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ABSTRACT
We examine the task of temporal relation classification for
the clinical domain. Our approach to this task departs from
existing ones in that it is (1) knowledge-rich, employing so-
phisticated knowledge derived from semantic and discourse
relations, and (2) hybrid, combining the strengths of rule-
based and learning-based approaches. Evaluation results on
the i2b2 Clinical Temporal Relations Challenge corpus show
that our approach yields a 15–21% and 6–13% relative re-
duction in error over a state-of-the-art learning-based base-
line system when gold-standard and automatically identified
temporal relations are used, respectively.
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General Terms
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1. INTRODUCTION
Temporal relation classification, one of the most impor-

tant temporal information extraction (IE) tasks, involves
classifying a given event-event pair or event-time pair in a
text as one of a set of predefined temporal relations. The
creation of the TimeBank corpus [14], as well as the orga-
nization of the TempEval-1 [19] and TempEval-2 [20] eval-
uation exercises, have facilitated the evaluation of temporal
relation classification systems for the news domain.

Our goal in this paper is to advance the state of the art
in temporal relation classification. While virtually all previ-
ous work on this task has focused on the news domain, we
work with a relatively unexplored domain, the clinical do-
main, using the i2b2 Clinical Temporal Relations Challenge
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corpus (henceforth the i2b2 corpus).1 To date, this corpus is
only accessible to and has only been experimented on by the
participants of the Challenge (henceforth the shared task).

Our work differs from existing work with respect to both
the complexity of the task we are addressing and the ap-
proach we adopt. Regarding task complexity, rather than
focus on three temporal relations as in the shared task (see
Section 2 for more information), we address an arguably
more challenging version of the task where we consider all
the 12 relations originally defined in the i2b2 corpus.

Our approach to temporal relation classification can be
distinguished from existing approaches, including those de-
veloped for the news domain and the clinical domain, in two
respects. The first involves a large-scale expansion of the
linguistic features made available to the classification sys-
tem. Existing approaches have relied primarily on morpho-
syntactic features, as well as a few semantic features ex-
tracted from WordNet synsets and VerbOcean’s [3] semantic
relations. On the other hand, we propose not only novel lexi-
cal and grammatical features, but also sophisticated features
involving semantics and discourse. Most notably, we pro-
pose (1) discourse features encoding Penn Discourse Tree-
Bank (PDTB) style [12] discourse relations and (2) semantic
features encoding a variety of semantic relations. The latter
include PropBank-style predicate-argument relations as well
as relations extracted from the Merriam-Webster dictionary.

Second, while the vast majority of existing approaches to
temporal relation classification are learning-based, we pro-
pose a system architecture in which we combine a learning-
based approach and a rule-based approach. Our motivation
behind adopting a hybrid approach stems from our hypoth-
esis that better decision rules can be formed by leveraging
human insights to combine the available linguistic features
than by using fully automatic machine learning methods.
Note that while rule-based approaches have been explored
for this task and were shown to underperform learning-based
approaches [10], to our knowledge they have not been used
in combination with learning-based approaches. Moreover,
while the rules employed in previous work were created based
on intuition (e.g., Mani et al. [10], Puşcaşu [13]), our rules
are created in a data-driven manner via a manual inspection
of the annotated temporal relations in the i2b2 corpus.

We evaluate our knowledge-rich, hybrid approach to tem-
poral relation classification in two settings. In the first set-
ting, we assume that we are given event-event and event-
time pairs that are known to belong to one of the 12 prede-
fined temporal relations in the i2b2 corpus, and hence the

1See https://www.i2b2.org/ for more information.



task is to label each pair with one of these 12 relation types.
To make things more challenging, however, we assume in the
second setting that we are given event-event and event-time
pairs that may or may not belong to one of the 12 relation
types. Hence, the task in this setting involves both identify-
ing and classifying temporal relations. For this task, we first
employ a relation identification system to determine whether
a pair has a relation, and then use the same relation classi-
fication system as the one in the first setting to classify all
and only those pairs that are determined to have a relation
by the identification system. Conducting experiments with
both settings can enable us to determine how much perfor-
mance deterioration can be attributed to identifying rather
than classifying temporal relations.

Experiments on the i2b2 corpus show the effectiveness of
our approach: under the first and the second settings, it
yields a 15–21% and 6–13% relative error reduction respec-
tively over a state-of-the-art learning-based baseline system.

To our knowledge, we are the first to (1) report results
for the 12-class temporal relation classification task on the
i2b2 corpus; (2) successfully employ automatically computed
predicate-argument relations and PDTB-style discourse re-
lations to improve performance on this task; and (3) show
that a hybrid approach to this task can yield better results
than either a rule-based or learning-based approach. In ad-
dition, we release the complete set of rules that we mined
from the i2b2 corpus and used in our rule-based approach2,
hoping that our insights into how features can be combined
as decision rules can benefit researchers interested in this
task.

2. CORPUS
For evaluation, we use the i2b2 corpus, which consists of

310 de-identified discharge summaries pre-partitioned into a
training set (190 summaries) and a test set (120 summaries).
Each summary is composed of two sections. The first section
was created when the patient was admitted and reports His-
tory of Present Illness (i.e., her clinical history). The second
section was created when the patient was discharged from
the hospital and reports Hospital Course. In each summary,
the events, times, and their temporal relations are marked
up. An event, which can be a verb phrase, an adjective
phrase, a noun phrase, or sometimes an adverb that seman-
tically refers to clinically relevant patient-related actions,
contains various attributes, including the type of event3, po-
larity, and modality. A time expression has a type attribute,
which specifies whether it is a date, time, duration, or fre-
quency, and its value is normalized based on TIMEX3. A
temporal relation can be an anchor relation, which anchors
an event to a time expression (as in sentence (1)), or an
order relation, which orders two events (as in sentence (2)).

(1) He was ready for discharge home on post-
operative day three.

(2) She has not complained of any fever.

Each temporal relation has a type. For example, the re-

2Downloadable from http://www.hlt.utdallas.edu/
~jld082000/temporal-relations/
3Six types of events are defined, including TEST (e.g., CT
scan), PROBLEM (e.g., the tumor), TREATMENT (e.g.,
operation) CLINICAL DEPARTMENTS (e.g., ICU), EV-
IDENTIAL information (e.g., complained), and clinically-
relevant OCCURRENCE (e.g., discharge).

lation defined on discharge and postoperative day three in
(1) has type Simultaneous, whereas the relation defined
on complained and fever in (2) has type Overlap After. A
temporal relation is defined on an ordered pair: in (2), the
pair (complained, fever) has type Overlap After, whereas
the pair (fever, complained) has type Before Overlap.

12 relation types are defined and used to annotate the tem-
poral relations in the i2b2 corpus. Table 1 provides a brief
description of these relation types and the relevant statistics.

As mentioned in the introduction, our approach will be
evaluated in two settings: in the first setting, we employ
gold-standard temporal relations, and in the second one, we
employ automatically identified temporal relations. In both
settings, we follow the i2b2 Temporal Challenge Tlink track
and assume that gold events and time expressions are given.

Unlike the shared task, which focuses on three broad re-
lation types (Overlap’, Before’, After’), we report results
on 12 relation types. Note that the three broad relation
types are created by merging “similar” relation types as fol-
lows: (1) Overlap’ is composed of Overlap, Simultane-
ous, and During; (2) Before’ is composed of Before, Be-
fore Overlap, and Ended By; and (3) After’ is composed
of After and Begun By. Each instance from the remaining
four relations is merged into one of the three broad relation
types by inverting the order of its elements. For example, if
a relation instance (e1, e2) is annotated as Ends, it is first
replaced with the instance (e2, e1) with class Ended By
and then re-labeled as Before’. Thus, classifiers developed
for the shared task are only presented with test instances
belonging to one of the three broad relation types. On the
other hand, our 12-class task is arguably more challenging,
since our system has to distinguish not only a relation type
from its inverse, but also between “similar” relation types.

3. BASELINE TEMPORAL RELATION CLAS-
SIFIER

Since the best-performing systems for temporal relation
classification for both the news and clinical domains are
learning-based, we will employ a learning-based system as
our baseline. Below we describe how we train this baseline.

Without loss of generality, assume that (e1,e2) is an event-
event/event-time pair such that (1) e1 precedes e2 in the
associated text and (2) (e1,e2) belongs to one of the 12 i2b2
temporal relation types. We create one training instance
for each event-event/event-time pair in a training document
that satisfies the two conditions above, labeling it with the
relation type that exists between e1 and e2.

To build a strong baseline, we represent each instance us-
ing 67 features modeled after the top-performing temporal
relation classification systems on TimeBank (e.g., Chambers
et al. [2], Mani et al. [10]) and the i2b2 corpus (e.g., Tang
et al. [17], Xu et al. [21]), as well as those in the TempEval
shared tasks (e.g., Ha et al. [6], Llorens et al. [9], Min et
al. [11], Puşcaşu [13]). These features can be divided into
six categories, as described below.

Lexical (17). Word unigrams, bigrams, and trigrams formed
from the context within a window of two words surround-
ing e1/e2, the strings and the head words of e1 and e2, and
whether e1 and e2 have the same string.

Grammatical (33). The POS tags of the head words of
e1 and e2, the POS tags of the five tokens preceding and
following e1 and e2, the POS bigram formed from the head



Id Relation Description Total (%) E-E E-T

1 Simultaneous e1 and e2 happen at the same time or are temporally indistinguishable 4589 (32.5) 3551 1038
2 Overlap e1 and e2 temporally overlap but do not happen at the same time 5681 (40.2) 4713 968
3 Before e1 happens before e2 in time 1572 (11.1) 1439 133
4 After e1 happens after e2 in time 577 (4.1) 497 80
5 Before Overlap e1 happens prior to and continues at the time of e2 506 (3.6) 473 33
6 Overlap After e1 overlaps with and happens after e2 begins 1642 (11.6) 1584 58
7 During e1 persists throughout duration e2 386 (2.7) 220 166
8 During Inv e2 persists throughout duration e1 640 (4.5) 522 118
9 Begins e1 marks the beginning of e2 782 (5.5) 591 191

10 Begun By e2 marks the beginning of e1 204 (1.4) 65 139
11 Ends e1 marks the end of e2 318 (2.3) 197 121
12 Ended By e2 marks the end of e1 434 (3.1) 293 141

Table 1: The 12 temporal relation types in the i2b2 corpus. Each relation type is defined on an ordered pair (e1,e2), where e1

and e2 can each be an event or a time. The “Total” and “%” columns show the number and percentage of instances annotated with

the corresponding relation type in the corpus, respectively, and the “E-E” and “E-T” columns show the breakdown by the number of

event-event pairs and event-time pairs.

word of e1/e2 and its preceding token, the POS tag pair
formed from the head words of e1 and e2, the prepositional
lexeme of the prepositional phrase (PP) if e1/e2 is headed by
a PP, the prepositional lexeme of the PP if e1/e2 is governed
by a PP, the POS of the head of the verb phrase (VP) if e1/e2

is governed by a VP, whether e1 syntactically dominates e2

(Chambers et al. 2007), and the shortest path from e1 to e2

in the associated syntactic parse tree. We obtain parse trees
and POS tags using the Stanford CoreNLP tool.4

Entity attributes (8). The type, modality, and polarity
of e1 and e2 if they are events (if one of them is a time
expression, then its modality and polarity attributes will
have the value null), pairwise features formed by pairing
up the type and modality attribute values of e1/e2.

Distance (2). The distance between e1 and e2 in number
of tokens, whether e1 and e2 in the same sentence.

Semantic (4). The subordinating temporal role token of
e1/e2 if it appears within a temporal semantic role argument
(Llorens et al. 2010), and the first WordNet synset to which
e1/e2 belongs.

Section creation time (SCT) related (3). The tem-
poral relation type between e1/e2 and the creation time of
the section in which it appears [its value can be one of the
3 relation types (i.e., Before, After, or Overlap) or null
if no relation exists], and whether e1 and e2 have different
relation types with the SCT.

3.1 Training Specialized Classifiers
After creating the training instances, we can train a tem-

poral relation classifier on them using an off-the-shelf learner
and use the resulting classifier to classify the test instances.
However, Tang et al. [17], the best performer in the shared
task, shows that performance can be improved by training
four specialized classifiers rather than just one for classify-
ing all temporal relation instances. Specifically, they train
two intra-sentence classifiers, one for classifying event-event
pairs and the other event-time pairs. They also train two
inter-sentence classifiers, one for classifying coreferent event
pairs and the other for classifying event pairs in neighboring
sentences.

Since Tang et al.’s [17] approach looks promising, we inte-

4http://nlp.stanford.edu/software/corenlp.shtml

grate their four specialized classifiers into our machine learn-
ing framework in order to build a strong baseline. Below
we describe Tang et al.’s method for creating instances for
training and testing each of the four specialized classifiers.

Training and applying an intra-sentence event-event
classifier. A naive way to create training/test instances
would be to create one training/test instance from each pair
of events. This, however, would create a training set with a
skewed class distribution, as the negative (i.e., No-Relation)
instances will significantly outnumber the instances that be-
long to one of the 12 relation types shown in Table 1. To
address this problem, we create training instances as follows.
We create one instance from each event pair in which one of
the 12 relation types exists, labeling the instance with one of
the relation types. In addition, we create negative instances
from two events only if (1) they are adjacent to each other
(i.e., there is no intervening event); and (2) no relation exists
between them. During testing, test instances are created in
the same way as the negative training instances.

Training and applying an intra-sentence event-time
classifier. Training and test instances are created in the
same way as in the event-event classifier.

Training and applying an inter-sentence classifier for
events in adjacent sentences. The difficulty of tempo-
ral relation classification tends to increase with the distance
between the elements in an event-event or event-time pair.
Consequently, Tang et al. [17] consider event-event pairs
only if the two elements involved in a pair are one sentence
apart, ignoring event-time pairs entirely since very few of
them have a temporal relation.

As mentioned before, one method for creating instances
for training and testing would be to create one instance for
each event-event/event-time pair. This method, however,
skews the class distribution of the resulting dataset. Conse-
quently, we employ the following method for creating train-
ing and test instances. We create one training instance from
every event-event/event-time pair whose elements (1) have
a temporal relation and (2) occur in adjacent sentences, and
assign it a class value that is the relation type. In addition,
we create one negative training instance from each pair of
main events that appear in adjacent sentences, where the
main events of a sentence are simply the first and last events



of a sentence. Test instances are created in the same way as
the negative training instances.

Training and applying an inter-sentence coreferent
event classifier. Unlike the previous classifier, this sec-
ond inter-sentence classifier places no restriction on how far
apart two events are. However, it handles only a subset of
the inter-sentence temporal relations, namely those that are
coreferent. The reason for this restriction is that it is intu-
itively easier to determine the relation type for two corefer-
ent events, since they tend to overlap with each other.

A natural question is: how can we determine whether
two events are coreferent? We naively posit two events as
coreferent as long as they have the same head word.

Next, we describe how the instances for training and test-
ing an inter-sentence coreferent event classifier can be cre-
ated. We create one training instance from every coreferent
event pair in which a temporal relation exists, labeling it
with the corresponding relation type. We could similarly
create one negative training instance from every coreferent
event pair that does not have any temporal relation. How-
ever, to reduce class skewness, we create negative training
instances only from those coreferent event pairs where the
two elements correspond to main events. Test instances are
created in the same way as the negative training instances.

In our experiments, we train each of these four classifiers
using SVMmulticlass [18]. We tune the regularization param-
eter, C, on the 20% of the training data that we reserved for
development, and set the remaining learning parameters to
their default values.5

4. OUR HYBRID APPROACH
In this section, we describe our hybrid learning-based and

rule-based approach to temporal relation classification. Sec-
tion 4.1 describes our novel features, which will be used to
augment the baseline feature set (see Section 3) to train
each of the four specialized classifiers mentioned above. Sec-
tion 4.2 outlines our manual rule creation process. Sec-
tion 4.3 discusses how we combine our hand-crafted rules
and the learned classifiers.

4.1 Six Types of New Features

4.1.1 Pairwise Features
Recall that some of the features in the baseline feature set
are computed based on either e1 or e2 but not both. Since
our task is to predict the relation between them, we hypoth-
esize that pairwise features, which are computed based on
both elements, could better capture their relationship.

Specifically, we introduce pairwise versions of the head
word feature and the two prepositional lexeme-based fea-
tures in the baseline. In addition, we create one quadruple-
wise feature by pairing up the type and modality attribute
values of e1 with those of e2. Next, we create two trace
features, one based on prepositions and the other on verbs,
since prepositions and verb tense have been shown to play
an important role in temporal relation classification. The
preposition trace feature is computed by (1) collecting the
list of prepositions along the path from e1/e2 to the root

5To reduce the number of parameter tuning experiments, we
find the C value that works best with the baseline classifiers
and use it to train all the remaining relation classifiers in
our experiments.

of its syntactic parse tree, and (2) concatenating the result-
ing lists computed from e1 and e2. The verb trace feature
is computed in a similar manner, except that we collect the
POS tags of the verbs appearing in the corresponding paths.

4.1.2 Dependency Relations
We introduce features computed based on dependency parse
trees obtained via the Stanford CoreNLP tool, motivated
by our observation that some dependency relation types are
more closely associated with certain temporal relation types
than with others. Let us illustrate with an example:

(3) It is aggravated by activity.

In (3), there is an “agent” dependency between the PROB-
LEM event aggravated and the OCCURRENCE event activ-
ity. In other words, activity is the agent of aggravated. The
reason is that activity is the complement of the passive verb
aggravated introduced by the preposition by and performs
the action. Intuitively, given a discharge report, if an OC-
CURRENCE event acts as an agent to a PROBLEM event
and there is a temporal relation between them, then it is
likely that this temporal relation is Simultaneous.

Given the potential usefulness of dependency relations for
temporal relation classification, we create dependency-based
features as follows. For each of the 25 dependency relation
types produced by the Stanford parser, we create four bi-
nary features: whether e1/e2 is the governing entity in the
relation, and whether e1/e2 is the dependent in the relation.

4.1.3 Webster Relations
Some events are not connected by a dependency relation
but by a lexical relation. We hypothesize that some lexical
relations could be useful for temporal relation classification.
Consider the following example.

(4) Her amylase was mildly elevated but has
been down since then.

In this sentence, the two events, mildly elevated and down,
are connected by an antonym relation. Statistically speak-
ing, if (1) two events are in two clauses connected by the
coordinating conjunction but, (2) one is an antonym of the
other, and (3) there is a temporal relation between them,
then not only can we infer that they do not have any tem-
poral overlap, but it is likely that they have an asynchronous
relation such as Before or After.

Given the potential usefulness of lexical relations for tem-
poral relation classification, we create features based on four
types of lexical relations present in Webster’s online the-
saurus6, namely synonyms, related-words, near-antonyms,
and antonyms. Specifically, for each event e appearing in
the i2b2 corpus, we first use the head word of e to re-
trieve four lists, which are the lists corresponding to the
synonyms, related words, near-antonyms, and antonyms of
e. Then, given a training/test instance involving e1 and e2,
we create eight binary features: whether e1 appears in e2’s
list of synonyms/related words/near-antonyms/antonyms,
and whether e2 appears in e1’s list of synonyms/related
words/near-antonyms/antonyms.

4.1.4 WordNet Relations
Previous uses of WordNet for temporal relation classification
are limited to synsets (e.g., Llorens et al. [9]). We hypothe-
size that other WordNet lexical relations could also be useful

6http://www.merriam-webster.com/



for the task. Specifically, we employ four types of WordNet
relations, namely hypernyms, hyponyms, troponyms, and
similar, to create eight binary features for temporal relation
classification. These eight features are created from the four
WordNet relations in the same way as the eight features were
created from the four Webster relations mentioned above.

4.1.5 Predicate-Argument Relations
So far we have exploited lexical and dependency relations
for temporal relation classification. We hypothesize that se-
mantic relations, in particular predicate-argument relations,
could be useful for the task. Consider the following example.

(5) She was discharged to rehab.

Using SENNA [5], a PropBank-style semantic role labeler,
we know that the CLINICAL DEPARTMENT event rehab
is the A4 argument of the OCCURRENCE event discharged.
Recall that A4 is the end/destination point. Hence, we can
infer that there is a Begins relation between the OCCUR-
RENCE event and the CLINICAL DEPARTMENT event
since the OCCURRENCE event begins at the end point.

Given the potential usefulness of relations between a pred-
icate and its numbered arguments (e.g., A0, A1, . . .) for tem-
poral relation classification, we create one binary feature for
each pairing of a numbered argument and a predicate, set-
ting its value to 1 if according to SENNA e1 and e2 are in
the predicate-argument relation specified by the pair.

To create additional features from predicate-argument re-
lations, consider another PropBank-style predicate-argument
relation type, cause. Assuming that e2 is in e1’s cause argu-
ment, we can infer that e2 occurs Before e1, since intuitively
the cause of an action precedes the action.

Consequently, we create additional features for tempo-
ral relation classification based on four types of predicate-
argument relations provided by SENNA, namely directional,
manner, temporal, and cause. Specifically, we create four bi-
nary features that encode whether argument e2 is related to
predicate e1 through the four types of relations, and another
four binary features that encode whether argument e1 is re-
lated to predicate e2 through the four types of relations.

4.1.6 Discourse Relations
Rhetorical relations such as causation, elaboration and en-
ablement could aid in tracking the temporal progression of
the discourse [7]. Hence, unlike syntactic dependencies and
predicate-argument relations through which we can identify
intra-sentential temporal relations, discourse relations can
potentially be exploited to discover both inter-sentential and
intra-sentential temporal relations. However, no recent work
has attempted to use discourse relations for temporal rela-
tion classification. In this subsection, we examine whether
we can improve a temporal relation identifier via explicit
and implicit PDTB-style discourse relations automatically
extracted by Lin et al.’s [8] end-to-end discourse parser.

Let us first review PDTB-style discourse relations. Each
relation is represented by a triple (Arg1, sense, Arg2), where
Arg1 and Arg2 are its two arguments and sense is its sense/type.
A discourse relation can be explicit or implicit. An ex-
plicit relation is triggered by a discourse connective. On
the other hand, an implicit relation is not triggered by a
discourse connective, and may exist only between two con-
secutive sentences. Generally, implicit relations are much
harder to identify than their explicit counterparts.

Next, to motivate why discourse relations can be useful

for temporal relation classification, we use two examples (see
Table 2), one involving an implicit relation (Example (6))
and the other an explicit relation (Example (7)). For con-
venience, both sentences are also annotated using Lin et
al.’s (2013) discourse parser, which marks up the two ar-
guments with the Arg1 and Arg2 tags and outputs the
relation sense next to the beginning of Arg2.

In (6), we aim to determine the temporal relation be-
tween two PROBLEM events, Hypotension and sepsis. The
parser determines that a Restatement implicit relation ex-
ists between the two sentences. Intuitively, two temporally
linked PROBLEM events within different discourse units
connected by the Restatement relation implies some sort
of synchronicity in their temporal relation. This means that
the relation type is likely to be Overlap or Simultaneous.
In this case, we can rule out Simultaneous: by definition,
two non-coreferent events of the same type (e.g., Hypoten-
sion and sepsis) cannot have a Simultaneous relation.

In (7), we aim to determine the relation between the
TREATMENT event operation and the OCCURRENCE event
benign convalescence. The parser determines that a Asyn-
chronous explicit relation triggered by thereafter exists be-
tween the two sentences, which in turn suggests that the two
events are likely to have an asynchronous temporal relation
such as Before or After. By considering just the discourse
connective thereafter, we can infer that the correct temporal
relation is Before.

Given the potential usefulness of discourse relations for
temporal relation classification, we create four features based
on discourse relations. In the first feature, if e1 is in Arg1,
e2 is in Arg2, and Arg1 and Arg2 possess an explicit relation
with sense s, then its feature value is s; otherwise its value
is null. In the second feature, if e2 is in Arg1, e1 is in Arg2,
and Arg1 and Arg2 possess an explicit relation with sense s,
then its feature value is s; otherwise its value is null. The
third and fourth features are computed in the same way as
the first two features, except that they are computed over
implicit rather than explicit relations.

4.2 Manual Rule Creation
As noted before, we adopt a hybrid learning-based and

rule-based approach to temporal relation classification. Hence,
in addition to training a temporal relation classifier, we man-
ually design a set of rules in which each rule returns a tem-
poral relation type for a given test instance. We hypoth-
esize that a rule-based approach can complement a purely
learning-based approach, since a human can combine the
available features into rules using commonsense knowledge
that may not be accessible to a learning algorithm.

The design of the rules is partly based on intuition and
partly data-driven: we first use our intuition to come up
with a rule and then manually refine it based on the obser-
vations we made on the i2b2 training documents. Note that
the test documents are reserved for evaluating final system
performance. We order these rules in decreasing order of ac-
curacy, where the accuracy of a rule is defined as the number
of times the rule yields the correct temporal relation type
divided by the number of times it is applied, as measured on
the training documents. A new instance is classified using
the first applicable rule in the ruleset.

Some of these rules were shown in Section 4.1 when we
motivated each feature type with examples. Our final ruleset
can be accessed via a web link (see Footnote 2).



(6) { Arg1 # Hypotension: per referral form. Arg1} { Arg2 Restatement Initially concern for sepsis in the
setting of fevers and high blood count. Arg2}

(7) { Arg1 At operation, there was no gross adenopathy, and it was felt that the tumor was completely excised.
Arg1} { Arg2 The patient { Conn Asynchronous thereafter Conn} had a benign convalescence. Arg2}

Table 2: Examples illustrating the usefulness of discourse relations for temporal relation classification. The two arguments of
each discourse relation, Arg1 and Arg2, are enclosed in curly brackets, and the sense of the relation is annotated.

4.3 Combining Rules and Machine Learning
We investigate two ways to combine the hand-crafted rules

and the machine-learned classifiers.
In the first method, we employ all of the rules as additional

features for training each of the four specialized classifiers.
The value of each such feature is the temporal relation type
predicted by the corresponding rule.

The second method can be viewed as an extension of the
first one. Given a test instance, we first apply to it the
ruleset composed only of rules that are at least 75% accurate.
If none of the rules is applicable, we classify it using one of
the four classifiers employed in the first method.7

5. EVALUATION: THE FIRST SETTING

5.1 Experimental Setup
In this section, we will conduct experiments under the

first setting, where we assume we are given gold-standard
temporal relations (i.e., each instance belongs to one of the
12 relations).

Dataset. As mentioned before, we use the 190 training
documents from the i2b2 corpus for classifier training and
manual rule development and reserve the 120 test documents
for evaluating system performance.

Evaluation metrics. We employ micro F-score (Fmi) and
macro F-score (Fma) [see Sebastiani [16] for their defini-
tions]. Briefly, macro F can be seen as giving the same
weight to each of the 12 classes regardless of their frequency
of occurrence in the test set, whereas micro F gives more
weight to the frequent classes.8 Hence, macro F could pro-
vide some insights into how well our approach performs on
the minority classes.

5.2 Results and Discussion
Table 3 shows the results for our 12-class temporal rela-

tion classification task when the experiments are conducted
under the first setting (see the introduction), where gold-
standard temporal relations are used. The five columns of
the table correspond to five different system architectures.
The “Features” column corresponds to a purely learning-
based system where the results are obtained simply by train-
ing a temporal relation classifier using the available features.
The next two columns correspond to two purely rule-based
systems, differing by whether all rules are used regardless
of their accuracy or whether only high-accuracy rules (i.e.,

7The classifier that is being used for classifying a test in-
stance depends on the test instance. For example, if the
test instance is formed from two events that appear in the
same sentence in the corresponding text, the intra-sentence
event-event classifier will be used.
8Note that under the first setting, micro F is equivalent
to accuracy (the percentage of correctly classified test in-
stances), since gold-standard relations are used.

those that are at least 75% accurate) are used. The right-
most two columns correspond to the two ways of combining
rules and machine learning described in Section 4.3.

On the other hand, the rows of the table differ in terms
of what features are available to a system. In row 1, only
the baseline features are available. In the subsequent rows,
the six types of features discussed in Section 4 are added
incrementally to the baseline feature set. So, the last row
corresponds to the case where all feature types are used.

A point merits clarification. It may not be immediately
clear how to interpret the results under, for instance, the
“All Rules” column. In other words, it may not be clear
what it means to add the six types of features incrementally
to a rule-based system. Recall that one of our goals is to
compare a purely learning-based system with a purely rule-
based system, since we hypothesized that humans may be
better at combining the available features to form rules than
a learning algorithm. To facilitate this comparison, all and
only those features that are available to a learning-based
system in a given row can be used in hand-crafting the rules
of the rule-based system in the same row. The other columns
involving the use of rules can be interpreted similarly.

The best-performing system architecture is the hybrid ar-
chitecture where high-accuracy rules are first applied and
then the learned classifier is used to classify those cases that
cannot be handled by the rules (see the rightmost column
of Table 3). When all the features are used in combination
with this architecture, the system achieves a micro F-score
of 61.1% and a macro F-score of 60.7%. This translates to
a relative error reduction of 15–21% in comparison to the
baseline result shown in row 1. Regarding the usefulness of
each of the six types of features in this best-performing archi-
tecture, we found that adding pairwise features, predicate-
argument relations and discourse relations significantly im-
proves both micro and macro F-scores.9 The dependency,
WordNet, and Webster relations are not useful.10

Among the remaining four architectures, the version of
the rule-based system where only the high-accuracy rules
are used performs the worst, owing to the low coverage of
the ruleset. Comparing the “Features” system and the “All
Rules” system, we see that “All Rules” is always significantly
worse than “Features”. These results suggest that overall,
the machine learner is better at combining the available
knowledge sources than the human for temporal relation

9All the statistical significance tests in this paper are con-
ducted using the paired t-test (p < 0.05).

10A closer examination of the results reveals why the lexical
relations extracted from WordNet and Webster are not use-
ful. We observed that the set of verbs used to refer to events
in the discharge reports (e.g., present, admit, discharge, com-
plain) is fairly limited. This has made it comparatively eas-
ier to learn the temporal relations between the events they
represent directly from the training data (e.g., a patient has
to be admitted first before being discharged), rendering the
WordNet and Webster relations less useful.



Features All Rules All Rules with Features + Rules + Features +
accuracy ≥ 0.75 Rules as Features Rules as Features

Feature Type Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma

1 Baseline 55.3 50.5 – – – – – – – –
2 + Pairwise 55.5 51.1 37.6 25.0 14.5 17.6 57.2 52.8 57.8 52.4
3 + Dependencies 55.5 51.2 40.0 31.9 16.2 23.3 57.4 53.1 58.1 53.0
4 + WordNet 55.6 51.1 40.0 31.9 16.2 23.3 57.2 53.0 57.9 52.9
5 + Webster 55.8 51.3 40.0 31.9 16.2 23.3 57.3 53.0 58.0 52.9
6 + PropBank 55.8 51.3 45.4 44.7 21.3 34.7 57.6 53.1 59.7 57.7
7 + Discourse 56.2 51.5 47.3 47.8 24.0 39.2 57.9 53.2 61.1 60.7

Table 3: Micro and macro F-scores of classifying gold-standard temporal relations as features are added incrementally to the
baseline.

classification. The question, however, is: does the machine
learner make mistakes on different instances than the hu-
man? By comparing the results of the two feature-based
systems, “Features” and “Features + Rules as Features”, we
can infer that the answer is yes. Since the latter is sig-
nificantly better than the former, the incorporation of the
hand-crafted rules into the feature set is beneficial for the
learner. In other words, the use of rules as features helps fix
some of the mistakes made by the learner.

6. TEMPORAL RELATION IDENTIFICATION
In the previous section, we evaluated our approach un-

der the first setting, where we assume we are given only
instances that belong to one of the 12 relation types. Recall
from the introduction that we make the task more challeng-
ing by also evaluating our approach under a second setting,
where we assume the instances we are given may or may not
belong to one of the 12 relation types. For the second set-
ting, we adopt a pipeline system architecture where we first
employ a relation identification system to determine whether
a test instance possesses a temporal relation. We then use
the relation classification system described in Section 4 to
classify only those instances the relation identification sys-
tem determined possessed a temporal relation. The rest
of this section describes our temporal relation identification
system.

Given the success of our hybrid approach to relation clas-
sification, we employ a hybrid approach to relation identifi-
cation. Specifically, given a test instance i, we first apply a
set of hand-crafted rules to determine whether i has a rela-
tion. If i cannot be classified by any of the rules, we employ
a learned identifier to determine whether i has a relation.

Two questions naturally arise. First, how can we design
the hand-crafted rules? Second, how can we train a classifier
for identifying relations? We answer these two questions in
the next two paragraphs.

We design the hand-crafted identification rules as follows.
As positive rules (i.e., rules that determine that an instance
has a relation), we simply use all the rules that we hand-
crafted for relation classification in Section 4.2. To design
negative rules (i.e., rules that determine that an instance
has no relation), we employ the same data-driven procedure
that was used to design the relation classification rules (see
Section 4.2).

Next, we describe how to train a classifier for identifying
temporal relations. We employ a natural way of creating
training instances: we use all event-event and event-time
pairs in the training set that have a relation as positive in-

stances, and the remaining ones as negative instances. As
before, rather than training just one classifier for identify-
ing temporal relations, we train four specialized classifiers
for identifying relations using the same division that we de-
scribed in Section 3.1. It is worth mentioning, however, that
the negative instances significantly outnumber the positive
ones, since most pairs do not have a relation. But since
training on a dataset with a skewed class distribution may
adversely affect the performance of a classifier, for each of
the four specialized classifiers, we employ simple pruning
heuristics to prune the negative training instances before
training the classifier.11

The remaining question is: what features should we use
to represent each training/test instance? We experimented
with three options. The simplest option is to employ the
same features that we used to train our classifiers for relation
classification in Section 4. Note that many of these features
are extracted from syntactic parse trees. Since it is not
clear whether these features have adequately encoded all the
useful information that we can possibly extract from a parse
tree, perhaps the simpler thing to do, which we consider
in our second option, is to employ just the syntactic parse
tree containing the two entities involved in an instance.12

Recall that advanced machine learning algorithms such as
SVMs have enabled a parse tree to be used as a structured
feature (i.e., a feature whose value is a linear or hierarchical
structure, as opposed to a flat feature, which has a discrete
or real value), owing to their ability to employ kernels to
efficiently compute the similarity between two potentially
complex structures. In particular, given two parse trees, we
compute their similarity using a convolution tree kernel [4].

Note, however, that while we want to use a parse tree di-
rectly as a feature, we do not want to use the entire parse
tree as a feature. Specifically, while using the entire parse
tree enables a richer representation of the syntactic context
of the two entities than using a partial parse tree, the in-
creased complexity of the tree also makes it more difficult
for the SVM learner to make generalizations.

To strike a better balance between having a rich represen-
tation of the context and improving the learner’s ability to
generalize, we extract a subtree from a parse tree and use it
as the value of the structured feature of an instance. Specif-
ically, given two entities in an instance and the associated

11For the complete list of pruning heuristics, see http://www.
hlt.utdallas.edu/~jld082000/temporal-relations/.

12If the two entities involved appear in different sentences, we
create a parse tree by connecting the roots of the two parse
trees in which the two entities appear to a pseudo root node.



syntactic parse tree T , we retain as our subtree the portion
of T that covers (1) all the nodes lying on the shortest path
between the two entities, and (2) all the immediate children
of these nodes that are not the leaves of T .

This subtree is known as a simple expansion tree, and was
first used by Yang et al. [22] as a structured feature for the
pronoun resolution task. Note that some of the flat features
employed in the first option, including the event attributes
(i.e., type, polarity and modality) and the time attribute
(i.e., type), are not encoded in the simple expansion tree.
Hence, we encode these attribute values in the tree as fol-
lows: we replace the parent node of each entity under con-
sideration with its event/time attribute values. To better
understand how a simple expansion tree is computed, we
show in Figure 1 the simple expansion tree created for the
events evaluated and desaturate. Note that only those nodes
that are circled or squared are part of the tree.

Figure 1: Example of a simple expansion tree.

Given that we employ flat features in our first option and
a tree feature in our second option, a natural third option
is to combine the flat and tree features to train a classifier.
To compute the similarity between two instances containing
both flat and tree features, we first compute the similarity
of their flat features using a linear kernel and the similarity
of their tree features using a tree kernel, and then combine
these two kernels using a composite kernel.13

After training the four specialized classifiers, we can apply
them to classify whether a test instance has a relation or not.
By default, any instance whose classification value is at least
0 is classified as having a relation; otherwise, it is classified
as having no relation.14

Since we are using the relation identification system to fil-
ter the no relation instances prior to relation classification,
the performance of the downstream relation classification
system depends to a large extent on the performance of the
identification system. If the identification system misclassi-
fies many positive instances (as negative), it will harm the
recall of the classification system; on the other hand, if it
misclassifies many negative instances (as positive), it will
harm the precision of the classification system.

13In preliminary experiments on the development data, the
second option yields marginally better results than the oth-
ers. So the results we report in the next section are based
on identification classifiers trained using the second option.

14The classification value of an instance is simply its signed
distance from the SVM hyperplane.

Ideally, we want to optimize the performance of the iden-
tification classifier such that when it is used in combination
with the classification system, the F-measure of the classi-
fication system is maximized. However, the identification
classifier is trained to maximize classification accuracy on
identification. To maximize the F-measure of the classifica-
tion system instead, we propose to adjust the classification
threshold (i.e., the threshold that determines whether an in-
stance should be classified as positive or not). Recall that
currently we employ a classification threshold of 0, mean-
ing that all and only those instances whose classification
value is 0 or above are classified as positive. By adjusting
this threshold, we can potentially vary the F-measure of the
classification system. Specifically, by lowering the threshold,
more instances will be classified as positive, potentially im-
proving the recall of the classification system. By the same
token, increasing the threshold could improve its precision.

Given this observation, we tune the classification thresh-
old to maximize the F-measure of the classification system
on the development set, which is composed of 20% of the
training data. In other words, we first train both the clas-
sifiers for relation identification and classification on the re-
maining 80% of the training data. Then we obtain rela-
tion classification results on the development set by varying
the classification thresholds applied to the relation identifi-
cation classifiers (each of the four specialized identification
classifiers will have its classification threshold tuned inde-
pendently of the others).15 The thresholds that yield the
best relation classification F-measure score on the develop-
ment set are applied to obtain relation classification results
on the test data. Since our results are reported in terms of
both micro and macro F-scores, we obtain thresholds that
maximize macro F and those that maximize micro F sepa-
rately.

7. EVALUATION: THE SECOND SETTING
Next, we conduct experiments under the second setting,

where we obtain temporal relation classification results using
automatically identified temporal relations.

Results, expressed in terms of micro and macro F, are
shown in Table 4, where the rows and columns can be in-
terpreted in the same manner as those in Table 3. As ex-
pected, the results obtained using automatically identified
relations are significantly lower than those obtained using
gold-standard temporal relations. Nevertheless, the same
conclusions that we drew from the results in Table 3 are
also applicable to the results in Table 4. It is worth men-
tioning, however, that the best-performing system is still the
“Rules + Features + Rules as Features” architecture when
used in combination with all the feature types, achieving a
micro F-score of 30.0% and a macro F-score of 38.8%. This
translates to a significant relative error reduction of 6–13%
in comparison to the baseline.

8. ERROR ANALYSIS
To gain additional insights into the errors made by the

relation classification system and the relation identification
system, we perform an error analysis of each of them.

8.1 Relation Classification Errors
15We attempted thresholds from −1.0 to 1.0 in steps of 0.1.



Features All Rules All Rules with Features + Rules + Features +
accuracy ≥ 0.75 Rules as Features Rules as Features

Feature Type Fmi Fma Fmi Fma Fmi Fma Fmi Fma Fmi Fma

1 Baseline 26.0 29.7 – – – – – – – –
2 + Pairwise 26.5 30.5 14.8 12.3 6.8 7.8 26.6 31.0 27.5 32.3
3 + Dependencies 26.5 30.6 17.1 18.9 9.9 14.3 26.7 31.4 27.7 33.0
4 + WordNet 26.5 30.7 17.2 18.9 9.9 14.3 26.6 31.2 27.6 32.9
5 + Webster 26.5 30.7 17.2 19.0 9.9 14.3 26.7 31.2 27.6 32.9
6 + PropBank 26.5 30.8 21.2 29.3 15.4 24.4 26.8 31.3 29.1 36.7
7 + Discourse 26.6 30.8 21.9 30.5 18.8 29.6 26.8 31.3 30.0 38.8

Table 4: Micro and macro F-scores of classifying automatically identified temporal relations as features are added incrementally
to the baseline.

We constructed the confusion matrix based on the gold-
standard and predicted relation types on the test set, and
found that there are three types of confusions that account
for nearly 72% of the classification errors. Below we illus-
trate each of these three types of confusions with examples.

Simultaneous confused as Overlap. This is the most
frequent source of confusion, accounting for 30.8% of the
errors. The following example illustrates this confusion:

04-24 PICC Bld Cx : pseudomonas Diaz to zosyn , cipro ,
cefepime , Tardugno – staph epi- Gray to vanc

In this sentence, the treatments ’zosyn’, ’ciporo’, ’cefepime’,
and ’Tardugno’ are all given at the same time, and therefore
are temporally Simultaneous. However, there are many
cases where events separated by commas are overlapping
rather than simultaneous. Determining whether the rela-
tion should be Simultaneous or Overlap requires an un-
derstanding of the nature of the events and cannot simply be
inferred based on syntactic patterns. This poses a challenge
to the relation identification system.

Recall that the i2b2 organizers grouped Overlap and Si-
multaneous under the same broad relation type. The fact
that almost a third of our relation classification errors were
related to confusion between Overlap and Simultaneous
seems to be consistent with the notion that merging them
was a wise decision. As Pustejovsky and Stubbs [15] point
out, categorization results may lead a human annotator to
re-think her annotation model. In this case, our error analy-
sis seems to support the redesigned model (i.e., with Over-
lap and Simultaneous combined).

Before confused as Overlap. This is the second most
frequent source of confusion, accounting for 21.5% of the
errors. The following example illustrates this confusion:

She [called 911] and he was [brought] to Hahnemann General
Hospital Lydia.

In this sentence, OCCURRENCE event called 911 is tem-
porally Before OCCURRENCE event brought, but the re-
lation is misclassified as Overlap. This source of confusion
arises from the presence of the co-ordinating conjunction
“and”, which frequently appears together with the Over-
lap relation. In this example, understanding that called 911
took place before bought requires world knowledge, which
might be acquired via narrative chains [1].

After confused as Overlap. This is the third most fre-
quent source of confusion, accounting for 19.5% of the errors.
The following example illustrates this confusion.

Also , a repeat outpatient [CT colonoscopy] with [better prepa-
ration] should be considered.

In this sentence, TEST event CT colonoscopy is proposed
After OCCURRENCE event better preparation in the gold
standard, but the relation is misclassified as Overlap. The
difficulty in correctly classifying this relation as After arises
from the fact that an OCCURRENCE event can be anything
that is clinically relevant to the patient’s timeline apart from
the other defined attributes, and hence it can take on various
temporal roles depending on whether it is in an adverbial
phrase, an adjectival phrase, a noun phrase, or a verb phrase.

Intuitively, when an event happens ’with’ another event,
they generally tend to have temporal synchronicity, and in
such cases entity attribute information may not be so im-
portant. However, if there isn’t temporal synchronicity (as
in the above sentence), then we will need to rely on infor-
mation reflected by entity attributes, especially type. More
specifically, to classify the relation type correctly, we will
need to narrow the scope of OCCURRENCE events by in-
cluding more event types that are clinically relevant to the
current set of event types. These event types might include
CONDITION instead of OCCURRENCE for phrases such
as ’doing well’, ’improving’, etc., or PREP for events that
are not TREATMENTS but are necessary as a step before
the TREATMENT, as in the above sentence.

8.2 Relation Identification Errors
For relation identification, we will perform a qualitative

analysis, since it is harder to perform the kind of quantitative
analysis that we did for relation classification.

One common source of errors involves cases whose rela-
tion type may be difficult even for humans to determine.
Consider, for example, events listed as a sequence, as shown
in the sentence below:

[CXR] , [LP] , [UA] and [abdominal CT] showed no sign of
infection.

Here, the sequence of TESTS paired consecutively as CXR
and LP, LP and UA, and UA and abdominal CT are unan-
notated in the dataset with a relation, but the identification
classifier classifies them as having a relation.

Note that for sentences like this where the patient’s past
history of problems is listed, it can sometimes be difficult
even for a human to determine the exact temporal relation
type between the events, as a mixture of temporal relations
such as Overlap, Before, After, etc. can exist. When a
case appears temporally undeterministic to a human anno-
tator, she may choose to leave them unannotated. In other



words, even though these cases are counted as errors made
by our identification system, they probably shouldn’t be.

Another common source of errors involves coreferent events
that appear in different sentences. Recall that we naively
posit two events that have the same head as coreferent, and
train a classifier to determine whether there is a relation
between two such events. We noticed that this classifier
classifies all instances as having a relation. However, there
are many same-head events that do not have a temporal re-
lation. To address this problem, we will need to employ a
coreference classifier to determine whether two same-head
events are coreferent.

The third common source of errors stems from the fact
that not all temporal relations in the dataset are annotated.
Consider the two sentences below:

ESRD on HD - Pt has [ESRD] secondary to [her DM] and
is on HD.
Pt is now [transferred] to the FICU for [further care].

In the first sentence, the PROBLEM event pair ESRD and
her DM, which should have relation type Overlap After,
are not annotated as having a relation in the dataset, but
our identification classifier determines that it does. In the
second sentence, the OCCURRENCE event transferred and
the TREATMENT event further care, which should have
relation type Before, is not annotated as having a relation
in the dataset, but our identification classifier determines
that they do. As in the first type of errors discussed above,
even though these cases are counted as errors made by our
identification system, they probably shouldn’t be.

Overall, this qualitative analysis reveals that the error
rate of our relation identification system is to some extent
inflated owing to the incompleteness of the gold-standard
annotations. While the performance of our relation clas-
sification system significantly degrades when gold-standard
temporal relations are replaced by their automatically iden-
tified counterparts, we speculate that the degradation will
not be as abrupt as what we currently see given a better-
prepared set of gold-standard annotations.

9. CONCLUSIONS
We have investigated a knowledge-rich, hybrid approach

to the 12-class temporal relation classification task for the
clinical domain. Results on the i2b2 corpus shows that
when evaluated on gold-standard and automatically iden-
tified temporal relations, our approach achieves a relative
error reduction of 15–21% and 6–13% respectively over a
state-of-the-art learning-based baseline.
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