
Predicting Licenses for Changed Source Code
Xiaoyu Liu1, LiGuo Huang1, Jidong Ge2 and Vincent Ng3

1Department of Computer Science, Southern Methodist University, Dallas, TX, USA
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

3Human Language Technology Research Institute, University of Texas at Dallas, Richardson, TX, USA

Abstract—Open source software licenses regulate the circum-
stances under which software can be redistributed, reused and
modified. Ensuring license compatibility and preventing license
restriction conflicts among source code during software changes
are the key to protect their commercial use. However, selecting
the appropriate licenses for software changes requires lots of
experience and manual effort that involve examining, assimilating
and comparing various licenses as well as understanding their
relationships with software changes. Worse still, there is no state-
of-the-art methodology to provide this capability. Motivated by
this observation, we propose in this paper Automatic License
Prediction (ALP), a novel learning-based method and tool for
predicting licenses as software changes. An extensive evaluation
of ALP on predicting licenses in 700 open source projects
demonstrate its effectiveness: ALP can achieve not only a high
overall prediction accuracy (92.5% in micro F1 score) but also
high accuracies across all license types.

Index Terms—Software License Prediction, Mining Software
Repository

I. INTRODUCTION

In recent decades, more and more Free and Open Source
Software (FOSS) projects have been made available online by
developers. The shift towards FOSS projects allows developers
to not only contribute to the software community but also
benefit themselves [1]. For example, by hosting their FOSS
projects on web-based version control platforms (e.g., GitHub,
SourceForge, etc.), developers can receive help from third-
party testers and other developers to improve the quality of
their software systems. Nevertheless, developers who are inter-
ested in releasing their projects to the open source community
should be aware that the redistribution, reuse and modification
of their projects must be regulated under software licenses.
Software licenses are important because they are designed
to protect the intellectual property of FOSS using licensing
mechanisms and copyright notices that determine how an open
source software can be (re)used [2].

To apply appropriate software licenses to their software
projects, developers need to select from a variety of licenses:
either the ones that allow redistributors to incorporate the
reused software under different licenses (i.e., permissive li-
censes) or the ones that require developers to use the same
license when distributing new software that incorporates the
reused software (i.e., restrictive licenses) [1]. These licenses
range from highly restrictive (e.g., the General Public Li-
cense (GPL) family, which requires developers to use GPL
to distribute new software that reuses GPL software) to less
restrictive (e.g., the MIT license, which permits a third party

to freely modify, reuse and redistribute the project by keeping
term notices). Therefore, selecting the appropriate license for
a given piece of software requires a great deal of experience
and manual review effort on the part of developers. While
there exists methods that help developers choose appropriate
licenses when a software project is initially released ([3], [4],
[5], [6]), an important question remains: how can licenses be
updated when changes are made in software systems?

Vendome et al. [1] shed light on the aforementioned ques-
tion by investigating the rationales behind license changes
due to software changes from both quantitative and qualitative
points of view. Their study reveals that updating the license
in the presence of software changes is an even more time-
consuming and labor-intensive process than determining the
license for a newly released software project. Specifically,
a developer has to review each changed source code file
against the existing licenses to determine whether there is
any license incompatibility, such as the violation of existing
license terms/copyright or the presence of a license that is
incompatible with the license of another piece of changed
source code. Consider the example in Figure 1, which shows
that a co-changed source code module,1 LogEntry, is imported
to the source code file XMLPacker.java that was originally
licensed under MPL v1.1 according to its file header. To
determine if a change of license is needed, the developer would
begin by determining that LogEntry is distributed under license
GPL v3+. Then, it requires a careful review and comparison
of the license restrictions of MPL v1.1 and those of GPL v3+
to reveal a potential incompatibility between them. That is,
a software system that imports or uses LogEntry is required
to adopt GPL v3+, which imposes a stronger restriction than
MPL v1.1. Detecting and resolving such incompatibilities thus
places a lot of burden on developers.

Unfortunately, according to Vendome et al. [1], existing
methods and tools for license prediction ([3], [4], [5], [6])
are insufficient for the task of predicting licenses in the
presence of software changes. For instance, Ninka [4], a state-
of-the-art license detection method, uses regular expressions to
predict licenses by detecting the presence of license copyright
and terms in the header comments of the source code files
(i.e., the file header). Hence, Ninka has no problem with
(independently) detecting MPL v1.1 as the license adopted

1A source code file f1 is a co-changed file of another source code file f2
if the two files both changed in a single change commit.

Changed imports in XMLPacker.java
XMLPacker.java was licensed with MPL v1.1

(read code)

LogEntry uses
GPL v3+ extract license

(read GPL v3+ restrictions)

(read MPL v1.1 restrictions
from header comment)

Compare Decide to apply
GPL v3+

Developer B

GPL V3+ restriction snippet

MPL V1.1 restriction snippet

Fig. 1: Example illustrating licensing incompatibility

by XMLPacker.java before the code change and GPL v3+
as the license adopted by LogEntry. However, Ninka cannot
detect file dependencies. So, in our example, it cannot take into
account the license restriction imposed by the newly imported
code module. Failure to do so deprives Ninka of its ability to
address the license compatibility issues that arise from code
changes.

Our goal in this paper is to advance the state-of-the-art
in license prediction for software changes. Specifically, we
propose Automatic License Prediction (ALP), a novel method
and supporting tool for automatically predicting source code
file-level licenses for code changes. Leveraging the recent
successes of machine learning methods in empirical SE re-
search, we propose a learning-based ALP system. At the
core of ALP are four key ideas: (1) exploiting a rich set of
features extracted from the inline text of the changed file under
consideration; (2) modeling the license of the previous version
of the file; (3) exploiting features extracted from the associated
software documents and co-changed files; and (4) identifying
and resolving incompatibilities, such as those illustrated in
Figure 1.

Our contributions in this paper are three-fold. First, we
manually annotate the licenses of 57450 changed source code
files taken from 700 Java projects hosted on GitHub. To our
knowledge, this is the first large-scale effort aiming to create
an annotated corpus for license prediction. Second, we propose
ALP, the first machine learning approach to license prediction,
which considers the dependencies among the licenses of the
source code modules. Note that the development of ALP is
made possible by the availability of the large amount of anno-
tated training data provided by our corpus. Finally, extensive
experiments demonstrate the effectiveness of our approach. In
an evaluation on 700 Java projects involving the prediction
of 25 software licenses, ALP achieves a micro F1 score
of 92.5%, highly significantly surpassing the performance of
three baseline systems, including Ninka, which only achieves
a micro F1 score of 73.5 on the same corpus.

We believe our results have another important ramification.
Vendome et al.’s [1] study of the rationales behind license
changes due to software changes were based on the auto-
matic annotations provided by Ninka. However, Ninka’s rather
mediocre performance on our corpus casts doubts on the

degree to which the conclusions drawn by Vendome et al.
are valid. We believe that it is worthwhile to re-examine their
conclusions by re-conducting their study using ALP’s output,
which is considerably more accurate than Ninka’s.

II. DATA PREPARATION

We collect a large set of historical change repositories from
700 Java projects hosted on GitHub. These projects and their
historical change repositories are previously used by Vendome
et al. [1] in the aforementioned empirical study. We determine
the ground truth license name (e.g., GPL, MIT, etc.) and
version (e.g., v1, v2, etc.) of each changed file in each change
commit via an open coding procedure. All changed files are
coded by two coders, both of whom are senior software
engineering Ph.D. students who have extensive experience in
industry as developers. Initially, one of the coders conducted
a pilot study on a subset of the changed files and their
associated software documents. This subset was chosen in the
following manner. First, 250 projects and their change commit
histories were randomly chosen from the dataset. Then, one
file was selected randomly from each of the change commit
histories. The purpose was to obtain as many different types
of licenses and relevant text statements as possible. The pilot
study resulted in a list of preliminary coding criteria. Each
criterion either describes the conditions under which a license
is applicable and/or enumerates the license(s) for which a
given term is a possible indicator. For example, one criterion
says that if the term “AS IS” appears in a license’s text, then
either LGPL v3+ (a highly restrictive license) or BSD (a fairly
restrictive license) should be the license. Moreover, the choice
depends on whether an incompatibility between the licenses
exists: if there is no incompatibility, then BSD suffices. Then
this coder trained the other coder on the coding criteria. After
training, both coders simultaneously coded all the changed
files in the dataset. As for inter-coder agreement, the coders
achieved an agreement ratio (i.e., the percentage of changed
files that are assigned the same license by the two coders)
of 73.7% and a Cohen’s Kappa [7] of 0.597, which indicates
moderate agreement [8]. Disagreements in their annotations
were resolved by open discussion. Disagreement primarily
stems from the coders’ differing interpretations of the terms
of the licenses. For example, one coder mistakenly assigned

TABLE I: Annotation examples

Changed file Software doc Co-changed file
Example 1 N/A . . . you can

redistribute it
and/or modify it
under the terms
of the GNU
General Public
License version
2. . .

can redistribute
it and/or modify
it under the
terms of the
GNU Lesser
General Public
License as
published by the
Free Software
Foundation;
either version
2.1 of the
License or (at
your option) any
later version. . .

Example 2 . . . Licensed un-
der the Apache
License Version
2.0. . .

program is made
available under
the terms of
the Eclipse
Public License
v1.0 which
accompanies this
distribution. . .

The MIT
License Original
work sponsored
and donated
by. . .

LGPL v3+ as the license after seeing the term “AS IS” because
he determined that a license incompatibility exists due to his
interpretation of the terms. Every case of disagreement was
resolved when the coders reach a common interpretation of
the terms.

To enable the reader to get a better idea of how the
files are annotated, Table I shows two examples. As can be
seen, each example is composed of the changed file under
consideration, the associated software document, and its co-
changed file. Owing to space limitations, only the snippet of
each file/document that is relevant to license prediction is
shown. In Example 1, the software document suggests that
GPL v2 should be adopted while the co-changed file suggests
that LGPL v2.1 should be adopted. There is a license conflict
between GPL v2 and LGPL v2.1+. Since LGPL v2.1+ has a
stronger copyleft than GPL v2, in order to accommodate the
strong copyleft imposed by the co-changed file, this changed
file should be labeled as LGPL v2.1+. In Example 2, the
three different resources suggest three different licenses: the
changed file suggests Apache v2, the document suggests EPL
v1, and the co-changed file suggests MIT. Since Apache
v2, EPL v1 and MIT are all permissive licenses with no
incompatible clauses declared, there is no need to alter the
changed file’s license. In other words, the changed file should
be labeled as Apache v2.

Statistics of the resulting dataset, which contains 57540
changed files annotated with their licenses, are shown in
Table II. From Table II-a, we can see that there are totally 24
licenses2 that have appeared at least once in the 700 projects.
Table II-b shows the distribution of the licenses over the 57450
changed files (“Non-licensed” is used when a license is absent
in a changed file, while “Other” shows the statistics aggregated

2According to German et al. [4], all 24 licenses are frequent FOSS licenses
and are detectable by Ninka.

TABLE II: Dataset statistics

of systems 700
of commits 8128
of changed files 57450

(a) Overall statistics

Licenses # of changed files
Apache v2 18770 (32.7%)

GPL v2 9458 (16.5%)
GPL v3+ 5943 (10.3%)

MIT 3125 (5.4%)
LGPL v3+ 2609 (4.5%)

LGPL v2.1+ 1542 (2.7%)
BSD 1404 (2.4%)

EPL v1 1276 (2.2%)
Other 4960 (8.6%)

Non-licensed 8363 (14.6%)
(b) Per-license frequencies

% of license changed files 6.7%
% of license unchanged files 93.3%

(c) License change statistics

over the remaining 14 (lowest-frequency) licenses.3.) As we
can see from Table II-b, the most frequently used license is
Apache v2 (32.7%). This is perhaps not surprising: Apache
v2 extends software users enough freedom to use it for any
purpose. Table II-c shows the percentages of changed files that
involved a license change in the collected projects. As we can
see, 6.7% of them have their license changed.

Given this dataset, we create a multi-class prediction task,
where we seek to predict each changed file as having either
one of the 24 licenses or non-licensed (i.e., the associated file
does not have a license). For the sake of brevity, we will refer
to the class non-licensed simply as one of the “licenses” to be
predicted in the rest of the paper.

III. BASELINE APPROACHES

This section introduces three baseline approaches that we
implement for controlled experiments with our ALP system.

A. Ninka

As our first baseline, we employ a state-of-the-art license
prediction system, Ninka [4]. Ninka is inspired by the obser-
vation that the information about a source code file license is
typically found in the inline textual comment at the beginning
of a source code file (i.e., the file header). In other words,
Ninka detects the license of a changed source code file by
relying on its file header. Specifically, given a changed source
code file, Ninka first extracts the file header and segments it
into a sequence of sentences, each of which is normalized
by replacing each of its phrases with its equivalent common
version without changing its meaning. Then it leverages a set
of pre-defined regular expressions built upon these common
terms to detect the presence of the license copyrights and
terms. Finally, it outputs a list of licenses that are matched by
their corresponding copyrights or terms in the file header. In
our experiments, we use a publicly available implementation

3These 14 licenses (and their percentages) are: MPL v1.1 (2.1%), ECL v2
(0.7%), LGPL v2.1 (0.7%), LGPL v3 (0.5%), ShareAlike v3 (0.4%), OSL v3
(0.2%), ECL v1 (0.2%), LGPL v1 (0.06%), CPL v1 (0.05%), Apache v1.1
(0.02%), Microsoft (0.01%), CDDL v1 (0.007%), public-Domain (0.003%),
GPL v1 (0.002%)

of Ninka,4 considering its prediction for a changed file correct
as long as one of the licenses in the list of predictions it returns
is correct. Note that since we allow Ninka to return more than
one prediction for a given file, we are effectively giving it
an unfair advantage over other systems that return only one
prediction per file.

To give the reader a better sense of Ninka’s weakness, we
apply Ninka to the example shown in Figure 1. Ninka starts by
extracting and normalizing the file header of XMLPacker.java.
Then all the pre-defined regular expressions are applied to
the file header. Among them, the regular expression built for
detecting the license MPL v1.1 matches the term “MPL” in the
file header sentence “If you do not delete the provisions above,
a recipient may use your version of this file under the terms of
any one of the MPL”. Hence, Ninka incorrectly predicts that
XMLPacker.java adopts MPL v1.1. It fails to make the correct
prediction (GPL v2) because it does not consider the potential
conflict with the license restrictions imposed by the changed
import code module LogEntry licensed under GPL v2, which
specify that “You may not propagate or modify a covered work
except as expressly provided under this license”.

B. Caller-Callee (CC)

As mentioned in the introduction, developers often reason
about license changes based on code imports. German et al.
[9] conduct an empirical study showing that software package
dependency needs to be combined with license information
to identify potential cases of redistribution with license in-
compatibilities. In other words, any change in the licenses
of the imports (imports are often referred to as the callee)
may affect the license of the changed file under consideration
(changed files are often referred to as the caller) [9]. For
example, if a caller A.java licensed under Apache v2 imports
callee B.class, while B.class’s license is updated to GPL v3+,
then both B.class and A.java should adopt GPL v3+ since
GPL v3+ is more restrictive than Apache v2. Consequently,
developers examine the imported code modules and their
licenses, typically assigning to the changed file the license
that is associated with the largest number of imported code
modules. Our second baseline, Caller-Callee (CC), attempts to
mimic this human decision process. Note that it is applicable to
both imported third-party external libraries as well as project-
internal classes.

We implement CC as follows. Given a changed file whose
license is to be predicted, CC first extracts all imports using
an off-the-shelf tool called QDox [10]. Next, it extracts the
licenses associated with the imported code modules. We lever-
age two tools to do this: Ninka [4], which extracts the licenses
of imported local classes and LicenseFinder [11], which
extracts the licenses of imported third-party libraries. Using
the extracted licenses, CC assigns a license to the changed file
under consideration based on the majority rule. Specifically,
the extracted licenses are ranked by the number of imported
code modules that adopt them (a.k.a. the import vote), and

4http://ninka.turingmachine.org

Fig. 2: An example of imported code modules and licenses of
FluentList.java

the license with the largest number of votes is returned. Our
decision to employ the import vote is inspired by (1) German
et al.’s [9] finding that software package dependency needs
to be combined with license information to identify potential
cases of redistribution with license incompatibilities; and (2)
the intuition that developers simply license a piece of software
under the one adopted by a majority of its imports. If none of
the imports are licensed, CC will classify the changed file as
non-licensed.

To give the reader a better sense of CC’s weakness, we apply
it to the example shown in Figure 2. CC starts by extracting
all imported classes and libraries of FluentList.java and then
determines which license each of them adopts. All imports and
their licenses are listed in Figure 2. To decide which license
to choose for FluentList.java, CC determines that 14 imported
code modules adopt Apache v2, one adopts GPL v2, and two
are non-licensed. Using the import vote, it incorrectly predicts
that the license of FluentList.java is Apache v2. In particular,
it fails to predict the correct license (GPL v2) because it does
not take into account the license compatibility of the different
license restrictions from the imported code modules.

C. Previous Version (Prev)

Our third baseline, Previous Version, is motivated by the
observation that only 6.7% of the license of a code file changes
from one version to another (see Table II-c). To exploit this
observation, Prev first predicts the license of the first version of
each file, and for each subsequent change to the file, it simply
predicts its license to be the same as the one that was used
in its previous version (which essentially is the one predicted
for the first version). In our experiments, Prev uses the Basic
ALP system (see the next subsection) to predict the license of
the first version of each file.

IV. OUR APPROACH

In this section, we present ALP, our learning-based system
for predicting licenses in changed source code files. ALP trains
a classifier to classify the file as belonging to one of the
25 licenses in our corpus. For ease of exposition, we will
decompose the description of ALP into four steps, starting

with the basic system and then incrementally augmenting it in
subsequent steps.

A. Step 1: Building the Basic ALP System

The basic ALP system trains a 25-class classifier for clas-
sifying a file as belonging to one of 25 licenses. Below we
present the details on how this classifier is trained and applied.

a) Training the classifier: To train the classifier, we
create one training instance for each changed file in the
training set. The label of an instance is the license of the
corresponding file (or non-licensed if the file does not have a
license). Each training instance is represented by two types of
features.

The first type of features, code-inline text features, are
extracted from each line of the source code inline text. The
motivation behind these features should be fairly obvious: the
inline text of a source code file may reflect the settings of
this file, including its license adoption. We generate three
kinds of code-inline-text features: unigrams (i.e., word tokens),
bigrams (each of which is a pair of consecutive word tokens),
and skipgrams (each of which is a pair of word tokens that
are separated by exactly one other word token). We obtain
word tokens from each line of the source code inline text
using the tokenizer in the Stanford CoreNLP toolkit [12].
All code-inline-text features are binary features encoding the
presence (value=1) or absence (value=0) of the corresponding
unigram/bigram/skipgram in any line of the code-inline text.
For example, given a line in the header comment “OpenEM-
RConnect is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY”, the following skipgram
features will have their values set to 1: OpenEMRConnect-
distributed; is-in; distributed-the; in-hope; the-that; hope-it;
that-will; it-be; will-useful; but-ANY; WITHOUT-WARRANTY.

Intuitively, any change in the source code inline text of
a changed file from its previous version may reflect the
intents behind source code changes, especially those that
are directly relevant to the adoption and update of software
licenses. We exploit changes in the source code inline text
for license prediction by encoding them as diff features.
Specifically, diff features are extracted from each line of
the source code inline text that differs from its immediately
previous version according to the Linux DIFF command. Like
the code-inline text features, we generate three kinds of diff
features: unigrams, bigrams, and skipgrams. We extract these
features from each changed line of the source code and
encode them as binary features, each of which indicates the
presence (value=1) or absence (value=0) of the corresponding
unigram/bigram/skipgram in any changed line of the code-
inline text.

To train the 25-class classifier, we employ the linear-chain
conditional random field (CRF) learning algorithm as imple-
mented in the Wapiti software package [13]. The motivation
behind our choice of CRF as the underlying learner will
become obvious when we describe the next step.

b) Applying the classifier: After training, the resulting
classifier can be used to label each test instance. Test instances

are created in the same way as the training instances. As
described before, we use the trained CRF to classify a test
instance as having one of the 25 licenses.

B. Step 2: Modeling the Previous License

License adoption depends not only on the current state of
the changed file, but also on its past states. For example, if
a changed file A.java was licensed with GPL v3+, there is
no need to update its license when a new import with MPL
v1.1 is added because GPL v3+ has more “copyleft” than
MPL v1.1. However, since Basic ALP predicts the license
of each changed file independently of the other files, it does
not exploit a changed file’s previous license(s). ALP2 is an
extension of Basic ALP that attempts to implicitly exploit
the license of a changed file’s immediately previous version.
More specifically, rather than predicting each changed file’s
license independently, we cast our license prediction task as a
sequence prediction task.

Recall that given a sequence x1x2 . . . xn as input, the goal
of sequence prediction is to output a sequence y1y2 . . . yn of
the same length. In other words, output element yi is assumed
to be the predicted class for input element xi. In the context
of license prediction, each input sequence x1x2 is a sequence
of length 2, where x2 corresponds to the changed file and
x1 corresponds to the previous version of the changed file.5

Hence, y1y2, the output sequence produced for x1x2, will also
be of length 2, where y2 is the predicted license for x2 and
y1 is the predicted license for x1.

ALP2 uses CRFs (as implemented in the Wapiti software
package) to learn how to label sequences. Recall that CRFs
are inherently sequence labelers. In fact, its sequence labeling
capability distinguishes itself from the majority of the widely
used machine learning algorithms. During training, a CRF
is trained to maximize the probability of seeing the correct
output sequence given an input training sequence. During
testing, the Viterbi algorithm [14] is used to decode the most
probable output sequence given an input test sequence. An
important aspect of Viterbi is that it captures the relationship
between consecutive elements in an output sequence. Since
we only have sequences of length 2, CRF helps us capture
the relationship between license y1 and license y2 in the
prediction process. For instance, if license y1 is rarely followed
by license y2 in the training data, the CRF learning algorithm
will learn a model that assigns a low probability to this and
other unlikely license sequences. In contrast, if y1 is frequently
followed by y2 in the training data, the CRF learner will learn
a model that assigns a high probability to this and other likely
license sequences. Hence, a CRF can potentially allow us to
improve the prediction of y2 (the license of the changed file)
by exploiting y1 (the license of the previous version of the
changed file). We represent x1 and x2 using the same features

5We could employ longer sequences to capture a longer history of a given
changed file’s previous licenses, but preliminary experiments indicate that
employing sequences of length more than 2 does not provide additional gains,
presumably because a file’s license is primarily dependent on that of its
immediately preceding version.

that we used in Basic ALP for encoding a changed file and
its previous version.

Two points deserve mention. First, for each output sequence
y1y2, we use y2 to be the predicted license for changed file
x2. However, we do not use y1 to be the predicted license for
x1. The reason is that in practice, when predicting the license
for x1, x2 may not even exist. Hence, it does not make sense
to use information from x2 when predicting x1.

Second, we mentioned above that each input/output se-
quence for our license prediction task is of length 2. This
is not true in a small number of cases, however. Recall that
a changed file may not have a previous version (e.g., it is
a newly created file). In that case, we will create a length
one training/test sequence for each of these changed files that
appears in the training/test set.

C. Step 3: Adding New Knowledge Sources

Next, we augment ALP2’s feature set with additional fea-
tures extracted from two sources, the software documents
associated with the changed file under consideration and its
co-changed files.

1) Extracting features from software documents: The soft-
ware documents associated with a changed file can sometimes
provide important clues as to which license the file should
adopt. As an example, consider the software document shown
in Figure 3, which is a LICENSE file.6 The phrases highlighted
in yellow, including “retain the above copyright notice”,
“reproduce the above copyright notice”, and “name of the
author may not be used to endorse or promote”, are relevant
to determining that the license that the file should adopt is
BSD, as they are consistent with the terms of the BSD license.
While a software document may contain useful information as
far as license prediction is concerned, this example illustrates
why automatically extracting such information is not always
straightforward. First, only a small portion of the document
may be relevant, so one challenge involves locating where the
useful information is. Second, the useful information may not
be expressed as explicitly as the name of the license that the
file should adopt. Third, the license declared in the document
may not be applicable to all the changed files while the source
code changes. Nevertheless, being learning-based, our ALP
system should be able to learn the association between phrases
and licenses.

Motivated by these observations, we propose to extract
document-text features from all the software documents (i.e.,
the readme, the POM file, and the license file) that are related
to the changed file under consideration. Specifically, given a
changed source code file, all the related software documents
are first retrieved based on the relevance to the change. Then,
a set of document-text features are extracted from each line
of the retrieved software documents to represent their textual
contents. Like code-inline text features, we also have three
types of document-text features, namely unigrams, bigrams,
and skipgrams. For each document-text feature, its value is 1 if

6Only a snippet of the document is shown owing to space limitations.

Fig. 3: A snippet of a software document

the corresponding feature is present in the software document
file. Otherwise, its value is 0.

2) Extracting features from co-changed files: Like software
documents, co-changed files can similarly be useful for pre-
dicting the license of a given changed file. Recall that a file
f1 co-changed with another file f2 if they both changed in a
single change commit. Our example in the introduction, which
was shown in Figure 1, illustrated why co-changed files are
potentially useful for license prediction. In that example, the
file XMLPacker.java was originally licensed under MPL v1.1
according to its file header, but when a co-changed source
code module, LogEntry, was imported, it should adopt the
stricter license that LogEntry adopts, GPL v3+. As mentioned
before, without analyzing the dependencies among different
files, it would not be possible to identify GPL v3+ as the
correct license to use after the code change.

However, neither Basic ALP nor ALP2, the two systems
we introduced in Steps 1 and 2, exploits the potentially useful
information from co-changed files. In light of this weakness,
we seek to extract co-change features from a source code file
co-changed with the changed file whose license is to be deter-
mined. Motivated in part by the features used in Basic ALP
and ALP2, we similarly extract from a co-changed file code-
inline text features (i.e., unigrams, bigrams, and skipgrams) as
well as diff features, which encode the difference in content
between the co-changed file and its previous version. A natural
question is: how many co-changed files should we use to
extract co-change features from? Using all of them could pose
a computational efficiency problem, so we could use a subset
of them. However, if only a subset of them were to be used,
which ones should be chosen? Recall from the example in
Figure 1 that a co-changed file will be most useful for license
prediction if it suggests a license that is different from the one
suggested by the changed file under consideration. Hence, it
makes sense for us to use those co-changed files that suggest
a different license. Of course, it is possible that none of the
co-changed file suggests a different license than the one that
the changed file suggests. If this happens, the co-changed files
will be randomly chosen.

Since we prefer to choose those co-changed files that
suggest a different license, the question, then, is: how many
of them should be used? To answer this question, we employ
an empirical observation of our corpus: rarely do we see more
than two different licenses suggested by a set of co-changed
files. Given this observation, it is plausible that using just one
co-changed file may suffice as long as it suggests a different
license. To empirically determine how the number of co-
changed files used to extract co-change features would impact
overall performance, we will conduct experiments where we
extract co-change features from five co-changed files7 and
from just one co-changed file.

An important question that we have eluded so far is: how
do we know whether a co-changed file suggests a different
license than the one that the changed file under consideration
suggests? Our idea is to use our ALP2 system. Specifically, we
will use ALP2 to predict the license of a changed file and all
of its co-changed files, and select from those co-changed files
whose predicted license is different from the original changed
file’s predicted license according to ALP2. Of course, ALP2
is not perfect, but it provides a viable way of identifying such
co-changed files.

We retrain ALP2 by augmenting its feature set with the
document-text features and the co-change features.8 Note that
these two additional types of features can be used in combi-
nation and in isolation. When they are used in combination,
we name the resulting system ALP2+Doc+Co, as ALP2 is
trained with three types of features: document-text features,
co-change features, and the original features extracted from
the changed file under consideration. When they are used
in isolation, we end up with two systems, ALP2+Doc and
ALP2+Co, depending on which of them is used to augment
ALP2. However, if software documents or co-changed files
are not available for the changed file under consideration,
no document-text features and co-change features can be
extracted, in which case we will simply set the values of these
features to 0.

D. Step 4: Modeling Conflicts

As discussed before, software documents and co-changed
files are most useful for license prediction if they suggest a
different license than the one suggested by the changed file
under consideration. In the previous subsection, the conflicts
that resulted from the different licenses suggested by different
sources of information are resolved implicitly by the CRF.
More specifically, the CRF has access to one set of features
extracted from the different sources and determines the license
for the changed file under consideration.

We hypothesize that license prediction performance could
be improved if we model the aforementioned conflicts ex-

7If fewer than five co-changed files are present, we will just use all of them.
8What this means is that the document-text features and the co-change

features need to be computed for both the training instances and the test
instances. In particular, to select which co-changed files to compute co-change
features from for a given changed file in the training set, we use ALP2 to
predict the license of each changed and co-changed file by performing five-
fold cross validation on the training set.

plicitly. Specifically, we propose to first identify the set of
instances with conflicts (i.e., the instances for which more
than one license is suggested by different sources), and then
learn to determine which source of information should be used
to predict the license of a changed file when conflicts arise.
Before we explain why we believe this “explicit” approach is
potentially better than the “implicit” approach used in Step 3,
we provide the details of our explicit approach, which is
composed of two stages.

Stage 1 centers around one question: how can we identify
the “conflict” instances? Given a changed file, we first train
three CRFs to predict its license. The first CRF is trained
only on all and only the features extracted from each changed
file (i.e., the code inline text features and the diff features)
in the training set. The second CRF is trained only on all
and only the document-text features extracted from a changed
file’s associated software documents. The third CRF is trained
on all and only the co-change features extracted from co-
changed files. We identify an instance as a conflict instance if
at least two of the three CRFs predict more than one license
for the changed file under consideration. Note that if a changed
file does not have any associated software documents or co-
changed files, the corresponding instance will not be marked
as a conflict instance.9

Stage 2 centers around another question: how can we resolve
the conflicts that arise in the conflict instances identified
in Stage 1? We answer this question by training a conflict
resolver. Our idea is to cast the conflict resolution task as a
ranking task, where we train a discriminative ranker to resolve
conflicts using the ranker-learning algorithm implemented in
the libSVM software package [15]. Specifically, we create
one ranking problem for each conflict instance (i.e., each
changed file determined to have a license conflict) identified in
Stage 1. The instances to be ranked in a ranking problem are
created as follows. The first instance is represented using all
and only the features extracted from the changed file under
consideration. The second instance is represented using all
and only the document-text features extracted from all of the
associated software documents. For each co-changed file, we
will create one instance that is represented using all and only
the co-change features extracted from the co-changed file. As
mentioned in Step 3, we will experiment with using one co-
changed file and using five co-changed file. This means that
each ranking problem will be composed of 2−7 instances: we
know that it will contain at least two instances because the
changed file was determined to have a conflict in Stage 1; at
the same time, we know the upper bound is 7 because besides
the changed file with license to be predicted, we can have at
most one instance representing the software document and at
most five instances corresponding to the five co-changed files.

The goal of the ranker-learning algorithm is to rank the
instances in each ranking problem so that the ones that predict

9Note that we need to identify conflict instances from both the training set
and the test set. We use the three CRFs to predict the license(s) of a changed
file in the training set by performing 5-fold cross-validation on the training
set.

the correct license are ranked higher than those that predict an
incorrect license. With this goal in mind, we assign the rank
value to each instance in each ranking problem as follows.
If the license associated with an instance is correct, its rank
value is HIGH; otherwise; its rank value is LOW. Note that
the license associated with an instance is predicted by one of
the three CRFs in Stage 1. For instance, the license associated
with the instance corresponding to the software documents is
the one predicted by the second CRF in Stage 1.

The resulting ranker can be applied to the conflict instances
in the test set. For each conflict instance in the test set, a
ranking problem will be created. This ranking problem is
created in the same way as those in the training set. The ranker
is then used to rank the instances in the ranking problem. The
license associated with the highest-ranked instance according
to the ranker will be our system’s predicted license for the
changed file under consideration. Note that the ranker will be
applied to all and only those changed files that are determined
to have a license conflict.

We believe our approach of explicitly modeling conflicts has
at least two advantages over the implicit approach described
in Step 3. First, (explicitly) identifying conflict instances
enables us to learn a ranker to handle them specifically. This
contrasts with the implicit approach, where all of the instances,
regardless of whether they are conflict instances or not, are
being classified by one model. In other words, the conflict
instances, which are supposedly the difficult cases in license
prediction, may be given less attention by the CRF model in
the implicit approach because the CRF is being trained on both
the easier (non-conflict) instances and the difficult (conflict)
instances. Second, our ranker is not trained to directly predict
licenses. Rather, it ranks instances corresponding to different
sources of information. Consequently, compared to the CRFs
trained in Steps 1−3, the ranker will have less bias towards
classifying a conflict instance as belonging to one of the
frequently occurring licenses in our corpus.

V. EMPIRICAL EVALUATION

A. Experimental Setup

The goal of our empirical evaluation is to determine how
accurately ALP can predict licenses in software changes. Our
evaluation dataset is composed of changed source code files
collected from 700 Java projects, where each file can be
classified as belonging to one of 25 licenses.

Evaluation settings. We did not apply any text preprocess-
ing to the relevant software documents we retrieved or the
changed files. Hence, all systems, including the three baselines
and all variants of our ALP system, are performed on the
original (un-preprocessed) software documents and/or changed
files. Given that ALP is learning-based, we evaluate it by
adopting a five-fold cross validation strategy, in which the
subject projects are evenly distributed into five folds. In each
fold experiment, we use three folds for training ALP, one fold
for development (i.e., parameter tuning), and the remaining
fold as our held-out test set.

Two points deserve mention. First, using a five-fold cross-
validation strategy ensures that the entire dataset is used for
training, parameter tuning and testing. For parameter tuning,
we tune the regularization parameter C associated with each
CRF and each SVM ranker we train. Intuitively, the larger
the C value is, the higher the penalty on training error is. We
choose the C value that maximizes the overall micro F1 score
(see below for details) on development data. Second, note that
we divide the subject projects into five folds, meaning that all
the files associated with a particular project will appear in
the same fold. The reason for doing this is simple: in reality,
a license prediction system will likely be used to predict
licenses for the files in a totally new project. In other words,
we cannot assume that there is any relationship between the
training projects and the test projects. Hence, our dividing the
projects into folds mimics this real-life application scenario.
Not surprisingly, the learning task resulting from this particular
way of creating the five folds is also harder, as it renders
any project-specific knowledge that our system learns from
the training data useless when the system is applied to the
unseen projects in the test data.

Evaluation metrics. We use per-license precision, recall
and F1 score to measure the performance of our systems. The
precision (P) for license l is the percentage of changed files
predicted as l that are correct with respect to the gold set
(i.e., Precision = TP

(TP+FP)). The recall (R) for license l is the
percentage of changed files licensed under l that are correctly
predicted as l (i.e., Recall = TP

(TP+FN)). The F1 score is the
harmonic mean of precision and recall (i.e., F1= 2∗R∗P

(R+P))

To facilitate comparisons between different systems, we also
compute the overall performance of each system by aggre-
gating the per-license results. Specifically, we employ two
commonly-used metrics, macro F1 and micro F1. Macro F1 is
the unweighted average of the per-license F1 scores. Micro F1
is the fraction of instances that are correctly classified. Hence,
macro F1 gives equal importance to each license, whereas
micro F1 puts more weights on more frequently occurring
licenses.

Statistical significance and effect size. To determine
whether the performance difference between two systems is
statistically significant or not, we conduct the Wilcoxon rank-
sum test. The type of distribution used for Wilcoxon rank-
sum test is normal distribution. Following Miller [16], the
result of a significance test can be interpreted as follows:
The performance difference between the two systems under
comparison is (1) highly significant if the null hypothesis
(i.e., there is no performance difference between the two
systems) can be rejected at the 0.01 level; (2) significant
if it can be rejected at the 0.05 level; and (3) moderately
significant if it can be rejected at the 0.1 level. Otherwise,
the difference is statistically indistinguishable. Moreover, to
evaluate the amount of performance difference between the
two systems under comparison, we compute Cliffs delta [17],
a non-parametric effect size measure. According to Romano
et al. [18], the difference implies (1) a large effect size if the

TABLE III: Five-fold cross-validation results. The strongest
result in each column is boldfaced.

Systems macro-F1 micro-F1
1 Ninka 38.2 73.5
2 CC 17.3 39.6
3 Prev 30.6 66.3
4 Basic ALP 38.9 82.2
5 ALP2 46.4 88.3
6 ALP2+Co1 45.7 87.9
7 ALP2+Co5 45.9 88.8
8 ALP2+Doc 47.9 90.3
9 ALP2+Doc+Co1 48.3 90.9
10 ALP2+Doc+Co5 47.9 90.3
11 ALP2-Ranker1 79.2 92.5
12 ALP2-Ranker5 77.4 92.5

delta value is greater than 0.474; (2) a medium effect size if
the delta value is greater than 0.33; and (3) a small effect size
otherwise.

B. Results and Discussion

This section empirically answers our research questions.
RQ1: Which license prediction system performs the best?
Five-fold cross-validation results are shown in Table III.

Each row shows the macro and micro F1 scores of one system.
A few points deserve mention. First, Ninka is the best of

the three baselines (rows 1 to 3), achieving a micro F1 of 73.5
and a macro F1 of 38.2. In particular, it highly significantly
outperforms Prev, the second best baseline, with a large effect
size in terms of macro F1 and significantly outperforms it with
a large effect size in terms of micro F1. Prev in turn highly
significantly outperforms CC, the weakest baseline, with a
large effect size in terms of both macro and micro F1.

Second, Basic ALP (row 4), the most basic variant of
ALP, performs as least as well as Ninka (row 1), the best
baseline. Specifically, Basic ALP achieves micro and macro F1
scores of 82.2 and 38.9, which represents a highly significant
improvement of 8.7 points with a large effect size in micro F1
and a moderately significant improvement of 0.7 points with
a large effect size in macro F1.

Third, ALP2 (row 5), which casts license prediction as a
sequence prediction problem, highly significantly outperforms
Basic ALP (row 4) with a large effect size in terms of micro F1
and moderately significantly outperforms it with a large effect
size in terms of macro F1. These results provide suggestive
evidence that modeling the immediately previous license is
useful for predicting both frequent licenses (because of the
improvement in micro F1) and infrequent licenses (because of
the improvement in macro F1).

Fourth, incorporating additional knowledge derived from
software documents and co-changed files as features for
training ALP2 is generally, though not always, helpful for
license prediction. As mentioned before, the document-text
features (derived from the software documents) and the co-
change features (derived from the co-changed files) can be
applied in isolation and in combination with the changed
file’s features that are originally used to train ALP2. Results

of adding only co-change files to ALP2 are shown in row
6 (ALP2+Co1, where co-change features were derived from
just one co-changed file) and row 7 (ALP2+Co5, where co-
change features were derived from five co-changed files).10

As we can see, adding co-change features may not always
yield better performance. In contrast, adding only document-
text features (ALP2+Doc, row 8) yields small, but moderately
significant improvements with a medium effect size in terms
of both macro and micro F1 scores. When the two types of
features are applied in combination, we see small, insignificant
gains in both micro and macro F1 scores when one co-changed
file was used (ALP2+Doc+Co1, row 9). Overall, these results
seem to suggest that document-text features are more useful
than co-change features for license prediction when used
in combination with the features derived from the changed
file. In addition, deriving features from five co-changed files
yields results that are statistically indistinguishable from those
obtained using only one co-changed file.

Finally, comparing rows 11 and 12 with rows 6 to 9, we see
that explicitly modeling and resolving conflicts using a ranker
(ALP-Ranker1 and ALP-Ranker5) is much more effective
in improving ALP2 than implicitly resolving conflicts (by
incorporating features derived from different sources into just
one feature set). Again, we have two sets of ranking results,
one obtained by employing one co-changed file and the other
five co-changed files. Note that the difference between these
two sets of results is indistinguishable. Both sets of ranking
results are highly significantly better than the best implicit
results (row 9) with a large effect size in terms of macro
F1 and significantly better than it with a large effect size in
terms of micro F1. It is worth noting that in comparison to
row 9 (the best implicit results), the macro F1 score improves
by more than 30 points. This is very encouraging, since it is
common for learning-based systems to sacrifice minority class
performance for majority class performance (because of their
bias towards classifying an instance as belonging to a majority
class). These results suggest that our idea of training a ranker
to not predict licenses directly can effectively mitigate the
problem that skewed class distributions typically bring about.

RQ2. How do the systems perform on the easy, difficult,
and conflict instances?

To gain additional insights into the different ALP variants,
we report the performance of different systems, including the
baselines, on three subsets of the instances in our dataset.

First, we compare system performance on only the Ninka-
detectable instances (i.e., the set of instances whose license
can be predicted by Ninka). They account for 60.6% of the
instances in our dataset. They are of interest because they
are the easy-to-classify instances: their licenses can be simply
extracted using one of Ninka’s high-precision regular expres-
sions. Macro and micro F1 scores on these easy instances
are shown under the “Ninka-det” column in Table IV. As we
can see, Ninka achieves near-perfect performance on these

10Due to randomness involved in the selection of the one/five co-changed
files, we repeat each of these experiments five times and report the average
F1 scores in Table III.

TABLE IV: Five-fold cross-validation results of systems on
Ninka-detectable, Ninka-undetectable, and conflict instances

Ninka-det Ninka-undet Conflict
Systems ma mi ma mi ma mi

F1 F1 F1 F1 F1 F1
1 Ninka 97.2 98.1 0.0 0.0 32.3 56.9
2 CC 38.1 41.7 18.7 9.6 15.6 37.0
3 Prev 88.9 84.3 45.0 28.6 22.2 49.5
4 Basic ALP 98.0 98.8 49.5 37.6 30.8 64.2
5 ALP2 97.8 98.8 67.5 57.4 37.9 69.8
6 ALP2+Co1 97.5 98.7 67.2 56.5 37.0 69.8
7 ALP2+Co5 97.8 98.8 68.6 59.6 37.5 72.0
8 ALP2+Doc 98.0 99.0 72.2 64.6 41.3 76.5
9 ALP2+Doc+Co1 97.8 98.8 73.3 67.8 41.6 77.3
10 ALP2+Doc+Co5 97.6 98.8 71.4 65.2 41.9 78.1
11 ALP2-Ranker1 99.1 98.7 90.0 85.0 76.7 86.1
12 ALP2-Ranker5 99.1 98.3 91.5 83.8 79.4 87.7

instances, which is not surprising. Moreover, all of the ALP
variants perform at least as well as Ninka, with the best results
achieved by the rankers (rows 11 and 12).

Second, we compare system performance on only the
Ninka-undetectable instances (i.e., the set of instances for
which Ninka failed to predict any license). They account for
39.4% of the instances in our dataset. These instances are of in-
terest for one important reason: since Ninka is a state-of-the-art
system and these instances cannot be classified by Ninka, any
success in predicting their licenses represents a solid advance
over the current state-of-the-art. Macro and micro F1 scores on
these “difficult” instances are shown under the column “Ninka-
Undet” in Table IV. As we can see, more sophisticated ALP
variants tend to yield better performance on these difficult
instances than their simpler counterparts. In fact, comparing
the results on the Ninka-detectable instances and the Ninka-
undetectable instances, we can see that our extensions to the
Basic ALP system have primarily helped to predict the licenses
of the difficult instances. The best performance on the difficult
instances is achieved by ALP2+Ranker1 (row 11): macro and
micro F1 scores of 90 and 85, respectively.

Finally, we compare system performance on only the in-
stances that are determined to be conflict instances according
to ALP2-Ranker1. Results on the conflict instances will shed
light on how well the ALP variants, particularly the rankers,
are in resolving conflicts. Macro and micro F1 scores on
these instances are shown under the “Conflict” column in
Table IV. As we can see, Ninka achieves a micro F1 score
of 56.9, meaning that not all conflict instances are difficult to
classify. A closer examination of the conflict instances reveals
the reason. Recall that these instances are predicted to be
conflict instances. Specifically, some easy (Ninka-detectable)
instances that do not have conflicts are mis-predicted to
have conflicts. As an example, Ninka predicts an instance as
having license A, and the associated LICENSE file simply
says a license is needed (without specifying which license
should be used). This is an instance that does not have a
conflict, but the CRF classifies the software document as non-
licensed, thus erroneously creating a conflict instance for an
easy instance. Nevertheless, the substantially higher macro and

TABLE V: Examples of errors made by ALP2-Ranker1

Changed file Sofware doc Co-changed file
Example 1 . . . you can

redistribute it
and/or modify
it under the
terms of the
GNU General
Public License
version 2. . . You
may not impose
any further
restriction on
the recipients’
exercise of the
rights granted
herein. . .

N/A . . . under the
conditions
of the GNU
General Public
License Version
3. . . you may
add to a covered
work material
governed by the
terms of that
license document
provided that
the further
restriction does
not survive such
relicensing or
conveying. . .

Example 2 . . . Licensed un-
der the Apache
License Version
2.0. . .

. . . under the
terms of the
GNU General
Public License
version 2.0. . .

N/A

micro F1 scores achieved by the rankers show that they have
successfully classified many difficult conflict instances.

RQ3. What are some of the errors made by our best ALP
variant, ALP2-Ranker1?

To address this research question, we show in Table V
two conflict instances that the ranker misclassified. As can
be seen, each example is composed of the changed file under
consideration, the associated sofware document, and the co-
changed file. Owing to space limitations, only the snippet
of each file/document that is relevant to license prediction is
shown.

Example 1 shows that the changed file originally adopts
GPL v2 while the co-changed file adopts GPL v3+. Both
GPL v2 and GPL v3+ are weak copyleft licenses. While the
correct license is GPL v2, the conflict resolver suggests a
license change to GPL v3+. In cases like this, developers will
typically keep GPL v2 as the changed file’s license since it
is a major license (16.5% of the source code files across all
subject projects in our dataset have this license). To improve
the accuracy of ALP2-Ranker1, one can encode the license
type (e.g., weak copyleft) and the popularity of a license as
features.

Example 2 shows that the changed file originally adopts
Apache v2 while the software document suggests GPL v2.
Both licenses are loss copyleft (either weak or no copyleft)
licenses. While the correct license is GPL v2, the conflict
resolver mistakenly labels the changed file as Apache v2.
To correctly classify this instance, however, the resolver may
need to understand that GPL v2 does not permit incorporating
one program into another proprietary program, such as linking
proprietary applications with the library created by the author.
In other words, given its stricter license clauses, GPL v2
should be used as the license when a conflict instance involves
both Apache v2 and GPL v2.

VI. THREATS TO VALIDITY

Threats to internal validity can occur in our training and
test sets. To address this concern, we used five-fold cross
validation, in which we trained, tested and tuned our ALP
systems in different random splits of subject projects. In
addition, threats to external validity can occur during data
collection. To avoid such threats, we collected data for our
experiments (i.e., changed source code files from different
commits) across 700 open source projects of different types
and domains from GitHub. The code-level licenses applied
in changed files were distributed into 25 different kinds of
licenses in different categories (i.e., permissive and restrictive).

VII. RELATED WORKS

A. Software License Identification and Classification

Techniques have been introduced to automatically identify
and classify software licenses. Tuunanen et al. [3] proposed
ASLA, a tool aimed at identifying licenses in FOSS systems.
German et al. [4] proposed a tool called Ninka to identify
license statements that takes as input text files and outputs
license names and versions using a pattern matching approach.
Di Penta et al. ([5], [19]) proposed approaches to automatically
identify licenses of jar files via combined code search and
textual analysis. Vendome et al. [6] applied a machine learning
approach to detect exceptions of software licenses. Hoffmann
et al. [20] analyzed actual license choices and correlated
project growth from ten years of open source projects and
discovered closed analytical models. Stewart et al. [21] found
that business-friendly open source licenses had a correlation
with project success. Alspaugh et al. [22] developed a meta-
model to analyze the interaction of licenses from the view-
point of software architecture. Mlouki et al. [23] investigated
license violations and the evolution of these violations over
time in the Android ecosystem. German et al. [24] detected
license inconsistencies in code clones between Linux and other
OpenBSD and FreeBSD. While all the existing works help
developers to tackle the license identification problem, none
of them proposed an approach or developed a tool to predict
software licenses at file-level changes.

B. License Adoption and Evolution

Our research is also related to software license adoption
and evolution. Di Penta et al. [19] studied licensing evolution
on six open sources systems and found that license version
and type changed during software evolution. Manabe et al.
[25] studied licenses on FreeBSD, OpenBSD, Eclipse, and
ArgoUML evolution and discussed characteristics of license
evolution. German and Hassan [2] built a model to investigate
specific licenses about applicability, advantages and disad-
vantages. German et al. [9] conducted an empirical study
on binary packages of the Fedora-12 Linux distribution to
understand and audit licensing consistency between packages
and source files and claimed that it was challenging to audit
licensing issues. German et al. [24] also studied the cloned
code fragments between the Linux Kernel and two distribu-
tions of BSD and concluded that code migration was caused

by additional restrictions of software licenses. Wu et al. [26]
found that the license could be inconsistent among cloned
files. Vendome et al. [27] conducted a survey with developers
and found that facilitating commercial reuse was a common
reason for license changes. They further investigated open
source projects to gain insights of causes of license migration
[1]. They found that licensing adoption and changes could be
triggered by various factors. They also pointed out that there
was a lack of traceability of when and why licensing changes
were made. Almeida et al. [25] conducted a survey that posed
development scenarios involving three popular open source
licenses and found that developers struggled when multiple
licenses were involved and developed a tool to recommend
when adoption and evolution of license would be needed. Sen
et al. [28] explored factors that affected the choice of a license
for a project through analysis of open source project artifacts.
These studies discussed the challenges and importance of
predicting software licenses in software changes. However,
none of the studies proposed a method or developed tools
to predict licenses for software changes. To the best of our
knowledge, we are the first to propose a coherent method
and supporting tool to predict software licenses for software
changes and provide a quantitative measure.

VIII. CONCLUSIONS AND FUTURE WORK

Making appropriate selection of software licenses to adopt
or update after software changes usually requires a great deal
of experience and manual effort. To address this challenge, we
annotated a large corpus of changed files with their licenses
and developed ALP, a novel method and tool for automatic
code-level license prediction for software changes. In an
evaluation on 700 open source projects with a rich code change
history, ALP2-Ranker1, the best variant of ALP, achieves an
accuracy of 92.5% micro F1 score and 79.2% macro F1
score on licensed code changes, significantly surpassing the
performance of three baselines, including a state-of-the-art
license prediction system, Ninka. Future work will investigate
additional impact factors in predicting licenses for software
changes such as software code dependencies.

ACKNOWLEDGMENTS

We thank the three anonymous reviewers for their helpful
comments on an earlier draft of this paper. This work was
partially supported by NSF grants IIS-1528037 and CCF-
1848608. Any opinions, findings, conclusions or recommen-
dations expressed in this paper are those of the authors and
do not necessarily reflect the views or official policies, either
expressed or implied, of NSF. Xiaoyu Liu, LiGuo Huang, and
Jidong Ge are the corresponding authors.

REFERENCES

[1] C. Vendome, G. Bavota, M. Di Penta, M. Linares-Vásquez, D. German,
and D. Poshyvanyk, “License usage and changes: A large-scale study on
GitHub,” in Empirical Software Engineering, vol. 22, no. 3. Springer,
2017, pp. 1537–1577.

[2] D. M. German and A. E. Hassan, “License integration patterns: Ad-
dressing license mismatches in component-based development,” in Pro-
ceedings of the 31st IEEE/ACM International Conference on Software
Engineering. IEEE Computer Society, 2009, pp. 188–198.

[3] T. Tuunanen, J. Koskinen, and T. Kärkkäinen, “Automated software
license analysis,” in Automated Software Engineering, vol. 16, no. 3-
4. Springer, 2009, pp. 455–490.

[4] D. M. German, Y. Manabe, and K. Inoue, “A sentence-matching method
for automatic license identification of source code files,” in Proceedings
of the 25th IEEE/ACM International Conference on Automated Software
Engineering. ACM, 2010, pp. 437–446.

[5] M. Di Penta, D. M. German, and G. Antoniol, “Identifying licensing of
jar archives using a code-search approach,” in Proceedings of the 7th
IEEE Working Conference on Mining Software Repositories. IEEE,
2010, pp. 151–160.

[6] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German,
and D. Poshyvanyk, “Machine learning-based detection of open source
license exceptions,” in Proceedings of the 39th IEEE/ACM International
Conference on Software Engineering. IEEE, 2017, pp. 118–129.

[7] J. Cohen, “A coefficient of agreement for nominal scales,” in Educational
and Psychological Measurement, vol. 20, no. 1. Sage Publications,
1960, pp. 37–46.

[8] A. J. Viera, J. M. Garrett et al., “Understanding interobserver agreement:
The Kappa statistic,” in Fam Med, vol. 37, no. 5, 2005, pp. 360–363.

[9] D. M. German, M. Di Penta, and J. Davies, “Understanding and auditing
the licensing of open source software distributions,” in Proceedings of
the 18th IEEE International Conference on Program Comprehension.
IEEE, 2010, pp. 84–93.

[10] “Qdox.” [Online]. Available: https://github.com/paul-hammant/qdox
[11] “Licensefinder.” [Online]. Available:

https://github.com/pivotal/LicenseFinder
[12] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. Mc-

Closky, “The Stanford CoreNLP natural language processing toolkit,”
in Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, 2014, pp. 55–60.

[13] T. Lavergne, O. Cappé, and F. Yvon, “Practical very large scale
CRFs,” in Proceedings the 48th Annual Meeting of the Association for
Computational Linguistics (ACL), July 2010, pp. 504–513.

[14] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” in IEEE Transactions on Information
Theory, vol. 13, no. 2, 1967, pp. 260–269.

[15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” in ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, May 2011, pp. 27:1–27:27.

[16] D. A. Miller, “Significant and highly significant,” in Nature, vol. 210,
no. 5041. Nature Publishing Group, 1966, p. 1190.

[17] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions,” in Psychological bulletin, vol. 114, no. 3. American
Psychological Association, 1993, p. 494.

[18] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate
statistics for ordinal level data: Should we really be using t-test and
Cohens d for evaluating group differences on the NSSE and other
surveys,” in Annual Meeting of the Florida Association of Institutional
Research, 2006, pp. 1–33.

[19] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and G. Antoniol, “An ex-
ploratory study of the evolution of software licensing,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 2010, pp. 145–154.

[20] G. Hofmann, D. Riehle, C. Kolassa, and W. Mauerer, “A dual model of
open source license growth,” in Proceedings of the IFIP International
Conference on Open Source Systems. Springer, 2013, pp. 245–256.

[21] K. J. Stewart, A. P. Ammeter, and L. M. Maruping, “Impacts of license
choice and organizational sponsorship on user interest and development
activity in open source software projects,” in Information Systems
Research, vol. 17, no. 2. INFORMS, 2006, pp. 126–144.

[22] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion, “Software licenses in
context: The challenge of heterogeneously-licensed systems,” in Journal
of the Association for Information Systems, vol. 11, no. 11. Association
for Information Systems, 2010, p. 730.

[23] O. Mlouki, F. Khomh, and G. Antoniol, “On the detection of licenses
violations in the Android ecosystem,” in Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, vol. 1. IEEE, 2016, pp. 382–392.

[24] D. M. German, M. Di Penta, Y.-G. Gueheneuc, and G. Antoniol, “Code
siblings: Technical and legal implications of copying code between
applications,” in Proceedings of the 6th IEEE International Working
Conference on Mining Software Repositories. IEEE, 2009, pp. 81–90.

[25] Y. Manabe, Y. Hayase, and K. Inoue, “Evolutional analysis of licenses
in FOSS,” in Proceedings of the Joint ERCIM Workshop on Software
Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE). ACM, 2010, pp. 83–87.

[26] Y. Wu, Y. Manabe, T. Kanda, D. M. German, and K. Inoue, “A method
to detect license inconsistencies in large-scale open source projects,”
in Proceedings of the 12th IEEE/ACM Working Conference on Mining
Software Repositories. IEEE, 2015, pp. 324–333.

[27] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. M.
German, and D. Poshyvanyk, “When and why developers adopt and
change software licenses,” in Proceedings of the 31st IEEE International
Conference on Software Maintenance and Evolution. IEEE, 2015, pp.
31–40.

[28] R. Sen, C. Subramaniam, and M. L. Nelson, “Determinants of the choice
of open source software license,” vol. 25, no. 3. Taylor & Francis, 2008,
pp. 207–240.

