address this challenge,
many automated API recommendation approaches and tools have
been proposed to relieve the burden of developers in understanding
and locating APIs, either by taking advantage of API usage patterns
[4, 10, 14, 33] or by using statistical learning to recommend the next
token [6, 16, 23, 24]. For instance, Gralan uses a statistical language
model for API recommendation that relies on features extracted
from the preceding context (i.e., the code that has been written so
far). The model was trained by collecting statistics on how often
a candidate API co-occurs with the APIs in its preceding context
[24]. Being a generative model, however, Gralan is sensitive to the
presence of overlapping features and irrelevant features. Specifically,
if two features encode overlapping information (e.g., two features
are computed based on the same API in the preceding context), it
will undesirably amplify the importance of this API in the predic-
tion process, thus possibly harming model performance. Irrelevant
features (i.e., features that are largely not predictive of the target
API), too, could be harmful: while the statistics collected during the
training process could to some extent indicate whether a feature
is relevant, the multiplicative effect resulting from a large number
of irrelevant features in a generative model could overwhelm the
positive effect of the relevant features, again harming model perfor-
mance. Hence, feature engineering is important when employing
generative models. Unfortunately, as we will see in the next sec-
tion, a number of features that Gralan employs are by design both
overlapping and irrelevant.

More recently, APIREC [23], a state-of-the-art API recommenda-
tion approach, was proposed by Gralan’s authors. APIREC makes a
key assumption: changes that serve the same higher-level intent
of the developers will co-occur more frequently than non-related
changes [23]. Hence, by leveraging the regularity and repetitiveness
of software changes of a software system, APIREC can identify and
focus on changes/features that are relevant to API recommenda-
tion, thereby reducing the impact of the feature irrelevance problem
mentioned earlier. Nevertheless, the applicability of APIREC is se-
verely limited by the large number of historical software change
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repositories it requires. Specifically, not only does it need to be
trained on 471,730 changed source code files and 113,103 change
commits, but it can only be applied to files with a similarly long
change history.

Our goal in this paper is to advance the state-of-the-art in API
recommendation, specifically by improving the top-1 API recom-
mendation accuracy. In view of the aforementioned limitations of
APIREC, we desire an approach that does not rely on code change
history. The design of our system, RecRank, is motivated by a
key observation: while Gralan is unable to achieve a high top-1
recommendation accuracy, it achieves a reasonably high top-10
recommendation accuracy (73.4–80.6%). Given this observation, we
take the top-10 API candidates identified by Gralan as our starting
point and re-rank these candidates so that the correct API surfaces
to the top of the list. The question, then, is: how should we re-rank?
Recall that a key weakness of Gralan concerns the use of a genera-
tive model, which is sensitive to the presence of overlapping and
irrelevant features. RecRank is specifically designed to address this
weakness. First, RecRank employs a discriminative re-ranker that
is trained to re-rank Gralan’s top-10 candidate APIs. The key ad-
vantage of a discriminative approach (over a generative approach)
is that the former can automatically discriminate relevant from
irrelevant features (by assigning high weights to the relevant ones
and low weights to the irrelevant ones). Second, we propose a novel
kind of features for use in conjunction with our discriminative
re-ranker, API usage path based features. These features partially
address the feature irrelevance problem and can arguably better
capture the linguistic topic of the program expressing the intention
of the developer.

In sum, our contribution in this paper lies in the proposal of
RecRank, a novel discriminative ranking approach that employs a
novel kind of features based on usage paths to automatically recom-
mend top-1 APIs based on the top-10 API candidates suggested by
Gralan. In an evaluation on eight large-scale open source projects,
RecRank outperforms APIREC with respect to two evaluation met-
rics, top-1 recommendation accuracy and mean reciprocal rank
(MRR), a commonly used metric for evaluating ranking tasks in
information retrieval, achieving state-of-the-art results.

2 PRELIMINARIES AND MOTIVATING
EXAMPLES

2.1 Graph-based Generative API
Recommendation (Gralan)

Since RecRank is built upon the top-10 API candidates suggested by
Gralan, we will provide an overview of Gralan in this subsection.

As mentioned before, given a recommendation point, Gralan rec-
ommends an API using its preceding context (i.e., the code that has
been written so far). 1 Gralan encodes the preceding context as a
set of API usage graphs. In an API usage graph, each node is an
API used in a method call, operator overloading, field access or
branching (e.g., if, while, for, etc.). All API nodes are connected by
directed edges. Each edge represents a data flow dependency (i.e.,

1The reason that only the preceding context is used is to mimic the realistic situation
that when an API is to be recommended to a developer, only the code that has been
written so far is available.

(a) Child graph

(b) Parent graph

Figure 1: Parent-child graph example

overloading operator, method calls, and field accesses) or a control
flow dependency (i.e., condition and repetition) between two APIs.

An example of an API usage graph is shown in Figure 1(a), where
node N is the recommendation point. The corresponding context
graph (i.e., the graph that encodes the context in which N occurs) is
shown in Figure 1(b). As can be seen, this context graph is created
by removing node N as well as all of its incoming and outgoing
edges. Throughout the paper, if two graphs (e.g., the ones shown in
Figure 1) have a parent-child relationship, we will refer to the one
without the recommendation point as the parent graph and the one
with the recommendation point as the corresponding child graph.

As mentioned before,Gralan uses the parent graph for predicting
the API at the recommendation point. One way to make use of the
parent graph is to estimate the probability that a candidate API
co-occurs with the parent graph in the training data. The higher
the co-occurrence probability is, the more likely that the candi-
date API is the correct API. However, a parent graph (such as the
one shown in Figure 1(b)) could be fairly complex. Complex par-
ent graphs could yield a data sparsity problem: the more complex
a parent graph is, the less likely it will be seen in the training
data. To alleviate data sparsity, Gralan also makes use of all the
(non-empty) subgraphs of the parent graph in the API prediction
process. For instance, from the parent graph in Figure 1(b), we
can extract subgraphs with one API (e.g., CONTROL.WHILE), sub-
graphs with two APIs (e.g., [FileWriter.<init>, CONTROL.WHILE]),
subgraphs with three APIs (e.g., [FileWriter.<init>, BufferedReader.-
<init>, CONTROL.WHILE]), and subgraphs with four APIs (e.g.,
[FileWriter.<init>, BufferedReader.<init>, BufferedReader.readLine,
CONTROL.WHILE]).

Specifically, given a parent graph д and subgraphs д1, . . . ,дn of
д, Gralan computes the probability of a child graph, C(д), which is
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created by filling the recommendation point with a candidate API,
using Bayesian statistical inference as follows:

log(Pr (C(д)|д1,д2, ...,дn ,д))
∝ log(Pr (д1 |C(д))...Pr (дn |C(д))Pr (C(д)))

=

n∑
j=1

log(#methods(дj ,C(д)) + α)

+ log(#methods(д,C(д)))

− (n − 1) log(#methods(C(д)) + α#methods)

− log(#methods(д))

(1)

where the expression in the second line is obtained using Bayes rule,
and the third line shows how the probabilities in the second line can
be estimated. Specifically, #methods(д,C(д)) is the number of times
д appears as the parent of C(д) in the training data, #methods(д) is
the number of times д appears in the training data, and #methods is
the total number of methods in the training data.2 To avoid floating
underflow, Logarithm (log) is applied to all the probabilities in the
equation. To assign non-zero probabilities to events not seen in the
training data, a smoothing factor (i.e., α ) is used. Note that each of
the graphs being conditioned on in Equation 1 (i.e., д, д1, . . . ,дn )
can be viewed as a feature used by Gralan in the recommendation
process. Because the дi ’s are subgraphs of д, these features are
by design overlapping, which could harm the performance of a
generative model like Gralan, as noted in the introduction.

There is another caveat. Recall that Figure 1(a) only shows one
of the many API usage graphs that Gralan generates for the rec-
ommendation point N. The exact number of API usage graphs that
Gralan generates for a recommendation point depends on a pa-
rameter, d , which specifies the maximum distance between the
recommendation point and any of the nodes in an API usage graph.
For instance, if d=3, Gralan will generate all API usage graphs that
can possibly be generated by including any subset of nodes whose
distance is no larger than 3 from the recommendation point. For
each of these API usage graphs, Gralan generates the correspond-
ing parent graph. Given each parent graph д (and its subgraphs
д1, . . . ,дn ), Gralan computes the probability of each child graph
C(д) using Equation (1). The candidate API that corresponds to the
most probable child graph over all the parent graphs will be the
API recommended by Gralan for a given recommendation point.

2.2 Motivating Example
We motivate the development of RecRank through the following
example. A developer is developing a software function to read
text from a .txt file (“input.txt”) and write the processed text to
another .txt file (“output.txt”). The code snippet is shown in Fig-
ure 2, in which the input text file “input.txt” is read using Java
Development Kit (JDK) API BufferedReader (line 6) and written to
“output.txt” using JDK API BufferedWriter (line 7). A while loop
is used to iteratively read each line of the input text file (line 11).
Now this developer needs to decide what API should be used in
line 12 to write to the “output.txt” file. Modern Integrated Devel-
opment Environment (IDE) tools, such as Eclipse, provide a list of
2Our training data is composed of the set of API usage graphs generated from all the
methods in the source code collected from 1385 open source projects (see Section 4.1
for details).

Figure 2: A code snippet

Figure 3: An API recommendation example from Eclipse

APIs for developers to choose. This list of methods and fields is
usually ranked in alphabetical order since it simply shows all mem-
ber methods/fields of the calling API. Figure 3 shows that Eclipse
recommends 16 APIs for line 12 in Figure 2. Note that these member
methods and fields of the calling API BufferedWriter are not pri-
oritized based on relevance: they are simply listed in alphabetical
order.

Since the developer still cannot decide which API to choose from
the list recommended by IDE tools, she would like to ask for help
from Gralan. As aforementioned, Gralan ranks candidate APIs by
the probabilities of the corresponding child graphs given a parent
graph and its subgraphs. Specifically, it starts by building a set
of API usage graphs (such as the one shown in Figure 1-a) of the
code snippet in Figure 2. For each of the API usage graphs, Gralan
extracts the corresponding parent graph and its subgraphs. These
context graphs are then used in calculating the probability of each
candidate API using Equation (1). However, not all context graphs
are relevant to the recommendation point. In other words, not all
context graphs implement the same linguistic topics as that of the
recommendation point. For example, the recommendation point
N in Figure 1(a) implements the linguistic topic “write to output
text file” with its context graph in the green rectangle, while its
context graph in the blue rectangle implements the linguistic topic
“read from input text file”. However, based on Equation (1) this
context graph is considered as important as other context graphs:
like other generative models, the one employed by Gralan merely
multiplies the probabilities associated with the parent graph and
all of its subgraphs.

Table 1 shows a few examples of the parent graphs (i.e., д) and
their corresponding child graphs (i.e., C(д)) for the code snippet in
Figure 2 as well as the probability (i.e., score) of each child graph.
The scores of the child graphs over all of the parent graphs are
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Table 1: Probability scores of candidate APIs

д C(д) Candidate API Score
FileReader.<init>,
BufferedReader.-
<init>, Buffere-
dReader.readLine,
CONTROL.WHILE

FileReader.<init>,
..., Buffere-
dReader.close

BufferedReader.-
close

0.33

FileReader.<init>,
..., CON-
TROL.WHILE,
Buffered-
Writer.write

BufferedWriter.-
write

0.15

... ... ...
BufferedWriter.-
<init>, CON-
TROL.WHILE

BufferedWriter.-
<init>, CON-
TROL.WHILE,
Buffered-
Writer.write

BufferedWriter.-
write

0.25

BufferedWriter.-
<init>, CON-
TROL.WHILE,
Buffere-
dReader.close

BufferedReader.-
close

0.02

... ... ...

CONTROL.WHILE
CONTROL.WHILE,
Buffere-
dReader.close

BufferedReader.-
close

0.1

CONTROL.WHILE,
Buffered-
Writer.write

BufferedWriter.-
write

0.05

... ... ...
... ... ... ...

calculated and sorted. As we can see in Table 1, even though API
BufferedWriter.write is the correct API for the recommendation
point N, Gralan recommended BufferedReader.close since it has
the highest score (i.e., 0.33). The main reason behind this miss
is that BufferedReader.close co-occurred more frequently with the
irrelevant context graph in the blue rectangle in Figure 1, which
implements the linguistic topic “read from input text file” rather
than the topic that corresponds to the developer’s intent, “write to
output text file”. Note that this is just one example of an irrelevant
feature employed by Gralan: because of the way parent graphs
are generated for a recommendation point, many of them (as well
as the subgraphs generated from them) are irrelevant. Together
with the overlapping features, these irrelevant features could harm
Gralan’s performance.

Then the developer decides to try a state-of-the-art approach,
APIREC [23]. The key idea behind APIREC is to leverage the regular-
ity and repetitiveness of API usage patterns learned from software
change history. It assumes that the changes that serve the same
higher-level intent will co-occur more frequently than unrelated
changes [23]. In other words, those APIs in the context graphs
that have a higher frequency of source code change co-occurrence
(and hence are assumed to have a higher predictive power in API

recommendation) will be given more importance in the API recom-
mendation process. For each candidate API, APIREC first computes
a score based on the change history, and then adds the resulting
score to the one computed by Gralan to form the final score.

Not all changes are applicable, however, since some of them could
be specific to a historical project and could therefore incur noise in
the change patterns. In the example in Figure 1(a), after analyzing
a large number of historical fine-grained changes, APIREC learned
that BufferedWriter.write changed with BufferedReader.<init> with
a probability of 0.3 and that it changed with FileReader.<init>
with a probability of 0.05. Meanwhile, it also learned that Buffere-
dReader.close changed with BufferedReader.<init>with a probability
of 0.7 and that it changed with FileReader.-<init> with a probability
of 0.5. Hence, using only the code change history,APIREC will select
the wrong API, BufferedReader.close, for the given recommendation
point since its probability of change co-occurrence (0.7∗0.5 = 0.35)
is larger than that of BufferedWriter.write (0.3 ∗ 0.05 = 0.015). In
other words, using the code change history,APIREC cannot override
Gralan’s erroneous recommendation for this recommendation point.
In addition, APIREC requires a long source code change history
of each subject project, which limits its applicability to scenarios
where long code change history is unavailable or inaccessible.

To address the challenge of accurate API recommendation, we
propose RecRank, which recommends APIs based on the API us-
age paths generated from API usage graphs. An API usage path
(henceforth usage path) is generated to represent a data/control
flow sequence of APIs that can arguably better encode the intention
of the developer. Using discriminative learning in combination with
usage paths as features, higher weights can be learned for usage
paths that are more relevant and coherent to the given recommen-
dation point, thereby reducing the noise possibly introduced by
irrelevant or incoherent usage paths. For example, in Figure 1(a) we
extract one usage path [FileWriter.<init>→ BufferedWriter.<init>
→ (recommendation point)] from the code snippet in lines 7−12 in
Figure 2. This usage path implements the linguistic topic “write to
output text file”, which is weighted higher than other usage paths
extracted in Figure 1(a). Since RecRank seeks to improve the accu-
racy of recommending the top-1 API, it could save the developer’s
time and effort in manually selecting the correct API from multiple
candidates. Note that RecRank seeks to achieve this goal without
mining and using long fine-grained code change histories.

3 DISCRIMINATIVE RE-RANKING FOR API
RECOMMENDATION (RECRANK)

3.1 Overview
In this section, we present a novel approach to API recommenda-
tion, RecRank, which operates by re-ranking the top-10 candidate
APIs recommended by Gralan for each recommendation point us-
ing a learned discriminative re-ranker in combination with our
usage path-based features. Before describing RecRank, we present
two re-ranking systems that could help the reader better under-
stand the power of discriminative re-ranking. The first re-ranking
system is trained using the Naïve Bayes (NB) generative model
on our usage path-based features. The second re-ranking system
is a discriminative classifier trained using the support vector ma-
chine learner (henceforth SVC) on our usage path-based features.
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The performance difference between the NB system and the SVC
system can shed lights on the relative effectiveness of generative
models, which are sensitive to the presence of overlapping and
irrelevant features, and discriminative models, which are robust to
such features. Note that the SVC system is one step closer to Re-
cRank than the NB system in the sense that both SVC and RecRank
are discriminative in nature: the primary difference between them
lies in the fact that SVC recasts the API recommendation task as a
classification task whereas RecRank recasts the task as a ranking
task. The performance difference between them can therefore shed
lights on the relative effectiveness of classification and ranking. We
will discuss the differences between classification and ranking later
in this section.

3.2 NB
In NB, we employ the Naïve Bayes learning algorithm implemented
in scikit-learn Python library to train a binary classifier to classify
whether a given recommended API is the correct API at the recom-
mendation point (i.e., a “hit”) or not (i.e., a “miss”). Recall that NB
employs the following generative model:

P(c |candidate API) = P(c)
n∏
i=1

P(fi |c)

where c is the class (which in our case is either “hit” or “miss”),
and each fi corresponds to a usage path-based feature extracted
for the candidate API under consideration. As can be seen, the
NB generative model assumes that the values of the usage path-
based features are conditionally independent of each other given
the class. Each of the probabilities in the generative model can be
estimated using maximum likelihood estimation from the training
data. Specifically, P(c) is the fraction of instances in the training
set that are labeled as c . P(fi |c) is the fraction of training instances
labeled as c that contain feature fi .

We employ the trained NB model to re-rank the top-10 candidate
APIs suggested by Gralan as follows. Since the model computes for
each candidate API the probability that it is a “hit”, we rank the
candidate APIs using their associated probabilities, where higher
probabilities correspond to higher ranks.

Next, we discuss how the training instances are created and
how the usage path-based features are extracted for each training
instance.

Creating training instances. For each API recommendation point
in the training set, we create one training instance for each of the
10 API candidates recommended by Gralan, labeling an instance as
“hit” or “miss” depending on whether the corresponding candidate
API is the correct API for the recommendation point under consid-
eration. Each instance is represented using a set of usage path-based
features, each of which corresponds to an usage path. This set of
usage paths is the union of the usage paths extracted from each of
the API usage graphs created for the given recommendation point
(see Section 2 on how these API usage graphs are created). Below
we define usage paths.

Each usage path is extracted from an API usage graph and is
defined by three constraints. First, a usage path is formed by a se-
quence of APIs connected by directed data and/or control flow edges.
Second, the APIs in a usage path are sequentially connected/listed in

API usage order with one entry API and one exit API. Finally, each
usage path contains a candidate API (one of the 10 candidate APIs
recommended by Gralan) that appears either at the end (where
the directed flow ends) or at the beginning (where the directed
flow starts) of the path. Usage paths of various lengths could be
generated from an API usage graph. The length of a usage path
is between 2 and the threshold parameter d , which determines
the maximum distance between any node and the recommenda-
tion point in the graph (defined in Section 2.1). For example, 13
usage paths can be generated from the API usage graph in Fig-
ure 1(a), such as: [FileReader.<init> → BufferedReader.<init> →
BufferedReader.readLine→ CONTROL.WHILE→ (candidate API)].

To model different data/control flow in usage paths, we have
designed different types of usage path features, as described below.

A forward usage path feature is created from a usage path in
which the APIs in the path are connected by edges in the point-
forward direction with the candidate API appearing at the end of
the path. A forward data/control flow towards the recommendation
point usually implies that the API at the recommendation point
“consumes” the data passed by data/control flow. As an example,
consider the API usage graph in Figure 1. From this graph, we can
create a forward usage path feature from the path [FileReader.<init>
→ BufferedReader.<init>→ BufferedReader.readLine→ CONTROL.-
WHILE→ (candidate API)]. We create forward usage path features
from paths of different lengths, where the length of a path is defined
as the number of APIs involved in the path. For instance, the path
[CONTROL.WHILE→ (candidate API)] is of length 2. We consider
all paths of up to length d .

A backward usage path feature is created from a usage path
that starts with the candidate API, and in which the APIs are con-
nected by edges with a point-backward direction. A backward
data/control flow from the recommendation point usually implies
that the API at the recommendation point “produces” or “returns”
the data to be delivered to the APIs in the back track. In Figure 1(a),
we can create a backward usage path feature from the path [CON-
TROL.WHILE ← (candidate API)]. Similar to forward usage path
features, backward usage path features are generated from paths of
different lengths.

In addition, we derive fuzzy usage path features from the
forward usage path features and the backward usage path features.
To motivate fuzzy usage path features, we note the correspondence
between these usage paths and the word n-grams used in natural
language processing (NLP). Specifically, the sequence of APIs in
a forward/backward usage path is reminiscent of the sequence of
words in a word n-gram. NLP researchers have noted a weakness
of using word n-grams as features in natural language learning:
if n is large, the resulting n-grams will suffer from data sparsity;
and if n is small, the n-grams will fail to capture longer-distance
dependencies. To address this weakness, they have proposed the
use of skipgrams, in which they allow all but the first word and the
last word in an n-gram to match any words. For instance, given
the word n-gram “I am a boy”, one can generate a skipgram “I * *
boy”, where each wildcard * can match any word. This provides
generalization of the original n-gram (and therefore addresses data
sparsity) but at the same time captures the relationship between
non-adjacent words (in this case “I” and “boy”).
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Fuzzy usage path features are motivated by skipgrams. Specifi-
cally, a fuzzy usage path feature is created from a forward/backward
usage path feature by replacing all but the entry API and the exit API
in the corresponding path with wildcards. Returning to the example
in Figure 1(a), [FileReader.<init>→ *→ *→ CONTROL.WHILE→
(candidate API)] is a fuzzy usage path feature with two “fuzzy” APIs
in the path (represented as “*”). As in skipgrams, wildcards (i.e.,
fuzzy APIs) can only appear in the middle of a fuzzy usage path. As
with skipgrams, the goal of these fuzzy path features is to provide
generalizations of the forward/backward usage path features.

In comparison to the parent graphs and subgraphs that Gralan
uses as features, our usage paths are arguably more relevant to
API recommendation. First, since each usage path has to begin
or end with a candidate API, it ensures that the path contains an
API that is immediately adjacent to the candidate API, thereby
increasing its relevance for API prediction. In contrast, a subgraph
employed by Gralanmay not contain any nodes that are adjacent to
the recommendation point, thus possibly making it less relevant for
API prediction. Second, from the example in Figure 1, each context
graph can potentially contain more than one linguistic topic (e.g.,
both read and write to a file). On the other hand, a usage path
can typically allow us to focus on just one linguistic topic. This is
especially important when it comes to discriminative learning: a
discriminative learner can assign high weights to those features
that encode the intended linguistic topic and low weights to those
features that do not. If context graphs encoding multiple linguistic
topics were used as features, the learner could find it difficult to
decide whether high or low weights should be assigned to such
features. Note that the computation of these usage path features
can be done offline (i.e., during training) with the resulting values
stored in a database. During testing, their values can simply be
retrieved from the database.

A final issue that we have eluded so far concerns how we obtain
Gralan’s top-10 candidate APIs on the training set. Recall that we
create one training instance from each of Gralan’s top-10 candidate
APIs. This means that before we can create training instances, we
need to produce Gralan’s top-10 candidate APIs on the training
set. We do so using 5-fold cross validation on the training set:
we partition the training set randomly into five folds of roughly
equal sizes. In each fold experiment, we train Gralan on four folds
and applying the trained Gralan to generate the top-10 candidate
APIs on the remaining fold. We repeat this five times, each time
generating top-10 candidates on a different fold.

Applying the NB classifier. Test instances are created in the same
way as the training instances. Specifically, we create one test in-
stance from each of Gralan’s top-10 candidate APIs. This means
that before we create test instances, we need to produce Gralan’s
top-10 candidate APIs for each recommendation point in the test
set. To do so, we train Gralan on the entire training set and apply
the trained Gralan to generate top-10 candidate APIs on the test
set.

As mentioned before, the resulting NB classifier can be used to
compute the probability that each candidate API is a “hit” for a
recommendation point. These probabilities are then used to re-rank
the 10 candidate APIs.

3.3 SVC
Our second re-ranking system, SVC, is a discriminative classifier
trained using the SVM learning algorithm with a linear kernel, as
implemented in the libSVM software package [9]. As in NB, we
first use cross validation on the training set to produce Gralan’s
top-10 candidate APIs on the training set, and then create one
training instance from each of the 10 candidate APIs. Each training
instance in SVC is represented using the same set of usage path-
based features as in NB. The only difference lies in the value of each
feature. As NB is generative, each feature is conditioned on the
class. In contrast, SVC is discriminative, so we desire that the value
of a feature provides some indication of how useful it is. Specifically,
we desire that higher feature values imply more relevant features.
To this end, we compute the value of a feature as follows. First, we
count the number of times the corresponding usage path appears in
the training set (call this number a). Second, we count the number
of times the path appears in the training set after removing from it
the candidate API (call this number b). Finally, we set the feature
value to b

a . In other words, the more often the candidate API co-
occurs with the rest of the path in the training set, the larger the
feature value is. As in NB, the values of these usage path features
can be computed and stored in a database during training, and they
can simply be retrieved from the database during testing.

Training the SVC classifier. Given the training instances, the SVM
learner learns a maximum margin hyperplane that minimizes the
training error (i.e., the error of the hyperplane in classifying the
training instances). A hyperplane is defined by a set of weights, each
of which is associated with exactly one feature. In other words, the
SVM learner learns a set of feature weights that minimizes training
error, specifically by associating larger absolute weights with rele-
vant features and lower absolute weights with irrelevant features.
This distinguishes a discriminative learner from a generative model
such as NB.

Applying the SVC classifier. After training, the resulting hyper-
plane can be used to classify the test instances, which are created
in the same way as the training instances. As in NB, Gralan’s top-
10 candidates on the test set are obtained by training Gralan on
the entire training set and applying the trained Gralan on the test
set. We re-rank the top-10 candidate APIs based on their distances
from the hyperplane. Specifically, the candidate API on the “hit”
side of the hyperplane that is farthest away from the hyperplane
receives the highest rank, whereas the one on the “miss” side of
the hyperplane that is farthest away from the hyperplane receives
the lowest rank.

3.4 RecRank
Next, we describe RecRank, which differs from SVC in one respect:
SVC classifies candidate APIs, whereas RecRank ranks candidate
APIs. To understand the difference between classification and rank-
ing, we first note that API recommendation is inherently a ranking
task: its goal is to compare/rank candidate APIs and pick the best
(i.e., highest-ranked) candidate API for a given recommendation
point. When applying SVC, we essentially recast API recommenda-
tion as a classification task, where each candidate API is classified
(as “hit” or “miss”) independently of other candidate APIs. In other
words, SVC does not compare candidate APIs against each other,
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Table 2: Dataset statistics

Training Test
Total projects 1385 8
Total classes 138,791 8,621
Total methods 732,645 38,036

Total distinctive JDK API elements 18,166 7,272
Total recommendation points 70,377 11,872

Average features per API candidate 30 24

and without such comparisons, it fails to determine which candi-
date API is the best. In contrast, the goal of ranking is precisely to
compare candidate APIs by imposing a ranking on them.

Training RecRank. RecRank trains an SVM ranker using the linear-
kernel ranker learning algorithm implemented in SVMrank [15].
The training instances (and the features that represent each train-
ing instance) are created in the same way as in SVC. The resulting
training instances are then grouped into different ranking problems.
Specifically, each ranking problem corresponds to exactly one rec-
ommendation point and is composed of the 10 training instances
corresponding to the top-10 candidate APIs for this recommenda-
tion point. The goal of the ranker training procedure is to learn
a hyperplane (by adjusting the feature weights) to minimize the
number of violations of pairwise ranking in the training set. Specif-
ically, a violation occurs if a training instance labeled as “hit” is
ranked below a training instance labeled as “miss” by the ranker.

Applying RecRank. After training, the ranker can be used to
directly rank the top-10 candidate APIs for each recommendation
point in the test set. Specifically, the ranker assigns each candidate
API a value, based on which a ranking can be imposed on the
candidate APIs. RecRank then recommends the candidate API that
has the highest rank.

4 EMPIRICAL EVALUATION
4.1 Experiment Setup
Datasets.We collected a large dataset of 1385 Java projects from
GitHub for training API recommendation systems and another
eight for evaluation. Statistics of this dataset are shown in Table
2. In order to obtain high quality API usage graphs, we follow pre-
vious work [24]: we filter out the projects that are not parsable,
experimental or toy programs. Also, we use only the latest snapshot
of each project. For generalization purposes, we focus solely on
Java Development Kit (JDK) APIs. To facilitate comparison with
previous work, the eight projects in our evaluation set are the same
as those used to evaluate APIREC, a state-of-the-art API recommen-
dation system [23]. Training and test recommendation points are
created from these projects in the same way as in previous work
[23, 24]: except for the first two APIs in each method, we create
one recommendation point for each API.

Evaluation Measures. We employ two evaluation measures,
top-1 accuracy and mean reciprocal rank (MRR) [34]. Top-1 accu-
racy is a measure used in previous work on API recommendation
[24]. For each API recommendation point in the test set, if the top-1
API candidate returned by a system is the correct API at the recom-
mendation point, we count it as a “hit”. The top-1 accuracy is the

Table 3: Re-implemented and original Gralan results

Project Top-1 Accuracy Top-10 Accuracy
Dupli-
cated
Gralan

Origin
Gralan

Error Dupli-
cated
Gralan

Origin
Gralan

Error

antlr 38.3 26.0 +12.3 76.5 79.0 -2.5
Galaxy 22.4 22.0 +0.4 80.6 80.0 +0.6
Froyo-
Email

25.5 46.0 -20.5 73.9 81.0 -7.1

Grid-
Sphere

31.2 26.0 +5.2 76.9 85.0 -8.1

Itext 24.7 33.0 -8.3 80.5 76.0 +4.5
jGit 33.6 20.0 +11.6 77.1 74.0 +3.1
log4j 28.0 29.0 -1.0 75.2 74.0 +1.2
spring 30.2 28.0 +2.2 73.4 67.0 +6.4

ratio of the total number of hits to the total number of recommen-
dation points. MRR is an evaluation measure commonly used in
information retrieval to evaluate search results. Like top-1 accuracy,
a score of 1 is given to a recommendation point for which the top-1
candidate is the correct API. Unlike top-1 accuracy, where a system
is not rewarded at all if the correct API is not the top-1 candidate
API, MRR partially rewards a system as follows: a score of 1

r is
given to a recommendation point if the correct API appears in rank
r . In other words, the (partial) reward is inversely proportional to
the rank of the correct API. MRR then averages the scores over the
recommendation points in the test set. Thus, MRR can be viewed
as a relaxed version of top-1 accuracy that partially rewards a sys-
tem where the correct API is not the top-1 candidate. Since we are
re-ranking Gralan’s top-10 candidate APIs, recommendation points
where the correct API is not in Gralan’s top-10 will receive a score
of 0.

Baseline Systems.We employ two baseline systems, neither of
which is publicly available. As our first baseline, we employ APIREC.
The APIREC results reported in this paper are taken verbatim from
the original APIREC paper [23].3

As our second baseline, we employ Gralan. Since NB, SVC, and
RecRank are all built upon Gralan’s top-10 candidate APIs, we
re-implement Gralan, following the steps mentioned in Section
2.1. Specifically, we first build the API usage graphs from the col-
lected 1385 open source projects in the training set. Then, following
Nguyen et al. [24], for each API usage graph we simulate the API
recommendation process by predicting each API given its preced-
ing context. We set the parameter d to 3, meaning that only the
context graphs involving the one, two or three APIs preceding a
recommendation point are considered. The reason for setting d
to 3 is that according to Nguyen et al. [24], when d=3, the top-10
accuracy achieved by Gralan (86.0%) is close to the best accuracy
(87.1%).

Table 3 compares the originalGralan results [23]with our duplica-
ted/re-implementedGralan results on the same eight subject projects.

3The reason we did not re-implement APIREC is that the significant large historical
change repository dataset (i.e., 113,103 change commits and 471,730 changed source
code files according to Nguyen et al. [23]) is hard to acquire.
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As can be seen, duplicated Gralan achieves better or comparable
top-1 and top-10 accuracies than original Gralan results across all
projects except Froyo-Email (top-1). Note that a strict comparison
is not possible owing to the fact that original Gralan and duplicated
Gralan were trained on different projects.4

Evaluation Settings. For NB, SVC and RecRank, we use the
1385 projects in the training set for model training. We conduct an
8-fold cross validation on the 8 projects in the test set as follows. In
each fold experiment, we hold out exactly one project for testing
and use the remaining 7 projects for development (i.e., parameter
tuning). We repeat this experiment 8 times, each time choosing
a different project as our held-out test set. For parameter tuning,
we tune NB’s Laplace smoothing parameter α as well as libSVM
and SVMrank ’s regularization parameter C to maximize the top-1
accuracy on the development set. We limit the length an usage path
based feature to no more than 4.

4.2 Experimental Results
This section empirically answers our research questions.

RQ1. How accurate do RecRank, NB, and SVC recommend APIs in
comparison to the two baselines?

Results of NB, SVC, RecRank and the two baselines, APIREC
and duplicated Gralan (a.k.a., D-Gralan), expressed in terms of per-
project and overall top-1 accuracy and MRR, are shown in Table
4. As we can see, our proposed approaches (rows 3–5) outperform
D-Gralan (row 2) in both top-1 accuracy and MRR across all subject
projects. In particular, RecRank is the best performer in terms of
both measures, achieving better top-1 accuracy than APIREC in all
eight projects.5

We further make several interesting observations. First, the pro-
posed learning-based approaches (NB, SVC, and RecRank) achieve
better top-1 accuracy and MRR than D-Gralan: top-1 accuracy im-
proves by 0.7−50% and MRR improves by 0.13−0.49. Compared to
APIREC’s top-1 accuracy (59.5%), SVC and RecRank achieve com-
parable or better results (i.e., 59.6 and 64.8% respectively). Encour-
agingly, RecRank improves the state-of-the-art top-1 accuracies
across all eight subject projects by 1.7-23.7%.

To determine whether the improvements in overall top-1 accu-
racy and overall MRR between RecRank and other approaches are
statistically significant or not, we conduct the Wilcoxon rank-sum
test. Following Miller [20], the result of a significance test can be
interpreted as follows. The performance difference between the
two systems under comparison is (1) highly significant if the null
hypothesis (i.e., there is no performance difference between the two
systems) can be rejected at the 0.01 level (represented as “***” in
the table); (2) significant if it can be rejected at the 0.05 level (repre-
sented as “**”); and (3) moderately significant if it can be rejected at
the 0.1 level (represented as “*”). Otherwise, the difference is statisti-
cally indistinguishable. As can be seen in Table 4, RecRank is either
highly or moderately significantly better than other systems.6 To
evaluate the amount of performance difference between RecRank
and each of the other approaches, we compute Cliff’s delta [7], a
non-parametric effect size measure. Results show that in each case
4The list of projects used to train original Gralan is not revealed by the authors.
5MRR results are missing for APIREC because they are not reported in the original
paper.
6Significance tests cannot be conducted on APIREC because we do not have its output.

the delta value is greater than 0.474, which, according to Romano
et al. [30], implies a large effect size.

RQ2. How effective are usage path features for API recommenda-
tion compared with context graphs?

To compare the effectiveness of these two types of features, we
employ them to train four approaches: RecRank, NB, SVC and D-
Gralan. This results in the eight combinations shown in Table 5. For
instance, RecRank+E is the variant of RecRank trained using the
usage path features, whereas RecRank+C is the variant of RecRank
trained using context graphs. Note that the two variants within
each of the four approaches differ only with respect to the feature
set. In particular, the value of a feature is computed in the same
way in the two variants of an approach. For instance, the value of
a feature in RecRank+C is computed in the same way as that in
RecRank+E, which was described in Section 3.4.

As can be seen in Table 5, for NB, SVC, and RecRank, the E
variant is highly significantly better than the C variant in terms
of both top-1 accuracy and MRR with a large effect size. These
results provide suggestive evidence that the usage path features
are considerably more effective than the context graph-based fea-
tures for both discriminative models (SVC and RecRank) and the
NB generative model. The only exception is Gralan, where its C
variant is highly significantly better than its E variant. We speculate
that context graphs were specifically designed by their original au-
thors so that they could work well when used in conjunction with
Gralan’s generative model, but additional experiments are needed
to determine the reason.

RQ3. How effective are different classes of usage path features for
API recommendation?

To answer this question, we divide our usage path features into
12 groups based on (1) whether the path is forward or backward;
(2) whether the path contains fuzzy APIs or not; and (3) the length
of the path, which could be 2, 3 or 4 (recall that we limit the length
to no more than 4 in Section 4.1). To determine the contribution of
each of these 12 groups of features to RecRank’s performance, we
conduct ablation experiments, where in each ablation experiment,
we re-train RecRank by leaving out one or more of the 12 feature
types and measure the performance of the re-trained RecRank on
the test projects. Intuitively, the larger the drop in performance is
in an ablation experiment, the more important the missing feature
group(s) are as far as performance is concerned.

Ablation results are shown in Table 6. For ease of comparison, we
show in row 1 the results of RecRank when all usage path features
are used. The remaining rows show the results when one or more
of the feature groups are removed. In comparison to the RecRank
that uses all of the usage path features, performance drops highly
significantly with respect to both top-1 accuracy and MRR in three
cases: (1) when the length 2 forward features are removed; (2) when
all forward features are removed; and (3) when all length 2 features
are removed. Interestingly, removal of other feature groups does
not result in significant drops in performance. In particular, removal
of any of the length 3 and 4 features causes little and sometimes
no change in performance. However, it is important to note that
this by no means implies that features of lengths 3 and 4 are not
useful: these experiments only suggest that the feature group that
is being removed is not useful in the presence of the remaining
features. In other words, if two feature groups encode redundant
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Table 4: Evaluation results of API recommendation systems

System Top-1 Accuracy
Overall antlr Galaxy Froyo-Email Grid-Sphere Itext jGit log4j spring

1 APIREC 59.5 57.0 56.0 60.0 58.0 44.0 54.0 52.0 57.0
2 D-Gralan 29.5*** 38.3 22.4 25.5 31.2 24.7 33.6 28.0 30.2
3 NB 34.8*** 45.1 37.3 35.3 38.3 29.4 38.2 35.6 30.9
4 SVC 59.6* 60.1 61.2 51.1 58.9 57.3 56.1 51.4 47.4
5 RecRank 64.8 69.4 72.4 63.5 67.6 67.7 67.4 62.9 58.7

System MRR
1 APIREC − − − − − − − − −

2 D-Gralan 0.27*** 0.29 0.37 0.30 0.34 0.25 0.30 0.27 0.23
3 NB 0.60*** 0.64 0.64 0.57 0.64 0.64 0.62 0.60 0.56
4 SVC 0.69* 0.71 0.73 0.67 0.73 0.73 0.72 0.66 0.66
5 RecRank 0.70 0.73 0.69 0.69 0.73 0.74 0.73 0.69 0.66

Table 5: Evaluation results for different model-feature com-
binations

Combination Overall Top-1 Accuracy Overall MRR
1 RecRank+E 64.8 0.70
2 RecRank+C 36.6*** 0.58***
3 SVC+E 59.6 0.69
4 SVC+C 25.4*** 0.58***
5 NB+E 34.8 0.60
6 NB+C 16.1*** 0.47***
7 D-Gralan+E 24.1*** 0.25***
8 D-Gralan+C 29.5 0.27

Table 6: Feature ablation results of RecRank

System Overall Overall
Top-1 Acc MRR

All features 64.8 0.70
No length2 forward 55.8*** 0.64***

No length3 forward fuzzy 64.5 0.70
No length3 forward no-fuzzy 64.2 0.70
No length4 forward fuzzy 64.7 0.70

No length4 forward no-fuzzy 64.0 0.70
No length2 backward 64.5 0.68

No length3 backward fuzzy 64.0 0.70
No length3 backward no-fuzzy 64.7 0.70
No length4 backward fuzzy 64.1 0.70

No length4 backward no-fuzzy 64.8 0.70
No backward 60.1 0.65
No forward 39.9*** 0.48***

No length 3or4 no-fuzzy 65.1 0.70
No fuzzy 64.4 0.70
No length2 47.2*** 0.53***

information, then removal of one of them will not cause large drops
in performance. In fact, the usefulness of features of length 3 and 4
can be seen when comparing the “No length 2 forward” results and

Figure 4: Learning curves of API recommendation ap-
proaches on the entire test set

then “No forward” results: the performance differences between
these two ablated systems can be attributed to the length 3 and 4
features. Specifically, top-1 accuracy drops by more than 15% points
and MRR drops by 16% points when the length 3 and 4 features
are removed. Similarly, the usefulness of the backward features can
be seen by comparing the “No length 2 forward” results and the
“No length 2” results: the performance differences between these
two ablated systems can be attributed to the backward features.
Specifically, top-1 accuracy drops by 8% points.

RQ4.What is the learning curve of each system?
To answer this question, Figure 4 presents the learning curve for

each of these four systems when measured in terms of top-1 accu-
racy. Each curve is plotted using five data points that correspond
to using 20%, 40%, 60%, 80%, and 100% of the available training
projects collected in Section 4.1. As we can see, in none of the
systems does top-1 accuracy plateau even when we use all of the
available training dataset. This implies that the performance of each
API recommendation system will likely to improve further as addi-
tional training projects are made available, which is encouraging as
additional projects can be easily obtained. In addition, we observe
that SVC achieves consistently better overall top-1 accuracy than
D-Gralan regardless of the amount of available training data. NB
achieves better overall top-1 accuracy than D-Gralan when more
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than 40% of training projects are available for training. The most
effective learner, however, is RecRank.

5 THREATS TO VALIDITY
Our main threats to internal validity can occur to our training and
test sets. To address this concern, we train all API recommendation
systems on the same training set. Then each system is evaluated
on each subject project with parameters tuned on the rest of the
seven subject projects.

In addition, threats to external validity can occur during data
collection. For generalization purposes, similar to previous works
our experiments are performed on JDK APIs only. Meanwhile, for
comparison purposes we run experiments on the same subject
projects as the baseline API recommendation systems (i.e., Gralan
and APIREC).

6 RELATEDWORK
6.1 Code Suggestion based on Mined Software

Repositories
In this subsectionwe summarize source code suggestion approaches
based on mined software repositories. Bruch et al. [5] adapt the
k-nearest-neighbor algorithm to find method calls to recommend
for particular objects. Robbes et al. [29] use change history such as
code insertion and modification to improve code completion. Hou
et al. [14] present a way of grouping API proposals from histori-
cal data for better code completion. Hill et al. [12] build a tool to
automatically complete a method by cloned code. Asaduzzaman
et al. [3] and Zhang et al. [39] both use parameter filtering to do
code recommendation. Omar et al. [26] uses an interactive way to
generate code. Reiss et al. [28] and Stolee et al. [32] use semantic
search to map retrieved code into what is asked for by users. Thung
et al. [33] present an approach that learns from records of other
changes made to software systems and compares the textual de-
scription of the requested feature with the textual descriptions of
various API methods. Wang et al. [35] propose two quality metrics
(succinctness and coverage) for mined usage patterns. Xie et al. [37]
present MAPO to generate patterns by mining and ranking frequent
sequences in each cluster according to the similarity heuristics of
source code such as method names. Most of these approach rely
on a large number of software historical repositories. This kind of
approach is not applicable when such repository is not available.
Different from the above approaches, RecRank does not rely on any
software historical repository.

6.2 Code Suggestion Using Statistical Models
This subsection summarizes source code suggestion approaches us-
ing statistical models. Gu et al. [11] adapt a neural language model
named RNN Encoder-Decoder, which encodes a word sequence
(user query) into a fixed-length context vector, and generates an
API sequence based on the context vector. White et al. [36] apply
the RNN-LM model on lexically analyzed source code to code sug-
gestion. Allamanis et al. [1] present NATURALIZE, which learns
coding conventions to suggest natural identifier names and format-
ting conventions. They also apply the binomial model to retrieve
source code snippets given a natural language query and retrieve

natural language descriptions given a source code query [2]. Maddi-
son et al. [17] use Probabilistic Context Free Grammar (PCFG)-based
model to represent source code. McMillan et al. [18] propose a com-
bination of association between queries and functions model and
navigation behavior of programmers model to retrieve and visual-
ize relevant functions and their usages. Chan et al. [6] perform API
recommendation based on the textual similarity between code and
query phrases. CodeHow [16] expands the query with the APIs and
performs code retrieval by applying the Extended Boolean model,
which considers the impact of both text similarity and potential
APIs on code search. MULAPI [38] recommends feature related API
from feature request documents. In this paper, we propose a novel
ranking-based discriminative model to improve the state-of-the-art
top-1 API recommendation accuracy.

6.3 Code Suggestion based on Code Structure
This subsection overviews source code structure based approaches.
Asaduzzaman et al. [4] recommend API by ranking the similarities
between code contexts and the context of the target API method
call. Raychev et al. [27] extract indexed sequences of method calls
and use a statistical language model to find the highest ranked
sentences to synthesize a code completion. Mou et al. [22] pro-
pose a tree-based convolutional neural network (TBCNN) on AST
tree structure to detect code snippets of certain patterns. Holmes
et al. [13] present an approach for locating relevant code that is
based on heuristically matching the structure of the code under
development to the example code. Saul et al. [31] use a random
walk approach on a subset of a callgraph in order to recommend
source code. Ekoko et al. [8] propose an approach that leverages
the structural relationships between APIs to discover inaccessible
API methods or types. McMillan et al. [19] recommend source code
examples by querying against API calls and documentations about
code structural information. Moritz et al. [21] present an approach
to recommend API usage by representing software as a Relational
Topic Model. Fowkes et al. [10] propose a probabilistic algorithm
to find the most informative and parameter-free API call patterns.
In our approach, RecRank recommends API based on API usage
graphs, which includes data flow dependencies and control flow
dependencies among APIs. And compared with the state-of-the-
art graph-based API recommendation approach Gralan, RecRank
significantly improves the top-1 accuracy of API recommendation.

7 CONCLUSIONS AND FUTUREWORK
We proposed a novel discriminative re-ranking-based API recom-
mendation system, RecRank, which uses usage path-based features
to rank the top-10 API candidates generated byGralan. In an evalua-
tion on eight large scale open source projects, RecRank significantly
improved top-1 accuracy by 28.5%–50.0% and MRR by 0.32–0.49
in comparison to Gralan. When compared to APIREC, RecRank
improved top-1 accuracy by as much as 23.7%, yielding an overall
improvement of 5.3% absolute. Perhaps even more encouragingly,
we saw performance improvements in each of the eight projects.
Importantly, RecRank does not require access to a large number of
historical code changes for training and application. In future work,
we will extend our approach on a wider spectrum of API types and
experiment on additional projects.
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