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ABSTRACT
While traditional work on anaphora resolution has focused
on resolving anaphors in newspaper and newswire articles,
the surge of interest in biomedical natural language pro-
cessing in recent years has stimulated work on anaphora
resolution in biomedical texts. Existing anaphora resolvers,
whether applied to the biomedical domain or not, have adopted
either a learning-based or a rule-based approach. We hy-
pothesize that both approaches have their unique strengths,
and propose in this paper a hybrid approach to anaphora
resolution in biomedical texts that aims to combine their
strengths. Our hybrid approach achieves an F-score of 60.9
on the BioNLP-2011 coreference dataset, which to our knowl-
edge is the best result reported to date on this dataset.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Text Analysis

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Anaphora is a linguistic device commonly used in nar-

ratives and dialogs to avoid repetitions of phrases in hu-
man communication. By definition, an anaphor depends on
another phrase, namely its antecedent, for its semantic in-
terpretation. Hence, the automatic resolution of anaphors
to antecedents, a task known as anaphora resolution, is a
core (and challenging) issue in natural language processing
(NLP). There are subtle differences between anaphora reso-
lution and another task, coreference resolution, but for our
purposes, it is not crucial to distinguish them.1 Hence, fol-

1Coreference resolution is concerned with clustering noun
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lowing common practice, we will use the terms anaphora and
coreference interchangeably in this paper.

Anaphora and coreference resolution is an enabling tech-
nology for many high-level NLP applications. In fact, coref-
erence resolution was identified as a core task in the Sixth
and Seventh Message Understanding Conferences [19, 20]
needed to support high-level information-extraction tasks
such as slot/template filling. More recently, the BioNLP-
2011 shared task organizers have also identified coreference
as an important supporting task for event extraction from
biomedical texts [24], and have provided researchers with
coreference-annotated biomedical texts for training and eval-
uating coreference resolvers. To illustrate the role played by
coreference in biomedical event extraction, consider the fol-
lowing sentence, which is taken from a biomedical text used
in the aforementioned shared task:

A mutant of KBF1/p50 (delta SP), unable to bind to DNA
but able to form homo- or heterodimers, has been con-
structed. This protein reduces or abolishes in vitro the DNA
binding activity of wild-type proteins of the same family ...

This example describes a negative regulation event trig-
gered by the words reduces or abolishes. The goal of an event
extraction system is to automatically identify the existence
of a negative regulation event (by identifying the trigger re-
duces or abolishes) as well as its arguments, such as its cause
(which in this example is the protein p50). As we can see,
the identification of p50 as the cause of the event can be fa-
cilitated by the resolution of the definite noun phrase (NP)
This protein to A mutant of KBF1/p50 (delta SP).

It is worth mentioning that the BioNLP-2011 event ex-
traction tasks focus on extracting events related to pro-
teins/genes.2 Hence, as a task supporting event extraction,
the BioNLP-2011 coreference task focuses on protein coref-
erence, which involves resolving anaphors that have protein
references as their antecedents. Despite the restriction to

phrases that refer to the same real-world entity. Hence, two
noun phrases that refer to Barack Obama, such as Obama
and President Obama, should be grouped together by a
coreference resolver. In contrast, anaphora resolution is con-
cerned with identifying an antecedent for an anaphor, and
does not involve establishing links between non-anaphors
such as Obama and President Obama. Other differences be-
tween anaphora and coreference can be found in [33].
2As far as the shared task is concerned, the terms proteins
and genes are synonymous and will be used interchangeably
in this paper.



protein coreference, the BioNLP coreference task is very
challenging: the best-performing coreference resolver in the
shared task, Reconcile, achieves an F-measure of 34.05 [13],
and a more recent resolver, which is implemented as part
of the EventMine event extraction system [17], achieves an
F-measure of 55.9 on the same dataset.

Our goal in this paper is to design a coreference resolver
for improving the resolution of anaphors in the BioNLP
protein coreference shared task. Unlike existing corefer-
ence resolvers, which adopt either a rule-based approach (as
in EventMine) or a learning-based approach (as in Recon-
cile), we hypothesize that both of these approaches have
their unique strengths. Consequently, we propose a hy-
brid approach to coreference resolution for combining their
strengths. When evaluated on the BioNLP protein coref-
erence dataset, our resolver achieves an F-measure of 60.9,
surpassing EventMine’s resolver by 5 points in absolute F-
measure. To our knowledge, this is the best score reported
to date on this dataset.

The rest of the paper is organized as follows. In Sec-
tion 2, we review related work on coreference resolution.
Sections 3 and 4 give an overview of the BioNLP corefer-
ence dataset and the architecture of our resolver. Sections 5
and 6 describe the two major components of our resolver,
namely mention detection and anaphora resolution, respec-
tively. Finally, we present evaluation results in Section 7
and conclude in Section 8.

2. RELATED WORK
In this section, we give a brief overview of the related work

on coreference resolution.

Non-biomedical coreference resolution. Traditional
anaphora and coreference resolvers were developed primarily
for resolving anaphors in newspaper and newswire articles.
There are two research trends that we believe are particu-
larly worth mentioning.

The first is the shift from rule-based approaches to learning-
based approaches. Specifically, rule-based anaphora resolvers
were popular prior to the mid-1990s, and the design of rules
in these resolvers was motivated to a large extent by well-
known discourse theories [5, 6]. The advent of the statistical
NLP era, as well as the public availability of coreference-
annotated corpora produced by shared evaluations such as
the Message Understanding Conferences (MUC), the Auto-
matic Content Evaluations (ACE), and more recently, the
CoNLL shared tasks, have prompted the development of ma-
chine learning approaches to coreference resolution. Various
learning-based models of coreference resolution have been
developed, ranging from the simple mention-pair model [23,
28] to cluster-based ranking models [26]. See Ng [22] for a
detailed description of these models.

The second trend involves a shift from knowledge-lean
approaches to knowledge-rich approaches. While there is
general consensus that the difficulty of coreference resolu-
tion requires the use of sophisticated knowledge, it is by no
means easy to compute such knowledge accurately. As a
result, Mitkov [16] advocates the use of simple knowledge
sources involving grammatical knowledge and shallow syn-
tactic knowledge for coreference resolution. Recent work has
focused on employing semantic knowledge extracted from
lexical knowledge bases [7, 25, 27] or automatically acquired
from an unannotated corpus [1, 21, 34].

Biomedical coreference resolution. The lack of a pub-
licly available annotated corpus for biomedical coreference
resolution until recently has made it relatively difficult for
researchers to develop machine learning approaches and to
perform comparative evaluations of their resolvers. Conse-
quently, early approaches to biomedical coreference resolu-
tion are primarily rule-based [2, 10, 14], and researchers in-
terested in developing machine learning approaches have to
annotate their own corpus [4, 30, 32, 36]. Two biomedical
coreference corpora were recently made publicly available,
one released by Gasperin [4] and the other produced by the
BioNLP-2011 shared task [24].

In addition to the distinction between rule-based approaches
and machine learning approaches, existing work on biomedi-
cal coreference resolution can be classified along two dimen-
sions. First, while most resolvers are evaluated on Medline
abstracts [2, 10, 30, 32, 36], some are evaluated on full-text
articles [4, 8]. Second, while some work targets the resolu-
tion of both pronominal and non-pronominal anaphors [30,
36], some focuses on resolving specific types of anaphors,
such as non-pronominal anaphors [4, 8] and demonstratives
[32]. However, unlike in non-biomedical coreference resolu-
tion, a clear distinction between knowledge-rich approaches
and knowledge-lean approaches does not appear to exist in
biomedical coreference resolution. Most existing resolvers
have made use of features commonly employed by non-biomedical
resolvers, such as string-matching and grammatical features,
together with a few features specific to the biomedical do-
main. For example, Torii and Vijay-Shanker [32] have de-
signed highlighting features that exploit certain lexical regu-
larities in Medline abstracts.

We conclude this section by mentioning that virtually all
existing coreference resolvers have adopted either a rule-
based or a learning-based approach, unlike ours, which adopts
a hybrid approach that aims to combine the strengths of
rule-based and learning-based approaches.

3. DATASET
As mentioned before, we use as our evaluation dataset

the BioNLP-2011 coreference dataset. The dataset is com-
posed of 1210 documents, of which 800 are designated by
the shared task organizers (and used by us) for training,
150 for development, and 260 for testing. These documents
are taken from three sources: the MedCO dataset [30], the
Genia event annotation [12], and the Genia Treebank [31].
There are 2309 anaphors in the training set and 473 anaphors
in the development set. The percentages of different types of
anaphors in these datasets are shown in Table 1. Note that
we do not have the statistics for the test set, since coref-
erence annotations on the test set are not made publicly
available by the shared task organizers.3

4. SYSTEM ARCHITECTURE
We adopt a fairly standard pipeline architecture consisting

of two components, mention detection and anaphora reso-
lution. Given a text to be coreference-annotated, the men-
tion detection component first extracts the anaphors and the
candidate antecedents. Then, the anaphora resolution com-

3To evaluate the performance of our resolver on the test set,
we have to submit our system output to a server, which will
return the performance scores to us.



Anaphor Type Training Development
Relative pronoun 54.3% 56.9%
Personal pronoun 26.6% 26.0%
Definite NP 15.4% 14.0%
D&I pronoun 2.4% 2.1%
Others 1.3% 1.1%

Table 1: Statistics of the datasets.

ponent will select an antecedent for each extracted anaphor
from the list of extracted candidate antecedents.

A natural question is: how do we implement these two
components? The mention detection component can be im-
plemented using a rule-based approach or a learning-based
approach. As we will see, we implement both approaches,
and adopt the one that yields the better performance on the
development set.

Like the mention detection component, the anaphora res-
olution component can also be implemented using a rule-
based approach or a learning-based approach. As mentioned
before, we adopt a hybrid approach. More specifically, we
hypothesize that different types of anaphors might be better
resolved using different approaches. Personal pronouns, for
example, are subject to syntactic constraints on coreference
such as Binding Constraints, and might be better resolved
by using a syntactic tree as a structured feature for a learn-
ing algorithm. Relative pronouns, on the other hand, can be
resolved with a fairly high accuracy using simple heuristics.
Definite NPs, as well as demonstrative and indefinite (D&I)
pronouns, do not occur sufficiently frequently in the given
training set to enable a learning algorithm to collect the
kind of statistics needed to acquire accurate resolution rules,
so a rule-based method might yield better results for these
anaphors than learning-based methods. Importantly, how-
ever, we do not use these intuitions to determine whether
a rule-based method or a learning-based method should be
used to resolve a particular type of anaphors: as we will
see in Section 6, we use the development set to guide the
selection of the method for resolving a particular type of
anaphors.

5. MENTION DETECTION COMPONENT
In this section, we will describe the first component of our

system, mention detection. We first describe how to imple-
ment this component using machine learning (Section 5.1)
and heuristic rules (Section 5.2), and then empirically com-
pare these two mention detection methods (Section 5.3).

5.1 Learning-Based Mention Detection
Following Reconcile [13], we train two mention detectors

independently, one for extracting candidate antecedents and
one for extracting anaphors, on 400 of the 800 training doc-
uments.4 Like the Reconcile team, we recast mention detec-
tion as a sequence labeling task. Specifically, the anaphor
detector is trained to assign to each token in a development
or test document a label that indicates whether it begins
an anaphor, is inside an anaphor, or is outside an anaphor.

4It will become obvious in the next section why we do not use
all of the 800 training documents for training the mention
detectors.

Hence, to learn the anaphor detector, we create one training
instance for each token in the 400-document training set and
derive its class value (one of b, i, and o) from the annotated
data. Each instance represents the token under considera-
tion, and consists of linguistic features including the token
itself, its part-of-speech (POS) tag5, affixes in the range of 1–
3, orthographic features, and various combinations of these
features as was done in Reconcile. The candidate antecedent
detector is trained in a similar fashion using the same set of
features, except that it is used to label candidate antecedents
rather than anaphors.6 We employ CRF++7 to train both
detectors.

5.2 Heuristic-Based Mention Detection
Our heuristic-based mention detector employs different

methods for extracting anaphors and extracting candidate
antecedents. Below we will begin by describing the heuristic
anaphor detector.

Our anaphor detector assumes as input four lists: a list
of personal pronouns, a list of relative pronouns, a list of
D&I pronouns, and a list of definite NPs. The first three
lists are manually created based on our commonsense knowl-
edge of which words are pronouns, relative pronouns, and
demonstratives.8 On the other hand, the list of definite
NPs is simply composed of all the definite NPs that appear
in the training set. Given these four lists, the anaphor de-
tector employs a two-step approach for extracting anaphors
from a development/test document as follows. In the first
step, the detector posits a word/phrase in the given doc-
ument as a candidate anaphor if it appears in one of the
four lists. Then, in the second step, a set of simple heuris-
tics are applied to prune spurious candidate anaphors, in
an attempt to improve the precision of the detector. For
example, occurrences of “that” which serve as complemen-
tizers (e.g., “found that”, “suggests that”), occurrences of
demonstrative or indefinite pronouns which are part of a
demonstrative/indefinite NP (e.g., “this transcription fac-
tor”, “both enzymes”), and pleonastic pronouns (e.g., “It is
found that”, “It was possible that”) are identified using sim-
ple patterns and are subsequently removed from the list of
candidate anaphors.

On the other hand, our heuristic-based candidate antecedent
detector operates simply by taking all base NPs from a syn-
tactic parse that appear before an anaphor as the list of
candidate antecedents for the anaphor.

5.3 Results
To get an idea of whether the learning-based or the rule-

based mention detector is better, we conduct experiments on
the development set to evaluate their performance. Specif-
ically, Table 2 shows the number of gold anaphors in the
development set, as well as the number of gold anaphors
that are identified by the two mention detectors. Table 3
shows the same statistics for the candidate antecedents. As

5All the POS tags used in our experiments are obtained
using the McClosky-Charniak parser [15].
6Note that the candidate antecedents and the anaphors that
we use in the training process include all and only those that
appear in the .a2 files.
7Available from http://crfpp.sourceforge.net.
8For personal pronouns, we only include it, its, itself, they,
and their, since the rest of them are rarely used as anaphors
in a biomedical text.



Anaphor type Gold Learning Heuristic
Relative pronoun 269 257 262
Personal pronoun 123 106 120
D&I pronoun 59 21 32
Definite NP 10 5 10

Table 2: Comparison of the number of gold anaphors recov-
ered by the two mention detection methods.

Gold Learning Heuristic
449 186 313

Table 3: Comparison of the number of gold candidate an-
tecedents recovered by the two methods.

we can see, the heuristic detector surpasses the learning-
based detector in extracting candidate antecedents and all
types of anaphors.

In addition, to determine how effective the pruning step
employed by our heuristic detector is, we show in Table 4
the number of true positives (TP) and false positives (FP)
extracted by the two mention detectors for each type of
anaphors. While the number of TPs decrease slightly for
relative pronouns after pruning, overall pruning helps im-
prove the precision of the heuristic mention detector.

An important point deserves mention. While our results
indicate that the heuristic mention detector outperforms the
learning-based mention detector, it is still possible that the
learning-based detector, when used in combination with the
anaphora resolution component (see the next section), will
produce better coreference results than the heuristic men-
tion detector. Hence, in the remaining sections, we will use
both mention detectors in combination with the anaphora
resolution component to produce coreference results.

6. ANAPHORA RESOLUTION COMPONENT
Now that we have a list of anaphors and a list of candi-

date antecedents for each development/test document, our
second component, the anaphora resolution component, will
attempt to find an antecedent for each anaphor.

As mentioned before, we hypothesize that different resolu-
tion methods may work well for different types of anaphors.
Hence, in this section, we describe six resolution methods
that we employ to resolve each of the four types of anaphors
in our dataset (namely, relative pronouns, personal pro-
nouns, D&I pronouns, and definite NPs), and determine
which of the six methods works best for each type of anaphors
on the development set. The first five methods (Sections 6.1–
6.5) are learning-based methods, and the last one is a rule-
based method.

6.1 Reconcile Features
To determine whether the features commonly used for

coreference resolution in newspaper/newswire articles are ef-
fective for biomedical coreference resolution, we employ in
our first resolution method the feature set used by Recon-
cile [29], a state-of-the-art supervised resolver developed for
the MUC and ACE coreference corpora. This feature set is
composed of more than 66 commonly used string-matching,

Before Pruning After Pruning
Anaphor type TP/FP TP/FP
Relative pronoun 269/313 262/22
Personal pronoun 123/235 120/5
D&I pronoun 32/19 32/13
Definite NP 10/12 10/2

Table 4: Effect of heuristic pruning.

grammatical, semantic, and positional features defined be-
tween an anaphor and a candidate antecedent.

Before we describe how these features can be used to train
a coreference model, one point regarding the anaphors and
the candidate antecedents used to generate instances for
training the model deserves mention. As noted before, the
anaphors and the candidate antecedents are obtained via
either the learning-based mention detector or the heuristic-
based mention detector. While all the anaphors and can-
didate antecedents are automatically extracted when the
heuristic mention detector is used, the situation for the learning-
based mention detector is different. Recall that our learning-
based mention detector was trained on 400 of the 800 avail-
able training documents. When generating instances for
training the coreference model from these 400 documents,
we use the gold (i.e., correct) candidate antecedents and
gold anaphors. For the remaining 400 documents, we gen-
erate training instances by using the candidate antecedents
and anaphors extracted by the CRF models. The reason
for using automatically extracted candidate antecedents and
anaphors to generate training instances for the coreference
learner is simple: it creates an environment for the learner
that more closely resembles the condition during testing,
where only automatically extracted candidate antecedents
and anaphors are available.

Next, we describe how a coreference model can be trained
using these anaphors, candidate antecedents, and the Rec-
oncile features. Unlike Reconcile, which trains a classifier
to determine whether an anaphor mk and a candidate an-
tecedent mj are coreferent, we train a ranker, as ranking
has been shown to outperform classifiers for coreference res-
olution [3, 9, 37]. Specifically, the ranker aims to impose a
ranking on the candidate antecedents for each anaphor in a
test document, so that the correct antecedent is assigned the
highest rank. Hence, each training instance for training the
ranker is an ordered pair (xmi,mk , xmj ,mk ), where xmi,mk

is a feature vector generated between an anaphor mk and a
correct antecedent mi, and xmj ,mk is a feature vector gen-
erated between mk and an incorrect candidate antecedent
mj . The goal of the ranker-learning algorithm, then, is to
acquire a ranker that minimizes the number of violations
of pairwise rankings provided in the training set. We train
this ranker using Joachims’ [11] SVMlight package on all 800
training documents.

There is a caveat, however. Since the anaphors and the
candidate antecedents are automatically extracted, it is pos-
sible that (1) the anaphor mk is erroneous (i.e., mk is in
fact not anaphoric), or (2) mk is truly anaphoric, but its
correct antecedent was not extracted by the detector. Note
that when generating training instances for mk that belongs
to one of these cases, none of the extracted candidate an-
tecedents is the correct antecedent. To address this problem,



we posit that each anaphor has a null candidate antecedent.
Specifically, if mk belongs to one of these two cases, then we
generate training instances of the form (null, xmj ,mk ), where
mj is a (wrong) candidate antecedent for mk, so that the
learner can learn that the null candidate antecedent should
be ranked higher than all other candidates. Otherwise, we
generate training instances of the form (xmi,mk , null), where
mi is a correct antecedent for mk, so that the learner can
learn that null is not the correct antecedent.

After training, the ranker can be applied to the test in-
stances, which are created in the same way as the training
instances. An anaphor is resolved to the highest-ranked can-
didate antecedent.

6.2 Sentence-Based Flat Parse Features
Our second resolution method is identical to the first method,

except that the Reconcile features are replaced with features
that encode the paths in a parse tree, where a path from node
j and node k is an ordered sequence of nodes that need to
be traversed in order to reach k from j.9

It may not be immediately clear whether we are indeed
gaining anything by replacing the Reconcile features with
path-based features, since some of the Reconcile features
are already encoding information extracted from parse trees.
To see the reason, recall that many parse-based features
employed by existing coreference resolvers, including Rec-
oncile, are computed by heuristically extracting information
from parse trees. For instance, to compute the syntactic
salience of an NP, the typical way is to extract information
such as how far the NP is from the root of the parse tree
in which it appears and whether it is embedded within a
prepositional phrase. Note that both pieces of information
can be captured in a simpler way using a path-based feature
that encodes the path from the NP to the root of the tree.
Hence, the main advantage of employing path-based features
is simplicity: they obviate the need to design heuristics for
extracting information from a parse tree, and therefore are
especially useful in cases where it may not be easy to design
such heuristics.

Given the potential advantages of employing paths as fea-
tures, we employ in our second resolution method a feature
set composed solely of six path-based features capturing the
context of an anaphor mk and/or one of its candidate an-
tecedents mj , as described below.
Feature 1: The path from the parent of the node correspond-
ing to the first word of mj to the root of the tree.
Feature 2: The path from the parent of the node correspond-
ing to the last word of mj to the root of the tree.10

Feature 3: The path from the parent of mk to the root of
the tree.11

Feature 4: Let Pj and Pk be the paths from Feature 1 and
Feature 3, respectively, and CAjk be the first node appear-
ing in both Pj and Pk (i.e., CAjk is the lowest common
ancestor of mj and mk in the parse tree). Moreover, let

9In our experiments, the parse trees are obtained using the
McClosky-Charniak parser [15].

10At first glance, Feature 1 seems identical to Feature 2.
However, their values are different for those candidate an-
tecedents in our dataset that are very long and are spanned
by more than one parent.

11An anaphor in this dataset is always spanned by the same
parent, so it does not matter whether we use the first or the
last word to compute the parent.

Aj be the node immediately preceding CAjk in Pj and Ak

be the node immediately preceding CAjk in Pk. Feature 4
encodes the sequence of nodes in the same level as Aj and
Ak that lie between Aj and Ak.
Feature 5: Using the notation from Feature 4, Feature 5
encodes just one node, CAjk.
Feature 6: The path from the parent of the node correspond-
ing to the first word of mj to the node corresponding to the
parent of mk.

As mentioned before, these six features aim to capture
the context of an anaphor and/or one of its candidate an-
tecedents. Specifically, Features 1 and 2 encode the paths
from a candidate antecedent to the root of the tree, which,
among other things, indirectly capture syntactic salience, as
discussed before. Feature 3 is essentially the same as the
first two features except that it operates on an anaphor.
The remaining three features are relational features, captur-
ing the relationship between an anaphor mk and a candidate
antecedent mj . Specifically, Features 4 and 6 encode the lex-
ical context and the syntactic context in which an anaphor
and a candidate antecedent occur respectively, whereas Fea-
ture 5 encodes their lowest common ancestor. Encoding
their lowest common ancestor could be useful for various
reasons. For instance, if this ancestor is an NP but mk and
mj are not in an appositive construction, then they are not
likely to be coreferent. As another example, if this ancestor
is a VP, mk and mj may correspond to different arguments
of the VP and are therefore less likely to be coreferent.

To enable the reader to better understand how these six
features are computed, we show in Figure 1 the values of
these six features computed for the anaphor which and the
candidate antecedent these regulatory activities. As we can
see, Features 1 and 2 both encode the path NP-NP-PP-
NP-PP-VP-S; Feature 3 encodes the path WHNP-WHPP-
WHNP-SBAR-NP-PP-NP-PP-VP-S; Feature 4 is a sequence
of length one consisting of the ”,” node; Feature 5 is com-
posed of the ”NP” node; and Feature 6 encodes the path
NP-NP-SBAR-WHNP-WHPP-WHNP.

Figure 1: Example of path-based features.

6.3 Document-Based Flat Parse Features



Our third resolution method is identical to the second
resolution method, except that it aims to address one of its
weaknesses. Specifically, if an anaphor mk and its candidate
antecedent mj are not in the same sentence, Features 4, 5,
and 6 cannot be computed, since mk and mj no longer have
a common ancestor. To address this problem, we create for
each document a super-root node, and add an edge between
the super-root and the root of each of the parse trees for the
sentences in the document. This construction ensures that
Features 4, 5, and 6 can always be computed, since there is
always a common ancestor for the nodes corresponding to
any pair of mentions.

6.4 Sentence-Based Structured Parse Feature
While path-based features may obviate the need to design

heuristics for effectively extracting information from syntac-
tic parse trees, we are faced with another non-trivial prob-
lem: which paths should be used as features? In fact, one
may question whether the six features introduced in the pre-
ceding two resolution methods can adequately capture the
context of an anaphor and a candidate antecedent. Fortu-
nately, advanced machine learning algorithms such as SVMs
have enabled a parse tree to be used directly as a structured
feature (i.e., a feature whose value is a linear or hierarchical
structure, as opposed to a flat feature, which has a discrete
or real value), owing to their ability to employ kernels to
efficiently compute the similarity between two potentially
complex structures.12 In other words, by employing trees as
features, we no longer need to design heuristics to extract
information from parse trees or determine which paths to
use as features.

Note, however, that while we want to use a parse tree
directly as a feature, we do not want to use the entire parse
tree as a feature. Specifically, while using the entire parse
tree enables a richer representation of the syntactic context
than using a partial parse tree, the increased complexity of
the tree also makes it more difficult for the SVM learner to
make generalizations.

To strike a better balance between having a rich represen-
tation of the context and improving the learner’s ability to
generalize, we extract a subtree from a parse tree and use it
as the value of the structured feature of an instance. Specif-
ically, given anaphor mk, candidate antecedent mj , and the
associated syntactic parse tree T , we follow Yang et al. [35],
retaining as our subtree the portion of T that covers (1)
all the nodes lying on the shortest path from mk and mj

(see Feature 6 in Section 6.2 for details on how this short-
est path is computed), and (2) all the immediate children of
these nodes that are not the leaves of T .

This subtree is known as a simple expansion tree [35]. To
better understand how a simple expansion tree is computed,
we show in Figure 2 the simple expansion tree (the subtree
being circled) for the anaphor which and the candidate an-
tecedent these regulatory activities.

We train a classifier on the 800 training documents for
determining whether an anaphor mk and a candidate an-

12One may wonder why our path-based features, which have
linear structure, are not structured features. The reason is
that that we are exploiting a path as a value rather than as a
sequence. We could have employed the path-based features
as structured features had we defined and applied a kernel
function that operates on sequences to them.

Figure 2: Example of a simple expansion tree.

tecedent mj are coreferent, using a learning algorithm that
can exploit tree-structured features, SVMlight−TK [18], and
a feature set composed of one feature, the simple expansion
tree.13 We follow Soon et al. [28] to create training instances:
we create (1) a positive instance for each anaphor mk and
its closest antecedent mj ; and (2) a negative instance for mk

paired with each of the intervening candidate antecedents,
mj+1, mj+2, . . . , mk−1. As in the first resolution method,
we create an additional training instance between mk and
the null candidate antecedent. If mk is a spurious anaphor
or the correct antecedent for mk was not extracted by the
mention detector, this additional training instance will be
labeled as positive; otherwise, it is labeled as negative.14

After training, the classifier is used to identify an an-
tecedent for an anaphor mk in a test text. The test in-
stances are generated in the same way as training, and mk

is resolved to the candidate antecedent that is classified as
having the most positive classification confidence with mk.

6.5 Document-Based Structured Parse Feature
As in the second resolution method, the simple expansion

tree in the fourth resolution method is not computable if an
anaphor mk and its candidate antecedent mj are not in the
same sentence. To address this problem, we adopt the same
solution as in the third resolution method, creating for each
document a super-root node, and adding an edge between
the super-root and the root of each of the parse trees for the
sentences in the document. Other than this modification,
our fifth resolution method is identical to the fourth one.

6.6 Rule-Based Method
Our final resolution method is rule-based. Since differ-

13A classifier is trained in this case because SVMlight−TK

does not provide the option of training a ranker.
14As in the first resolution method, when the learning-based
mention detector is used, gold anaphors and candidate an-
tecedents are used to generate training instances for the 400
documents on which the detector was trained; and for the
remaining 400 training documents, anaphors and candidate
antecedents that are automatically extracted by the mention
detector are used to generate training instances.



ent types of anaphors have different linguistic properties,
we hypothesize different strategies are needed for resolving
different types of anaphors. Consequently, we develop one
ordered list of rules for resolving each type of anaphors.

For a given type of anaphors, the rules should be applied
in the order in which they are listed. Specifically, if exactly
one candidate antecedent satisfies the conditions specified in
a rule, it is selected as the antecedent for the anaphor under
consideration. However, if multiple candidate antecedents
satisfy the conditions in a rule, the highest-ranked candidate
antecedent is chosen to be the antecedent. As we will see,
the way the candidate antecedents are ranked is dependent
on the anaphor type.

Note that the rules below are only applicable to candi-
date antecedents that are either in the same sentence as the
anaphor or in one of the two preceding sentences. A nat-
ural question, then, is: how were these rules designed, and
how were they ordered? The rules are designed and ordered
in part based on our commonsense knowledge, and in part
based on our inspection of the training data. Hence, even
though this rule-based method does not require an explicit
training process, it is a “data-driven” rule-based method.

Resolving definite NPs
To resolve definite NP mk, there are two cases to consider,
depending on whether mk is singular or plural.

If mk is a plural NP, we apply the following rules. Specif-
ically, we first apply them to the candidate antecedents in
the same sentence as mk. If no antecedent is found, we ap-
ply them to the candidates in the preceding sentence. If it is
still not possible to find an antecedent, we apply them to the
candidates in the second preceding sentence before positing
mk as non-anaphoric. Within each sentence, we employ a
simple tie-breaking strategy in case more than one candidate
satisfies the conditions of a rule: candidates that are closer
to mk are preferred to those that are farther away.

Rule 1: If the head noun of mk is “gene” or “protein”, resolve
mk to candidate mj if (1) the head noun of mj is “family”
and (2) mj contains at least one protein name15.
Rule 2: Resolve mk to candidate mj if they have the same
head noun.
Rule 3: Resolve mk to candidate mj if (1) mj contains the
coordinating conjunction “and”, and (2) mj contains a pro-
tein name if the head noun of mk is “gene” or “protein”.

If mk is a singular NP, we apply the following rules, break-
ing ties simply by preferring candidates that are closer to
mk. Note that in this case, the sentence in which a candi-
date appears does not play any role in determining its rank.

Rule 1: Resolve mk to candidate mj if they have the same
head noun.
Rule 2a: Resolve mk to candidate mj if the head noun of
mk is “gene” or “protein” and mj contains a protein name.
Rule 2b (the Pattern rule): Resolve mk to candidate mj if
one of the words of mj (1) begins with a lowercase character
and contains an uppercase character, a digit, or a special
character (e.g., c-Myb, mAb 19C7); or (2) begins with a digit
and contains alphabets (e.g., 20-methyl-23-eneanalogues); or
(3) begins with an uppercase character and contains a digit
(e.g., P450IA1 Elf-1).

Note that Rules 2a and 2b have the same precedence.

15Note that for each document, the organizers provided a list
of protein names that appeared in the document.

In other words, if one candidate satisfies 2a and another
satisfies 2b, then the higher-ranked candidate is selected as
the antecedent.

Resolving personal pronouns
The following rules are used to resolve personal pronoun
mk. In cases where more than one candidate antecedent
satisfies the conditions of a rule, we employ a simple tie-
breaking strategy: candidate antecedents that are visited
earlier when performing a right-to-left, depth-first traversal
of the corresponding parse tree have a higher precedence
than those that are visited later.

Rule 1: Resolve mk to candidate mj if (1) the two agree in
number and are in the same sentence; and (2) mj contains a
protein name or one of its words satisfies the three conditions
in the aforementioned Pattern rule.
Rule 2: Resolve mk to candidate mj if the two agree in
number and are in the same sentence.
Rule 3: Resolve mk to candidate mj if mj contains a protein
name or one of its words satisfies the three conditions in the
aforementioned Pattern rule.
Rule 4: Resolve mk to candidate mj if the two are in the
same sentence.
Rule 5: Resolve mk to candidate mj if the two agree in
number.

Resolving D&I pronouns
To resolve D&I pronoun mk, we first apply the rules below
to the candidate antecedents in the same sentence as mk.
If no antecedent is found, we apply them to the candidates
in the preceding sentence. If it is still not possible to find
an antecedent, we apply them to the candidates in the sec-
ond preceding sentence before positing mk as non-anaphoric.
Note, however, that Rules 1 and 2 are only applicable to
candidates that are in the same sentence as mk.

Rule 1: Resolve mk to candidate mj such that (1) mj is
in the same sentence as mk and (2) both of them are the
subject of the same governing verb.
Rule 2: If mk is part of a coordinated NP immediately pre-
ceded by the coordinating conjunction “or”, then resolve mk

to the phrase immediately preceding “or” (motivating exam-
ple: in the NP enzyme1, enzyme2, or both, both should be
resolved to enzyme1, enzyme2).
Rule 3: Resolve mk to the closest candidate mj that agrees
in number with mk.

Resolving relative pronouns
Only one rule is used to resolve relative pronoun mk: Resolve
mk to the closest candidate.

7. EVALUATION
In this section, we evaluate the effectiveness of our resolver

using the BioNLP-2011 coreference dataset.

7.1 Experimental Setup
Recall that our resolver comprises two components, the

mention detection component and the anaphora resolution
component. The mention detection component employs (1)
two methods for extracting anaphors, namely a CRF-based
method and a heuristic-based method; and (2) two methods
for extracting candidate antecedents, namely a CRF-based
method and a heuristic-based method. After mention detec-
tion, we employ six resolution methods to resolve each of the
four types of anaphors. Hence, for each type of anaphors,



CRF anaphors Heuristic anaphors
CRF candidates Heuristic candidates CRF candidates Heuristic candidates

Resolution Method R P F R P F R P F R P F
Ranking-based Reconcile 21.3 60.6 31.5 13.4 47.4 20.8 21.3 62.3 31.7 14.9 53.6 23.3
Sentence-based flat 19.8 83.3 32.0 28.2 83.8 42.2 18.8 84.4 30.8 25.2 91.1 39.5
Document-based flat 19.3 83.0 31.3 28.2 78.0 41.4 19.3 84.8 31.5 24.3 90.7 38.3
Sentence-based structured 21.3 75.4 33.2 22.8 79.3 35.4 20.8 77.8 32.8 22.3 78.9 34.7
Document-based structured 21.3 69.4 32.6 22.3 77.6 34.6 20.8 72.4 32.3 22.3 81.8 35.0
Rule-based — — — 27.2 75.3 40.0 — — — 27.7 77.8 40.8

(a) Resolution results for relative pronouns

CRF anaphors Heuristic anaphors
CRF candidates Heuristic candidates CRF candidates Heuristic candidates

Resolution Method R P F R P F R P F R P F
Ranking-based Reconcile 3.5 24.1 6.1 19.3 63.9 29.7 5.0 40.0 8.8 19.8 59.7 29.7
Sentence-based flat 3.5 53.8 6.5 21.8 74.6 33.7 3.5 63.6 6.6 21.3 76.8 33.3
Document-based flat 3.0 54.5 5.6 19.8 80.0 31.7 3.5 63.6 6.6 19.8 81.6 31.9
Sentence-based structured 3.5 53.8 6.5 24.3 73.1 36.4 5.0 66.7 9.2 26.3 77.9 39.3
Document-based structured 3.5 26.9 6.1 21.8 75.9 33.8 5.0 34.5 8.7 23.8 76.2 36.2
Rule-based — — — 13.9 75.7 23.4 — — — 16.3 71.7 26.6

(b) Resolution results for personal pronouns

CRF anaphors Heuristic anaphors
CRF candidates Heuristic candidates CRF candidates Heuristic candidates

Resolution Method R P F R P F R P F R P F
Ranking-based Reconcile 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN
Sentence-based flat 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 2.0 12.9 3.4
Document-based flat 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 0.0 0.0 NaN
Sentence-based structured 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 0.0 0.0 NaN
Document-based structured 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN
Rule-based — — — 0.0 NaN NaN — — — 1.0 100 2.0

(c) Resolution results for demonstrative and indefinite pronouns

CRF anaphors Heuristic anaphors
CRF candidates Heuristic candidates CRF candidates Heuristic candidates

Resolution Method R P F R P F R P F R P F
Ranking-based Reconcile 0.0 NaN NaN 0.5 100 1.0 0.5 11.1 0.9 1.0 50.0 1.9
Sentence-based flat 0.0 NaN NaN 0.5 7.1 0.9 0.0 NaN NaN 2.5 14.7 4.2
Document-based flat 0.0 NaN NaN 1.0 12.5 1.8 0.0 NaN NaN 0.0 0.0 NaN
Sentence-based structured 0.0 NaN NaN 0.0 0.0 NaN 0.0 NaN NaN 0.0 NaN NaN
Document-based structured 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN 0.0 NaN NaN
Rule-based — — — 5.0 38.5 8.8 — — — 6.9 58.3 12.4

(d) Resolution results for definite NPs

Table 5: Development set results for the four types of anaphors. The strongest results are boldfaced.

we have 2 × 2 × 6 = 24 combinations of anaphor extrac-
tion method, candidate antecedent extraction method, and
resolution method. For each type of anaphors, we deter-
mine the combination that yields the best F-measure on the
development set. The development set results for the 24
combinations of each type of anaphors, expressed in terms
of recall (R), precision (P), and F-measure (F)16 are shown
in Table 5. Note that (1) “NaN” is shown when the denomi-
nator involved in computing the corresponding score is zero,
and this occurs when none of the anaphors belonging to

16This is the F-measure score computed using the protein
coreference mode, which is the primary evaluation mode for
the shared task.

that particular type was resolved; (2) no rule-based results
are available for CRF-based candidate antecedents, since we
did not conduct experiments with this particular combina-
tion (so only 22 combinations are available); and (3) the re-
call values indicate the percentages of all anaphors that are
correctly resolved, so the 21.3% recall shown in row 1 of Ta-
ble 5(a), for instance, means that 21.3% of all the anaphors
(as opposed to just the anaphoric relative pronouns) in the
development set are correctly resolved.

7.2 Results
As we can see from Table 5, the best F-measure scores for

different types of anaphors are achieved via different com-
binations. For example, the best F-measure score for rela-



tive pronoun resolution is achieved by training a ranker us-
ing sentence-based flat parse features on instances created
from CRF-extracted anaphors and heuristically extracted
candidate antecedents, whereas the best F-measure score
for definite NP resolution is achieved by applying our hand-
crafted rules to the heuristically extracted anaphors and can-
didate antecedents. These results substantiate our hypoth-
esis that different methods are needed to resolve different
types of anaphors and that a hybrid approach exploiting
the strengths of different methods may be desirable.

We employ the best combination learned for each anaphor
type from the development set to resolve the anaphors in
the test documents. Table 6 shows both the development
set results and the test set results of our resolver. For com-
parison purposes, we also show in the same table the results
of Reconcile, the best-performing resolver in the BioNLP-
2011 shared task, and EventMine, whose resolver produces
better results than Reconcile.17 As we can see, our resolver
outperforms EventMine’s resolver by 5 points in F-measure,
achieving the best results reported to date on this dataset.

7.3 Error Analysis
While our resolver outperforms state-of-the-art resolvers,

there is a lot of room for improvement. To help direct future
research on this task, we examine the output produced by
our best-performing resolver on the development set, and
analyze the major recall and precision problems associated
with resolving each type of anaphors. Since D&I pronouns
occur infrequently in our dataset, we will leave them out in
our analysis.

For relative pronoun resolution, there is no major preci-
sion problem: as can be seen from Table 5(a), our resolver
achieves fairly high precision (83.8%). This is perhaps not
surprising: relative pronouns are comparatively easier to re-
solve than other types of anaphors, since they typically are
in the same sentence as and are in close proximity to their
antecedents. On the other hand, recall is limited primarily
by the failure of the mention detector to extract the correct
antecedents.

For definite NP resolution, precision and recall are lim-
ited by the precision and the recall of the anaphor detection
method respectively: since our heuristic anaphor detector
extracts all and only those definite NPs that appear in the
training set, many extracted definite NPs are not anaphoric
and many anaphoric definite NPs are not extracted.

Finally, for personal pronoun resolution, recall is limited
primarily by the fact that the selected method performs
only intra-sentential pronoun resolution. Precision problems
can be attributed to two reasons. First, since only intra-
sentential candidate antecedents are considered, an incorrect
antecedent will be selected for an anaphor whose correct an-
tecedent appears in a preceding sentence. Second, there are
many cases where the resolution method incorrectly selects
the candidate closest to the given anaphor as the antecedent
despite the fact that the correct antecedent appears in the
same sentence as the anaphor.

8. CONCLUSION
We presented a system for resolving anaphors in the BioNLP-

2011 coreference dataset. Unlike existing resolvers, which

17The results for Reconcile and EventMine are taken directly
from the corresponding papers.

Development Set Test Set
System R P F R P F
Reconcile 26.7 74.0 39.3 22.2 73.3 34.1
EventMine 53.5 69.8 60.5 50.4 62.7 55.9
Our system 59.9 77.1 67.4 55.6 67.2 60.9

Table 6: Resolution results of three resolvers.

adopt either a rule-based approach or a learning-based ap-
proach, our system adopts a hybrid approach, where differ-
ent types of anaphors are resolved using different combina-
tions of anaphor extraction method, candidate antecedent
extraction method, and resolution method. Our resolver
achieved an F-measure of 60.9 on held-out test data, sur-
passing the best known result by 5 points in F-measure.
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