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Abstract

We describe the systems that we developed
for the three tracks of the CODI-CRAC 2021
shared task, namely entity coreference resolu-
tion, bridging resolution, and discourse deixis
resolution. Our team ranked second for entity
coreference, first for bridging resolution, and
first for discourse deixis resolution.

1 Introduction

The CODI-CRAC 2021 shared task (Khosla et al.,
2021), which focuses on anaphora resolution in dia-
logue, provides three tracks, namely entity corefer-
ence resolution, bridging resolution, and discourse
deixis/abstract anaphora resolution. While the
CRAC 2018 shared task (Poesio et al., 2018) pro-
vides the same three tracks, the two shared tasks
differ by the genre they focus on: CRAC 2018
focuses primarily on text, whereas CODI-CRAC
2021 focuses exclusively on spoken dialogue.

Not only has entity coreference resolution been
an active area of research in the NLP community
in the past few decades, but recent years have
seen considerable progress on entity coreference
because of the development of span-based neural
models (Lee et al., 2017, 2018). Compared to en-
tity coreference, bridging resolution and discourse
deixis resolution are much less studied, and hence
they are arguably the more interesting tracks of
this shared task. In particular, a relevant question
is: can the successes of span-based models be ex-
tended from entity coreference to bridging resolu-
tion and discourse deixis resolution?

We participated in all three tracks of the shared
task. For bridging and discourse deixis resolution,
we submitted results based on both predicted men-
tions and gold mentions. Given the recent suc-
cesses of span-based neural entity coreference mod-
els, which can learn task-specific representations
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of text spans, we use them as our starting point for
all three tracks. Specifically:

• for entity coreference, we employ a pipeline
architecture where we perform mention detec-
tion prior to coreference resolution. Our men-
tion detection model is adapted from Xu and
Choi’s (2020) implementation of Lee et al.’s
span-based model. For coreference resolution,
we extend Xu and Choi’s coreference model
by (1) adding a sentence distance feature; (2)
modifying the objective function used by the
model so that it can learn to output singleton
clusters; and (3) introducing non-coreference
constraints for the dialogue domain.

• for discourse deixis resolution, we extend Xu
and Choi’s coreference model by (1) modify-
ing the objective function so that it performs
joint mention detection and discourse deixis
resolution, and (2) classifying a span as a can-
didate anaphor or a candidate antecedent and
only allowing candidate anaphors to be re-
solved to candidate antecedents.

• for bridging, we adopt a multi-pass sieve ap-
proach, where we use Yu and Poesio’s (2020)
multi-task learning (MTL) model, which
jointly identifies bridging and coreference
links, as one of the sieves and design a set
of sieves that targets a particular kind of bridg-
ing links, namely same-head bridging links.

A brief overview of the approaches we adopted
for the three tracks can be found in Table 1.

The rest of the paper is structured as follows.
The next three sections describe our work for the
three tracks, namely entity coreference (Section 2),
discourse deixis (Section 3), and bridging (Sec-
tion 4). Within each section, we describe our ap-
proach, our official results, and some quantitative
analysis. We present our conclusions in Section 5.



Entity Coreference Resolution
Baseline Xu and Choi’s (2020) implementation of Lee et al.’s (2018) span-based model
Learning framework A pipeline architecture consisting of a mention detection component and an entity coreference

component. The coreference component extends the baseline by (1) adding a sentence distance
feature; (2) modifying the objective so that it can output singleton clusters; and (3) enforcing dialogue-
specific non-coreference constraints.

Markable identification A mention detection model (adapted from Xu and Choi’s coreference model) is trained to identify the
entity mentions.

Training data 90% of the official training and dev sets
Development data The remaining 10% of the official training and dev sets

Discourse Deixis Resolution
Baseline Xu and Choi’s (2020) implementation of Lee et al.’s (2018) span-based model
Learning framework Joint mention detection and coreference resolution enabled by modifying the objective function in Xu

and Choi’s model. For mention detection, each span is classified as a candidate anaphor, a candidate
antecedent, or a non-mention. For deixis resolution, only candidate anaphors will be resolved, and
they can only be resolved to candidate antecedents. The model developed for the Predicted setting
differs from those developed for the Gold setting in terms of the heuristics used to determine which
spans are candidate anaphors.

Markable identification Obtained as part of joint mention detection and deixis resolution
Training data Two setups: (1) use all official training and dev sets, leaving out the official dev set of the target

domain; and (2) use 90% of the official training and dev sets.
Development data Two setups: (1) use only the dev set for the target domain; and (2) use the remaining 10% of the

official training and dev sets.

Bridging Resolution
Baseline Yu and Poesio’s (2020) multi-task learning (MTL) model
Learning framework A multi-pass sieve approach in which we use the MTL model as one of the sieves and design a set of

learning-based sieves (trained using SVMs) that targets same-head bridging links. In the Gold setting,
an anaphor detection model (adapted from the MTL model) is additionally trained to first identify the
bridging anaphors from the gold mentions, and the resulting anaphors are then resolved by the sieves.

Markable identification The MTL-based sieve learns markable boundaries whereas the SVM-based sieves use extracted NPs.
In the gold setting, an anaphor detection model is also trained to identify bridging anaphors.

Training data The MTL-based sieve is pretrained using ARRAU RST (train, dev, and test), Gnome, and Pear,
and then fine-tuned using Trains 91, Trains 93, LIGHT (dev), AMI (dev), Persuasion (dev), and
Switchboard (dev). The SVM-based sieves are trained using LIGHT (dev), AMI (dev), Persuasion
(dev), and Switchboard (dev).

Development data Trains 91, Trains 93, LIGHT (dev), AMI (dev), Persuasion (dev), and Switchboard (dev)

Table 1: Overview of the approaches we adopted for the three tracks.

2 Entity Coreference Resolution

To build our entity coreference system, we use
as our baseline coref-hoi, which is Xu and
Choi’s (2020) coreference model. Below we first
give an overview of coref-hoi and then describe our
extensions to it.

2.1 Baseline: An Overview

Xu and Choi (2020) reimplement the end-to-end
coreference model introduced by Lee et al. (2018).
For each mention span x, the model learns a distri-
bution P (y) over possible antecedents y ∈ Y(x):

P (y) =
es(x,y)∑

y′∈Y(x) e
s(x,y′)

where s(x, y) is a pairwise score that incorporates
three factors: (1) sm(x), a score that indicates how
likely span x is a mention; (2) sm(y), a score that
indicates how likely span y is a mention; and (3)

sc(x, y), a score that indicates how likely spans x
and y refer to the same entity:

s(x, y) = sm(x) + sm(y) + sc(x, y)

sm(x) = FFNNm(gx)

sc(x, y) = FFNNc(gx, gy, φ(x, y))

where gx and gy denote the span embeddings of x
and y, FFNN(·) denotes a feedforward neural net-
work, and φ(x, y) encodes the speaker information
from the metadata as well as the segment distance
between the two spans.1

Xu and Choi describe several higher-order in-
ference (HOI) approaches that can be added to the
basic end-to-end coreference model. We do not
employ any HOI approaches because (1) Xu and
Choi found that when using SpanBERT as the en-
coder, the impact of HOI is negative to marginal;

1Each document is split into independent segments with a
maximum size of 512 tokens.



(2) in preliminary experiments, we found that better
results could be achieved without HOI.

2.2 Approaches

Next, we describe two approaches to entity corefer-
ence resolution.

2.2.1 End-to-End Approach
We extend the aforementioned coref-hoi model
with the following modifications.
Sentence distance We hypothesize that recency
plays a role in resolution, so we add the sentence
distance between two spans into φ(x, y) as another
feature.
Type prediction Since the official scorer penal-
izes a mention e in the system output if e is not a
referring entity mention, we follow our previous
work (Lu and Ng, 2020) and extend the model so
that it can predict the type of each span, where
the type can be NULL (for non-entity spans), RE-
FERRING (for referring entity mentions), or NON-
REFERRING (for non-referring entity mentions),
and subsequently remove from the output any spans
that are predicted to be NULL or NON-REFERRING.

Type prediction proceeds as follows. For each
span x, we pass its representation gx to a FFNN,
which outputs a vector otx of dimension 3. Each
element otx(t) of otx denotes the likelihood that
span x belongs to type t. The span type tx is then
determined by the type with the highest score.

otx = FFNNt(gx)

tx = argmax
t

otx(t)

We compute the cross-entropy loss using otx.
This type loss is then multiplied by a type loss
coefficient and added to the loss function of coref-
hoi.
Span constraint While span-based models typi-
cally impose length constraints on spans owing to
computational tractability, we impose an additional
constraint on spans based on our observation of the
training and development data: a span cannot cover
more than one speaker’s utterances.
Resolution constraints We propose a consis-
tency constraint on resolution that will be used
in both training and inference. This constraint pre-
vents two spans x and y that both start with a pro-
noun from being posited as coreferent if they are
conflicting. More specifically, we check whether
each of these spans belongs to one of the eight

Group Definition

1 span is or starts with: I, me, my, or mine
2 span is or starts with: you, your, or yours
3 span is or starts with: he, him, or his
4 span is or starts with: she or her
5 span is: their
6 span is: it or its
7 span is: here
8 span is: there

Table 2: The eight groups of spans on which the consis-
tency constraints for entity coreference resolution are
defined.

groups defined in Table 2, and if yes, then they can-
not be coreferent if any of the following conditions
is satisfied:

• Both spans (1) belong to the first four groups
but are not in the same group and (2) have the
same speaker.

• Both spans (1) belong to the first two groups
and are in the same group and (2) have differ-
ent speakers.

In addition, we impose two constraints on the
resolution of here and there. Specifically, here
cannot be coreferent with my, your, his, and her as
well as a span that belongs to group 5, group 6 or
group 8; and there cannot be coreferent with my,
your, his, and her, as well as a span that belongs to
group 5, group 6, or group 7. These conditions are
derived based on our inspection of the training and
development sets.

2.2.2 Pipeline Approach
In the end-to-end approach, type prediction is
learned jointly with entity coreference resolution.
In this subsection, we experiment with a pipeline
approach where type prediction is performed prior
to coreference resolution.
Step 1: Type prediction. The goal of this step
is to identify the entity mentions (including both
referring and non-referring mentions) from all the
spans in the input text. Specifically, the model
classifies each span as one of two types, NULL

and ENTITY, where ENTITY covers both referring
and non-referring mentions and NULL covers the
remaining spans (i.e., the spans that do not corre-
spond to entities). To perform this step, we train
coref-hoi (with the extensions described in Sec-
tion 2.2.1), but tune the type loss coefficient so that
the model focuses on type prediction rather than
coreference resolution.



Step 2: Coreference resolution. The goal of
this step is to perform coreference resolution on all
and only those spans that are classified as ENTITY

in the first step. To perform this step, we train coref-
hoi (with the extensions described in Section 2.2.1)
on only the gold mentions in the input documents,
tuning the type loss coefficient so that the model
focuses on coreference resolution rather than type
prediction.

2.3 Evaluation
We evaluate the pipeline approach and the end-to-
end approach. In addition, to gain insights into
the contribution of the constraints on performance,
we evaluate a variant of the end-to-end approach
without using the span and consistency constraints.

2.3.1 Training and Development Sets
We experiment with two different methods for par-
titioning the available annotated data into a training
set and a development set.
T1: In the first method, we use all official train-
ing datasets and all official development sets other
than the one to be evaluated on as our training
data. The remaining official development data is
then used for development. For example, when we
train the model for evaluation on LIGHT_test, we
use all official training data plus AMI_dev, Persua-
sion_dev, and Switchboard_dev as the training set,
and use LIGHT_dev as the development set.
T2: In the second method, we merge all official
training sets and all official development sets into
one dataset. We then use 90% of this dataset for
training and the remaining 10% for development.

2.3.2 Implementation Details
In all approaches we use SpanBERTLarge as the
encoder. Documents are split into independent
segments with a maximum of 512 word pieces,
and two segments from each document are used
in training. We use different learning rates for
BERT-parameters and task-parameters (1× 10−5

and 3× 10−4 respectively). Models are trained for
24 epochs with dropout rate 0.3. The type loss coef-
ficient is found using grid search. See Appendix A
for the optimal hyperparameters chosen for each
approach.

For the end-to-end approach (and its "no con-
straint" variant), we use method T1 to create the
training and development sets. The model con-
siders all spans that have a width of less than
70 and satisfy the span constraint mentioned in

Section 2.2.1 (with the exception of the AMI
dataset, where we set the maximum span width
to 25 during inference because of memory lim-
itations). To maintain computational tractabil-
ity, the model selects for each document 0.4 ×
# of words in the document spans as top spans
for further processing. Specifically, for each top
span, the model selects 50 candidate antecedents
for resolution purposes (with the exception of the
AMI dataset, where we use only 12 candidate an-
tecedents during inference because of memory lim-
itations). The only parameter we tune is the type
loss coefficient. Specifically, we search for the co-
efficient out of {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2}, and
apply the model with the highest CoNLL score on
the development set to the test sets.

For the pipeline approach, we use method T2 to
create the training and development sets. We set
the parameters of the type prediction model to be
the same as those used in the end-to-end approach.
Specifically, it considers all spans with a width of
less than 70 (with the exception of the AMI dataset,
where we set the maximum span width to 25 dur-
ing inference because of memory limitations), and
selects 0.4×# of words in the document spans
as top spans for further processing. For each top
span, the model selects 50 candidate antecedents
for resolution purposes (with the exception of the
AMI dataset, where we use only 12 candidate an-
tecedents because of memory limitations). The
only parameter we tune is the type loss coefficient.
Specifically, we search for the coefficient out of {1,
2, 5, 10, 100, 200, 500}, and use the model with the
highest entity mention recall on the development
set to predict entity mentions in the test sets. Like
in the type prediction model, the only parameter
we tune in the coreference model is the type loss
coefficient. Specifically, we search for the coeffi-
cient out of {0, 0.2, 0.4, 0.5, 0.6, 0.8, 1, 2}, and
apply the model with the highest CoNLL score on
the development set to the test sets.

2.3.3 Results and Discussion
Results of the three approaches (Pipeline, End-to-
End and its "no constraint" variant) on the four
test sets (LIGHT, AMI, Persuasion, and Switch-
board) are shown in Table 3. Specifically, in the "F"
columns we show the CoNLL score. To better un-
derstand the extent to which the singleton clusters
and the non-singleton clusters contribute to overall
performance, we report two additional scores. The
"ns-F" columns show the CoNLL scores obtained



LIGHT AMI Persuasion Switchboard

F ns. F s-F F ns-F s-F F ns-F s-F F ns-F s-F

End-to-End (no constraints) 74.8 55.7 31.5 60.1 43.3 28.0 70.4 51.3 32.2 68.3 51.9 29.1
End-to-End 76.3 57.6 31.5 58.2 43.2 26.1 72.6 54.6 31.8 66.3 51.1 28.2
Pipeline 79.6 60.2 32.9 57.4 42.9 25.2 77.5 56.5 35.3 72.6 53.7 32.5

Table 3: Entity coreference resolution: results of the three approaches on the test sets. For each approach, we show
three scores: the unmodified CoNLL score (F), the CoNLL score obtained after removing all the singleton clusters
from the system output (ns-F), and the CoNLL score obtained by keeping only the singleton clusters in the system
output (s-F).

MUC B3 CEAFe

P R F P R F P R F CoNLL

LIGHT 87.8 89.1 88.5 72.7 82.6 77.3 74.6 71.2 72.9 79.6
AMI 66.7 65.5 66.0 48.5 58.3 53.0 59.0 48.3 53.1 57.4
Persuasion 78.7 87.8 83.0 76.6 80.4 78.5 76.4 66.4 71.0 77.5
Switchboard 77.5 79.5 78.5 70.7 74.3 72.4 70.7 63.7 67.0 72.6

Table 4: Entity coreference resolution: official results on the test sets (obtained using the Pipeline approach).

LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

End-to-End (no constraints) 90.2 88.8 89.5 87.9 81.1 84.4 90.1 87.3 88.7 87.8 82.2 84.9
End-to-End 90.3 88.6 89.5 88.6 76.6 82.2 90.4 86.1 88.2 88.6 79.8 84.0
Pipeline 92.3 91.6 92.0 86.6 78.6 82.4 91.3 89.7 90.5 89.2 86.1 87.6

Table 5: Entity coreference resolution: mention extraction results on the test sets.

by removing the singleton clusters from the output
prior to scoring, meaning that the scorers are ap-
plied to score only the non-singleton clusters. Sim-
ilarly, the "s-F" columns show the CoNLL scores
obtained by removing the non-singleton clusters
from the output prior to scoring, effectively allow-
ing the scorers to score only the singleton clusters.

As we can see, in terms of CoNLL F-score, on
LIGHT and Persuasion, Pipeline outperforms the
End-to-End, which in turn outperforms its "no con-
straint" counterpart. A closer look at these results
reveals that Pipeline outperforms the other mod-
els w.r.t. the identification of both singleton and
non-singleton clusters. On Switchboard, Pipeline
still offers the best performance, but the use of
constraints hurts performance: results on both sin-
gleton and non-singleton cluster identification de-
teriorate. Finally, on AMI we see a completely
different trend: the "no constraint" variant offers
the best performance while Pipeline performs the
worst. While this is somewhat unexpected, recall
that Pipeline is trained using setup T2 while the
other models are trained using setup T1. We hy-
pothesize that (1) our constraints may not be as
universally applicable as we expect, and (2) the

distribution of the AMI test set is more similar to
the development set in T1 than that in T2, thus
allowing better models to be selected.2 Additional
experiments are needed to determine the reason.

Our official test results, expressed in terms of
MUC, B3, and CEAFe precision (P), recall (R), and
F-score (F), are shown in Table 4. While Pipeline
underperforms the "no constraint" variant on the
AMI test set, our official test set results are all
obtained using the Pipeline approach. The reason
is that the AMI test set was only released a few days
prior to submission, and we did not have enough
time to do a systematic comparison of the three
models on the AMI test set.

2.3.4 Additional Analysis
Table 5 expresses mention detection results in terms
of P, R, and F. Note that (1) these are results ob-
tained on referring mentions only; and (2) we con-
sider an entity mention correctly detected if it has
an exact match with a gold referring mention in
terms of boundary. Comparing the results in Ta-
bles 3 and 5, we can see that there is a perfect

2We did not have enough time prior to submission to obtain
results of all three models using both T1 and T2.



correlation between mention detection results and
entity coreference results. These results corrobo-
rate results in previous shared tasks on coreference
that mention detection plays a crucial role in en-
tity coreference performance and that improving
mention detection will likely lead to further im-
provements in coreference performance.

3 Discourse Deixis Resolution

We cast discourse deixis resolution as identity
anaphora resolution. This allows us to continue
to use the Xu and Choi (2020) entity coreference
model as the baseline. The shared task divides the
evaluation of discourse deixis resolution into two
phases: (1) the Predicted phase, where a system
needs to first identify all of the entity mentions
that likely correspond to anaphors and antecedents,
then perform discourse deixis resolution on the pre-
dicted mentions; and (2) the Gold phase, which is
essentially the same as the Predicted phase except
that the mentions corresponding to anaphors are
to be extracted from the given gold mentions. Be-
low we first describe the system we developed for
the Predicted phase and then show how the system
we used for the Gold phase differs from the one
we used for the Predicted phase. As we will see
shortly, our models for both phases perform joint
mention extraction and discourse deixis resolution.

3.1 Predicted Phase

As mentioned above, we extend Xu and
Choi’s (2020) entity coreference model with the
following additions, many of which are similar to
those we used for entity coreference resolution.

Sentence distance We hypothesize that recency
plays a role in resolution, so we add the sentence
distance between two spans as a feature.

Type prediction Since the official scorer penal-
izes a mention e in the system output if e is neither
a gold anaphor nor a gold antecedent, we extend the
model so that it can predict the type of each span,
where the possible types are NULL, ANAPHOR, or
ANTECEDENT, and subsequently remove from the
output any spans that are predicted to be NULL. For
each span x, we predict its type as follows. First,
we pass its representation gx to a FFNN, which out-
puts a vector otx of length 3. Each element otx(t)
of otx denotes the likelihood that span x belongs
to type t. The span type tx is then determined by

the type with the highest score.

otx = FFNNt(gx)

tx = argmax
t

otx(t)

We compute the cross-entropy loss using otx.
This type loss is then multiplied by a type loss
coefficient and added to the loss function of Xu
and Choi’s model.
Span constraint We enforce the same span con-
straint that we used for entity coreference, retaining
spans in which at most one speaker is involved and
whose width is less than 70.
Resolution constraint We enforce a hard con-
straint on resolution that will be used in both train-
ing and inference: only spans corresponding to can-
didate anaphors can be resolved, and only spans
corresponding to candidate antecedents can be cho-
sen as antecedents. We consider a span as a can-
didate anaphor if it ever appears as an anaphor in
the training data, and anything else are considered
candidate antecedents.3

3.2 Gold Phase
The system we developed for the Gold phase is the
same as the one for the Predicted phase except that
we modify the span constraint and the resolution
constraint, as described below.
Span constraint We retain a span if it corre-
sponds to consecutive sentences that involve only
one speaker and is less than 150 words because it
is likely to be a candidate antecedent.4 We also
retain a span if it is likely to be a anaphor. Here,
we experiment with two heuristics for identifying
likely anaphors. Heuristic CA1 considers any span
that corresponds to a gold mention as an anaphor,
and Heuristic CA2 considers any gold mention span
that has appeared in the training data as an anaphor.
Resolution constraint We enforce a hard con-
straint on resolution that will be used in both train-
ing and inference: only spans classified in the type
prediction step as ANAPHOR can be resolved, and
only spans classified in the type prediction step as
ANTECEDENT can be selected as antecedents.

3We could use the output of type prediction to determine
whether a span should be considered as a candidate anaphor or
a candidate antecedent, but we did not have time to consider
this option during the Predicted phase. We did, however,
experiment with this option during the Gold phase.

4We use a maximum span width of 150 in the Gold phase
because the longest antecedent in the training set is at most
150 words. However, we only used a span width of 70 in the
Predicted phase because of memory limitations.



LIGHT AMI Persuasion Switchboard

F ns-F s-F F ns-F s-F F ns-F s-F F ns-F s-F

Predicted 42.7 47.0 2.2 35.4 37.9 2.6 39.6 42.1 1.0 35.4 39.1 2.0
Gold:T1,CA1,RC+ 41.9 43.3 7.2 33.9 32.5 7.5 45.6 45.6 3.8 38.8 36.8 7.4
Gold:T1,CA2,RC+ 39.8 40.2 7.3 35.3 34.0 6.4 46.9 47.3 3.2 40.4 36.6 9.5
Gold:T1,CA1,RC- 43.4 43.9 7.7 31.7 30.5 6.4 46.3 46.2 4.8 40.2 37.2 9.5
Gold:T2,CA1,RC+ 38.4 39.8 6.6 36.9 35.2 8.4 51.7 53.0 3.0 39.6 36.8 9.4
Gold:T2,CA2,RC+ 35.9 34.7 7.8 32.0 28.1 8.6 52.1 52.0 4.2 40.2 38.0 8.5
Gold:T2,CA1,RC- 41.6 43.3 6.2 34.7 32.8 5.7 51.2 52.1 3.2 37.9 34.7 8.2

Table 6: Discourse deixis resolution: results of different models on the test sets. For each model, we report three
scores: the unmodified CoNLL score (F), the CoNLL score obtained after removing all the singleton clusters from
the system output (ns-F), and the CoNLL score obtained by keeping only the singleton clusters in the system output
(s-F). The boldfaced scores are our scores on the leaderboard.

3.3 Evaluation

We evaluate the models developed for both the
Predicted phase and the Gold phase.

3.3.1 Implementation Details
For all models we use SpanBERTLarge as the en-
coder. Documents are split into independent seg-
ments with a maximum of 512 word pieces, and
two segments from each document are used in train-
ing. We use different learning rates for BERT-
parameters and task-parameters (1 × 10−5 and
3 × 10−4 respectively). Models are trained for
24 epochs with dropout rate 0.3. The type loss co-
efficient is found using grid search on the test set.
See Appendix A for the optimal hyperparameters
chosen for each model.

For the Predicted phase, we use method T1 to
create the training and development sets. As in
entity coreference, for efficiency reasons the model
selects 0.4×# of words in the document spans
as top spans for further processing. For each top
span, the model selects 50 candidate antecedents
for resolution purposes (with the exception of the
AMI dataset, where we use only 17 candidate an-
tecedents during inference because of memory lim-
itations).

For the Gold phase, we experiment with six vari-
ants. These variants differ along three dimensions:
(1) whether T1 or T2 is used for partitioning the
available annotated data into training and develop-
ment sets; (2) whether CA1 or CA2 is used as the
heuristic for identifying likely anaphors; and (3)
whether the resolution constraint is used (RC+) or
not used (RC-).

3.3.2 Results and Discussion
Table 6 shows the results of the model used in the
Predicted phase as well as the six model variants

used in the Gold phase on the test sets. Similar to
Table 3, we report three scores for each model: the
"F" columns show the CoNLL F-scores; the "ns-
F" columns show the CoNLL F-scores obtained
by removing the singleton clusters from the sys-
tem output prior to scoring; and the "s-F" columns
show the CoNLL F-scores obtained by removing
the non-singleton clusters from the system output
prior to scoring. Note that discourse deixis resolu-
tion is being viewed as a generalized case of event
coreference resolution, and hence the scorer that
is used to score entity coreference chains can be
used to produce CoNLL F-scores for the output of
a discourse deixis resolver.

Our official results for discourse deixis resolu-
tion are the boldfaced results in Table 6. Specif-
ically, for the Predicted phase, we submitted the
results corresponding to the highest CoNLL score
in the first row, and for the Gold phase, we sub-
mitted the result of the model variant correspond-
ing to the highest CoNLL score for each test set.
The complete set of official results for both phases,
which includes the scores obtained via each scorer,
is shown in Table 7.

A few points deserve mention. First, while we
opted to retain both singleton clusters and non-
singleton clusters in the system output, removing
the singleton clusters in the Predicted phase can
substantially improve performance on all test sets.
The reason could be attributed to the fact that sin-
gleton cluster identification results are very poor in
the Predicted phase, but additional experiments are
needed to determine the reason. In contrast, remov-
ing singleton clusters from the output in the Gold
phase yields worse results in many cases. This
could be attributed to the fact that single cluster
identification is better in the Gold phase than the
Predicted phase, but again additional experiments



MUC B3 CEAFe

P R F P R F P R F CoNLL

Predicted
Light 44.6 31.2 36.8 56.2 37 44.6 55.3 40.5 46.7 42.7
AMI 45.5 21.2 28.9 52.4 29.5 37.8 44.9 35.1 39.4 35.4
Persuasion 45.5 20.3 28.1 64.9 30.2 41.2 61 41.8 49.6 39.6
Switchboard 35.2 21.3 26.5 52.3 30.4 38.5 50.5 34.9 41.3 35.4

Gold
Light 49.0 30.0 37.2 56.3 39.1 46.2 51.7 42.9 46.9 43.4
AMI 44.6 21.2 28.7 49.7 34.6 40.8 39.6 43.0 41.2 36.9
Persuasion 53.3 45.5 49.1 54.9 55.7 55.3 46.0 59.3 51.8 52.1
Switchboard 39.4 31.2 34.8 41.6 48.5 44.8 33.7 55.0 41.8 40.4

Table 7: Discourse deixis resolution: official results on the test sets.

Light AMI Persuasion Switchboard

P R F P R F P R F P R F

Anaphor Predicted – 73.8 – – 64.4 – – 65.9 – – 71.1 –
Gold_Best 65.0 65.0 65.0 57.9 61.9 59.8 73.6 77.2 75.4 64.8 74.9 69.5

Antecedent Predicted – 27.7 – – 20.5 – – 21.2 – – 21.5 –
Gold_Best 59.7 33.0 42.5 49.5 32.3 39.1 52.4 58.9 55.5 38.2 52.4 44.2

Table 8: Discourse deixis resolution: mention extraction results on the test sets.

are needed. Second, while all model variants in the
Gold phase outperform the model in the Predicted
phase on Persuasion and Switchboard, the same is
not true on LIGHT and AMI. Specifically, the best
models in the Gold phase on these two test sets
perform only slightly better than the model in the
Predicted phase, and there are many model variants
in the Gold phase that underperform the model in
the Predicted phase. Finally, the best results for
different test sets in the Gold phase are achieved by
different model variants. In fact, varying just one
of the three dimensions can already trigger non-
trivial changes to model performance. Additional
experiments are needed to determine the reason.

3.3.3 Additional Analysis
In Table 8, we report the mention extraction results
of our officially best models for the Predicted phase
and the Gold phase, including both the anaphor
extraction results and the antecedent extraction re-
sults. Since the best results for different test sets
in the Gold phase are achieved by different mod-
els, for ease of exposition we refer to them collec-
tively as Gold_Best. As in entity coreference,
we consider a mention correctly detected in dis-
course deixis resolution if and only if it has an
exact match with a gold mention in terms of bound-
ary.

Two points deserve mention. First, recall from
Table 6 that while Gold_Best achieves better res-

olution results than Predicted on all four test
sets, the differences are substantial on Persuasion
and Switchboard but fairly small on LIGHT and
AMI. The mention detection results in Table 8 can
partially explain why. On Persuasion and Switch-
board, Gold_Best outperforms Predicted for
both anaphor detection and antecedent detection.
However, on LIGHT and AMI, while Gold_Best
outperforms Predicted for antecedent detection,
the reverse is true for anaphor detection. The fact
that Gold_Best does not consistently outperform
Predicted for anaphor detection provides sug-
gestive evidence that the Gold setting is not neces-
sarily easier than the Predicted setting for discourse
deixis resolution.

Second, Gold_Best substantially outperforms
Predicted for antecedent detection on all four
test sets. Two factors could account for this
large difference: (1) the maximum span width
of Gold_Best is a lot larger than that of
Predicted (150 vs. 70), (2) the candidate an-
tecedents of Predicted contain a lot of invalid
spans (e.g., a span may start in the middle of a sen-
tence and ends in the middle of another sentence),
while the candidate antecedents of Gold_Best
are restricted to be sentences.

To gain additional insights into the test sets and
Gold_Best’s performances on them, we show in
Table 9 (1) the top five most frequent anaphors in



LIGHT AMI Persuasion Switchboard

Anaphor % F Anaphor % F Anaphor % F Anaphor % F

that 47.5 61.2 that 77.1 42.9 that 64.2 61.8 that 73.8 50.1
it 21.2 40.3 it 8.5 0.0 it 17.9 43.7 it 17.5 15.1

this 11.2 33.5 which 5.9 44.0 this 6.5 64.7 this 1.5 29.8
these terms 1.2 0.0 this 3.4 15.0 the same 3.3 26.1 which 1.1 41.7

more 1.2 0.0 similar effect 0.8 0.0 my research 0.8 0.0 that way 1.1 36.1

Table 9: Discourse deixis resolution: Gold_Best’s CoNLL scores on the top five most frequently occurring
anaphors.

each test set; (2) the percentage of anaphors that
belong to each of the top five anaphors; and (3)
Gold_Best’s performance on each top anaphor.
To measure Gold_Best’s performance on each
top anaphor, we retain all and only those clusters
containing the anaphor in both the gold partition
and the system partition and apply the scorer to the
resulting partitions.

A few points deserve mention. First, for all test
sets, more than 80% of the anaphors are one of
the top five most frequently occurring anaphors.
As can be seen, “that” and “it” are the most fre-
quent anaphors in all test sets, followed by "this"
and "which". As for resolution of the most fre-
quent anaphors, the results for "that" are consis-
tently among the best, and the same can be said for
"which". However, the resolution results of "this"
and "it" are comparatively less consistent across
datasets. For example, the resolution of "it" ap-
pears to be much better on LIGHT and Persuasion
than on AMI and Switchboard.

4 Bridging Resolution

The shared task divides the evaluation of bridging
anaphora resolution into two phases: (1) the Pre-
dicted phase, where a system needs to first identify
all of the entity mentions that likely correspond to
anaphors and antecedents, then perform bridging
resolution on the predicted mentions; and (2) the
Gold phase, which is essentially the same as the
Predicted phase except that bridging resolution is
performed on the given gold mentions. Below we
describe our approach and our official test results.

4.1 Approach

We employ a multi-pass sieve approach to bridging
resolution. Our decision to employ a sieve-based
approach is motivated in part by its successful appli-
cation to bridging resolution in our previous work
(Kobayashi and Ng, 2021), where we achieved
state-of-the-art results by applying a rule-based

sieve followed by a learning-based sieve.
The multi-pass sieve approach to entity coref-

erence resolution, which was originally proposed
by members of the Stanford NLP Group (Raghu-
nathan et al., 2010), received a lot of attention in the
coreference research community after their team
won the CoNLL 2011 shared task on Unrestricted
Coreference Resolution (Lee et al., 2011). Briefly,
a sieve is composed of one or more heuristic rules.
When applied to entity coreference resolution, each
rule extracts a coreference relation between two
mentions based on one or more conditions. For
example, one rule in Stanford’s discourse process-
ing sieve posits two mentions as coreferent if they
are both pronouns and are produced by the same
speaker. Sieves are ordered by their precision, with
the most precise sieve appearing first. To resolve a
set of mentions in a document, the resolver makes
multiple passes over them: in the i-th pass, it at-
tempts to use only the rules in the i-th sieve to
find an antecedent for each mention mk. Specif-
ically, when searching for an antecedent for mk,
its candidate antecedents are visited in an order de-
termined by their positions in the associated parse
tree (Haghighi and Klein, 2009). The partial clus-
tering of the mentions created in the i-th pass is
then passed to the i+1-th pass. Hence, later passes
can exploit the information computed by previous
passes, but a coreference link established earlier
cannot be removed later.

Our sieve-based approach to bridging resolution
differs from the conventional approach described
above in two key aspects. First, rather than or-
der the sieves by precision, we order them so that
they collectively achieve the best performance on
the test sets. Second, later sieves only attempt
to resolve mentions that have not been resolved
by earlier sieves (i.e., earlier decisions will not be
overridden), but otherwise do not exploit the in-
formation computed by earlier sieves. Below we
first present our sieves and then describe how we



perform mention extraction.

4.1.1 Sieves
We employ five learning-based sieves, including
one neural sieve and four "same head" sieves.

4.1.1.1 Neural Sieve
Our neural sieve uses Yu and Poesio’s (2020) multi-
task learning (MTL) based neural bridging resolver,
which has achieved state-of-the-art results on stan-
dard evaluation corpora for bridging resolution.5

Yu and Poesio presented two extensions to Kantor
and Globerson’s (2019) span-based neural entity
coreference model. First, they provided gold men-
tions as input to the model, meaning that the model
needs to learn the span representations but not the
span boundaries. Second, they proposed to train
the model to perform coreference and bridging in
a MTL framework, where the span representation
layer is shared by the two tasks so that informa-
tion learned from one task can be utilized when
learning the other task. Unlike feature-based ap-
proaches, where feature engineering plays a critical
role in performance, this model employs only two
features, the length of a mention and the mention-
pair distance. To adapt the model to the dialogue
domain, we have also added a feature that encodes
the turn distance between mentions, where a turn
is defined as a set of contiguous sentences by the
same speaker.

In preliminary experiments with the MTL model,
we found that resolution recall and precision can
sometimes be fairly imbalanced. We hypothesize
that having more balanced recall and precision
numbers could result in better resolution F-score.
To make recall-precision tradeoffs, we tune the
dummy score, which is a mention-pair score as-
signed by the MTL model to the dummy candidate
antecedent of a candidate anaphor and set to 0 by
default. To understand why tuning the dummy
score allows us to make resolution recall-precision
tradeoffs, recall that the score reflects how likely
the corresponding candidate antecedent will be cho-
sen as the antecedent for the candidate anaphor un-
der consideration. Hence, a higher dummy score
makes it more likely for the anaphoric candidate
to be resolved to the dummy antecedent, thereby
potentially reducing recall and possibly improv-

5We use their publicly available implementation from
https://github.com/juntaoy/dali-bridging.
All model parameters are set to the same values as in Yu and
Poesio (2020) except for training, which will be described in
Section 4.2.

ing precision. In contrast, a lower dummy score
makes it less likely for the anaphoric candidate to
be resolved to the dummy antecedent, thereby po-
tentially reducing precision and improving recall.

4.1.1.2 Same-Head Sieves

Next, we design four sieves, all of which focus on
establishing bridging links between two mentions
that have the same head lemma. We therefore refer
to them as same-head sieves. We focus on same-
head sieves as opposed to different-head sieves
because the former are arguably less challenging
to design than the latter, especially in the Predicted
setting where no gold mentions are given.

Each sieve operates by combining a mention-
pair model (Soon et al., 2001; Ng and Cardie,
2002), which in our case is a binary classifier that
determines whether two mentions having the same
head are involved in a bridging relation, with a
closest-first single-link clustering algorithm, which
selects as the antecedent of an anaphoric candidate
the closest preceding mention that is classified as
its bridging antecedent. Motivated in part by the
same-head bridging resolution rules developed by
Rösiger (2018), we divide the same-head bridg-
ing links into four groups based on whether the
anaphor, mi, is singular or plural and whether the
candidate antecedent, mj , is singular or plural, and
create one sieve for each group of bridging links.
More specifically, the four sieves are: singular-
singular (both mentions are singular), singular-
plural (mi is singular and mj is plural), plural-
singular (mi is plural and mj is singular), and
plural-plural (both mentions are plural).

To train the mention-pair models, we use the
SVM learner implemented in the SVMlight soft-
ware package (Joachims, 1998). The training in-
stances for a sieve include those that (1) correspond
to same-head pairs and (2) match the singular-
ity/plurality conditions on the anaphor and the can-
didate antecedents for the sieve under consideration.
For instance, the training instances for the singular-
singular sieve include only those training instances
for which the mentions have the same head and
are both singular. Positive training instances are
created by pairing each anaphoric candidate with
a gold antecedent or preceding mentions that are
coreferent with the gold antecedent, following Yu
and Poesio (2020). Negative training instances are
created by pairing anaphoric mentions with pre-
ceding mentions that are not correct antecedents
or by pairing non-anaphoric mentions with preced-

https://github.com/juntaoy/dali-bridging


Used by
ID Features Description Motivation S-S S-P P-S P-P

1 premodifiers’
POS tags

the POS tag of the premodifier of mi’s
head, if any, and the POS tag of the pre-
modifier of mj’s head, if any; only three
POS tags are considered: JJ, NN, VBN

presence of certain
types of premodifiers
may influence bridging
decisions

X X X X

2 speaker whether the speakers of mi and mj are
the same

may influence bridging
decisions

X X X X

3 turn distance the turn distance between mi and mj

binned into the following buckets: 1, 2,
3, 4, 5−7, 8−15, 16−31, 32−63, 64+

bridging link is less
likely as distance in-
creases

X X X X

4 conflicting ar-
ticle pairs

features that encode the presence of se-
lect unordered pairs of articles possessed
by mi and mj (see Table 11 for the list)

bridging link is more
likely if the mentions
possess any of these
conflicting pairs

X

5 the-anaphor whether mi starts with "the" could improve resolu-
tion precision

X

6 bare
noun/article
pairs

features that encode whether one men-
tion is a bare noun (phrase) and the other
possesses one of the select articles6

bridging link is more
likely if any of these fea-
tures is fired

X

7 dataset the name of the dataset (e.g., AMI) in
which mi and mj appears

could affect bridging de-
cisions

X X

Table 10: Bridging resolution: features for training the four same-head sieves, namely, the singular-singular (S-
S) sieve, the singular-plural (S-P) sieve, the plural-singular (P-S) sieve, and the plural-plural (P-P) sieve. Each
feature encodes the candidate anaphor, mi, and a candidate antecedent, mj , or the relationship between them. The
presence of a checkmark in row x and column y indicates that feature x is used to train sieve y.

ing mentions. We employ a turn window when
generating training instances, meaning that train-
ing instances will be generated from two mentions
only if the distance between them is within a cer-
tain number of turns. We treat the turn window as
a tunable parameter. Test instances are created in
the same manner as the training instances.

The four mention-pair models are trained using
different features. Table 10 provides a descrip-
tion of these features, the motivation behind their
design, as well as the features used to train each
mention-pair model. We use Stanford CoreNLP
(Manning et al., 2014) and spaCy (Honnibal et al.,
2020) to extract the linguistic information needed
to compute the features. A few features deserve
mention. Feature 4, which is used by the singular-
singular sieve, is a set of features encoding the
presence of conflicting article pairs, which are man-
ually identified via our inspection of the official
development sets. Most conflicting pairs are com-
posed of a definite article and an indefinite article,
so the presence of a conflicting article pair makes
the corresponding mentions less likely to be coref-
erent (because they differ in definiteness). At the
same time, however, the presence of a conflicting
pair makes the corresponding mentions more likely

6The select articles are: some, another, the, these, those,
many, most, and all of the possessive personal pronouns.

the/a, the/the other, the/another, one/the, one/the other,
an/another, that/their, the/your, my/your, an/the, that/next,
the/next, my/a, the/your, the/my, your/my, my/this,
a/your, the/some, this/next, a/our, such a/the, a/your,
some/the, the/more, a/one, a/this, an/her, your/’s,
an/[adj.] bare, a/[adj.] bare, [adj.] bare/the, any/[adj.] bare,
some/[adj.] bare, this/[adj.] bare, our/[adj.] bare,
my/[adj.] bare, some/[adj.] bare

Table 11: Conflicting article pairs. [adj.] bare means
that a mention is a bare expression that is optionally
premodified by an adjective.

to have a bridging relation. The same can be said
for feature 6. Specifically, this group of features is
applicable when one mention is a bare expression
(which indicates genericity) and the other is a defi-
nite expression, and hence their presence makes it
more likely for the two mentions to have a bridging
relation.

4.1.2 Predicted vs. Gold Phases

The systems we developed for the Gold phase and
the Predicted phase differ primarily in mention ex-
traction. For the Predicted phase, the mentions
used by the neural sieve and the same-head sieves
are extracted differently. For the neural sieve, since
Yu and Poesio’s (2020) MTL model assumes as
input the gold mentions in the input document, we
modify their model to enable automatic learning of



span boundaries. For the same-head sieves, we use
the noun phrases heuristically extracted from syn-
tactic parse trees using Stanford CoreNLP (Man-
ning et al., 2014). For the Gold phase, anaphors
and their candidate antecedents are restricted to
be gold mentions. More specifically, during train-
ing, we use the given gold mentions to train the
neural sieve and the same-head sieves, and during
inference, we only resolve those gold mentions that
are predicted to be bridging anaphors. The model
that predicts whether a gold mention is a bridging
anaphor is trained by removing the FFNN layers
for the bridging task and the coreference task from
Yu and Poesio’s (2020) MTL model and changing
the loss function to sigmoid cross entropy, which
is commonly used for binary classification tasks.

4.2 Evaluation
Next, we evaluate our sieve-based approach to
bridging resolution.

4.2.1 Model Training and Parameter Tuning
In this subsection, we describe the data we use to
(pre)train our models (i.e., the MTL model, the four
SVM models, and the anaphor detection model)
and the parameters we tune for these models.
The MTL model To train the MTL model, we
first pre-train a model on the non-dialogue datasets,
including ARRAU RST (train, dev, and test),
Gnome, and Pear, and then fine-tune the resulting
model on the dialogue datasets, including Trains 93
and the dev sets for Trains91, LIGHT, AMI, Persua-
sion, and Switchboard. Pre-training takes 15000
steps and fine-tuning takes an additional 7000 steps
for both the Predicted and Gold settings.

The only parameter we tune for the MTL model
is the dummy score, which we use to make
precision-recall tradeoffs, as mentioned before. We
tried dummy scores of 0, 0.5, 1.0, 1.5, and 2.0 and
selected the score such that the neural sieve alone
achieved the highest resolution F-score on the test
sets.7 Note that selecting the default dummy score
(i.e., 0) is equivalent to not making any adjustment
to the recall and precision scores produced by the
MTL model.
The SVM models We train the SVM models us-
ing a linear kernel on the dev sets of LIGHT, AMI,
Persuasion, and Switchboard. We tune two parame-
ters. The first parameter is the regularization param-

7We could have tuned this parameter so that it maximized
the resolution F-score achieved by the system rather than just
the neural sieve, but could not do that due to time limitations.

eter C, which we search out of {1, 10, 100, 1000}.
The second parameter is the turn window size. We
consider window sizes from 2 to 10. Both param-
eters are tuned to maximize resolution F-score on
the same data on which the models are trained.

Sieve ordering and removal Another parameter
we tune involves sieve application. In particular,
we need to determine (1) the order in which the
sieves should be applied and (2) which SVM sieves
should be retained/removed (we take the neural
sieve as the basic sieve and do not consider remov-
ing it). The ordering that we select is the one that
yields the highest resolution F-score on the test
sets. Owing to time limitations, it is not feasible
to exhaustively try all possible orderings, so we
experiment with the following orderings. For the
Predicted setting, we first determine whether we
should apply all the SVM sieves before or after the
neural sieve, then try to order the SVM sieves, and
finally consider removing certain SVM sieves. For
the Gold setting, we first experiment with as many
ways of ordering the neural sieve and the SVM
sieves as time permits, and then consider removing
certain SVM sieves.

The anaphor detection model We pre-train and
fine-tune the anaphor detection model in the same
way as we pre-train and fine-tune the neural sieve.
Pre-training takes 2000 steps and fine-tuning takes
an additional 2000 steps. The only parameter
we tune is the anaphoric fraction (AF), which we
search out of {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}. Specifically, we select the AF that yields the
highest resolution F-score on the test sets. Note
that the tuning of AF is done after the sieves are
selected and ordered.

Details of the selected hyperparameters can be
found in Appendix A.

4.2.2 Results and Discussion
Table 12 shows the recognition and resolution re-
sults of our sieve-based approach to bridging res-
olution on the test sets. These are also our official
results for the bridging track. For the Predicted
setting, we achieve resolution F-scores of 13.3–
21.9%. For the Gold setting, we achieve resolution
F-scores of 19.6–31.4%. Note that these are entity-
based F-scores, meaning that a bridging anaphor
is considered correctly resolved as long as it is re-
solved to its antecedent or a preceding mention that
is coreferent with its antecedent. As can be seen,
the system performs better in the Gold setting with



LIGHT AMI Persuasion Switchboard

P R F P R F P R F P R F

Predicted Recognition 21.8 44.3 29.2 26.8 32.9 29.5 29.6 38.9 33.6 28.9 32.2 30.4
Resolution 10.4 21.2 14.0 12.1 14.8 13.3 19.3 25.3 21.9 14.5 16.1 15.3

Gold Recognition 34.7 40.7 37.5 37.0 42.2 39.4 43.0 52.1 47.1 37.7 50.9 43.3
Resolution 18.3 21.4 19.7 18.4 21.0 19.6 28.7 34.7 31.4 18.4 24.8 21.1

Table 12: Bridging resolution: recognition and resolution results of our sieve-based approach on the test sets.
These are also our official test set results.

respect to both recognition and resolution. These
results are consistent with our intuition that the
Gold setting is easier than the Predicted setting.

4.2.3 Additional Analysis
To gain additional insights into our approach, we
perform two experiments. Since we did not store
the parameters of the model that produced the of-
ficial test results, we had to retrain the model to
produce the results in these experiments. Hence,
the performance numbers in these experiments may
not be directly comparable to the official test re-
sults.

In the first experiment, we examine the contri-
bution of each sieve to the overall performance of
our approach. The recognition and resolution F-
scores of this experiment are shown in Table 13.
As can be seen, the optimal sieve ordering is de-
termined to be the singular-plural sieve, followed
by the plural-plural sieve, the plural-singular sieve,
and MTL, and finally the singular-singular sieve.
The sieve removal process begins after the optimal
sieve ordering is determined. While sieve ordering
is dataset-independent, sieve removal is performed
in a dataset-dependent manner. As shown in the
table, a checkmark appears next to a sieve if and
only if the corresponding sieve is retained. For the
most part, we can see that each sieve contributes
positively to overall performance. Hence, these
results demonstrate the usefulness of a sieve-based
approach to bridging resolution.

In the second experiment, we examine the effects
of (1) anaphor detection and (2) recall-precision
balancing in the neural sieve on the overall perfor-
mance of our approach by ablating one or both of
these components/factors in our approach. Note
that anaphor detection is applicable in the Gold
setting only. The results of this experiment are
shown in Table 14. For comparison purposes, we
show the results achieved by MTL, the results
of our approach (in "Ours") and the different ab-
lated versions of our approach, including "Ours

w/o AD" (our approach with anaphor detection ab-
lated), "Ours w/o B" (our approach without recall-
precision balancing), and "Ours w/o B&AD" (our
approach with both of them ablated). As we can
see, while the unablated version of our approach
does not achieve the highest recognition F-score on
all datasets, it does achieve the highest resolution
F-score on all of them. A closer examination of the
ablated results in the Gold setting reveals that the
best resolution F-scores can sometimes be achieved
without anaphor detection or recall-precision bal-
ancing, but applying them in combination yields
the best result on all datasets.

5 Conclusions

We presented our systems we developed for the
three tracks of the CODI-CRAC 2021 shared task,
namely entity coreference resolution, discourse
deixis resolution, and bridging resolution. Our
team ranked second for entity coreference reso-
lution, first for discourse deixis resolution, and
first for bridging resolution. For entity coreference
resolution, our analysis of our three approaches
(Pipeline, End-to-End, as well as its "no constraint"
variant) revealed that there is a perfect correlation
between entity coreference performance and men-
tion detection, suggesting that coreference perfor-
mance can further be improved by improving men-
tion detection. For discourse deixis resolution, our
analysis revealed that (1) contrary to common wis-
dom, anaphor detection was not always easier in
the Gold setting (where gold mentions were given)
than the Predicted setting; and (2) substantial gains
could be achieved simply by removing the single-
ton clusters from the output prior to scoring, espe-
cially in the Predicted setting. For bridging reso-
lution, our results suggested that the Gold setting
is easier than the Predicted setting, and our analy-
sis showed that the sieves, anaphor detection, and
recall-precision balancing all contributed positively
to overall system performance. Finally, for a fur-



LIGHT AMI Persuasion Switchboard
Sieve Recog Resol Sieve Recog Resol Sieve Recog Resol Sieve Recog Resol

Predicted
Sing-plur 3 1.4 0.9 3 3.3 1.5 – – – –

+ Plur-plur 3 2.2 1.3 – – – – – –
+ Plur-sing – – – – – – – –

+ MTL 3 27.9 13.2 3 26.0 12.5 3 33.9 21.0 3 26.0 13.5
+ Sing-sing – – 3 26.3 12.7 3 34.7 21.2 – –

Gold
Sing-plur 3 1.4 1.0 3 2.8 1.8 3 3.4 2.0 3 1.7 1.0

+ Plur-plur 3 2.8 1.9 – – – – – –
+ Plur-sing 3 3.7 2.3 3 6.0 3.3 – – 3 2.5 1.5

+ MTL 3 38.2 21.4 3 37.2 18.3 3 47.7 32.5 3 44.6 21.5
+ Sing-sing – – – – – – 3 44.6 21.6

Table 13: Bridging resolution: recognition and resolution F-scores of our sieve-based approach on the test sets
using the optimal sieve ordering and combination determined on development data. The models used in these
experiments are (re)trained after the official submission, so these performance numbers may not be directly com-
parable to our official test set results.

LIGHT AMI Persuasion Switchboard
P R F P R F P R F P R F

Predicted

Recognition
MTL 22.9 36.1 28.0 23.5 32.2 27.2 24.0 56.3 33.7 22.4 45.1 29.9
Ours w/o B 22.5 36.9 27.9 23.5 33.0 27.4 23.8 57.6 33.7 22.4 45.1 29.9
Ours 22.5 36.9 27.9 25.8 26.9 26.3 29.6 42.0 34.7 27.5 24.7 26.0

Resolution
MTL 10.7 16.9 13.1 10.0 13.7 11.6 14.1 33.0 19.8 9.8 19.7 13.0
Ours w/o B 10.6 17.3 13.2 10.1 14.2 11.8 13.9 33.7 19.7 9.8 19.7 13.0
Ours 10.6 17.3 13.2 12.4 13.0 12.7 18.1 25.7 21.2 14.2 12.8 13.5

Gold

Recognition

MTL 34.5 50.8 41.1 33.7 37.8 35.6 35.5 63.5 45.5 35.2 53.8 42.6
Ours w/o B&AD 34.6 51.3 41.4 33.6 38.1 35.7 35.5 63.9 45.6 35.0 54.2 42.5
Ours w/o B 35.9 49.2 41.5 38.0 36.3 37.2 36.7 62.5 46.2 39.0 52.1 44.6
Ours w/o AD 39.7 37.1 38.4 33.6 38.1 35.7 41.4 54.9 47.2 35.0 54.2 42.5
Ours 40.4 36.1 38.2 38.0 36.3 37.2 42.4 54.5 47.7 39.0 52.1 44.6

Resolution

MTL 16.7 24.6 19.9 16.4 18.3 17.3 23.3 41.7 29.9 16.9 25.8 20.4
Ours w/o B&AD 17.2 25.5 20.6 16.6 18.8 17.6 23.3 42.0 30.0 16.9 26.2 20.6
Ours w/o B 18.0 24.6 20.8 18.7 17.9 18.3 24.2 41.3 30.6 18.9 25.2 21.6
Ours w/o AD 22.2 20.7 21.4 16.6 18.8 17.6 28.0 37.2 31.9 16.9 26.2 20.6
Ours 22.6 20.2 21.4 18.7 17.9 18.3 28.9 37.2 32.5 18.9 25.2 21.6

Table 14: Bridging resolution: effect of anaphor detection and recall-precision balancing on the recognition and
resolution performance of our sieve-based approach on the test sets. The models used in these experiments are
(re)trained after the official submission, so these performance numbers may not be directly comparable to our
official test set results.

ther analysis of our systems and other participating
systems, we refer the reader to our cross-team anal-
ysis paper (Li et al., 2021), which also contains a
discussion of the lessons we learned and our vision
of how the field should move forward.
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A Model Hyperparameters

Entity coreference:

• End-to-end (with and without constraints): the
model is trained using a type loss coefficient
of 0.2.

• Pipeline: the type prediction model uses a
type loss coefficient of 500 and the corefer-
ence model uses a type loss coefficient of 0.2.

Discourse deixis:

• Predicted: for Persuasion, the type loss is 0.2;
for other datasets, the type loss is 0.5.

• Gold:T1,CA1,RC+: for all datasets, the type
loss is 0.2.

• Gold:T1,CA2,RC+: for Persuasion and AMI,
the type loss is 0.2; for Light and Switchboard,
the type loss is 0.5.

• Gold:T1,CA1,RC-: for all datasets, the type
loss is 0.2.

• Gold:T2,CA1,RC+: for all datasets, the type
loss is 0.2.

• Gold:T2,CA2,RC+: for Switchboard, the type
loss is 0.2; for other datasets, type loss is 0.5.

• Gold:T2,CA2,RC-: for Persuasion, the type
loss is 0.5; for other datasets, the type loss is
0.2.

Bridging:

• Neural sieve: For the Predicted setting, the
selected dummy scores are: 0.0 for LIGHT,
0.5 for AMI, 2.0 for Persuasion, and 1.5 for
Switchboard. For the Gold setting, the scores
are: 1.0 for LIGHT, 0.0 for AMI, 1.0 for Per-
suasion, and 0.0 for Switchboard.

• SVM sieves: For the singular-singular sieve,
the turn window sizes are 8 for the Predicted
setting and 4 for the Gold setting. For each of
the remaining sieves, the turn window size is
the same for both settings, namely 10 for the
singular-plural sieve, 5 for the plural-singular
sieve, and 6 for the plural-plural sieve. The
SVM regularization parameter is 100 for all
SVM models.

• Optimal sieve ordering for each setting and
the sieves selected for each dataset ("Lgt",
"Prssn", and "Swbd" correspond to LIGHT,
Persuasion, and Switchboard respectively):

Lgt AMI Prssn Swbd
Predicted

Sing-plur 3 3
+ Plur-plur 3
+ Plur-sing
+ MTL 3 3 3 3
+ Sing-sing 3 3

Gold
Sing-plur 3 3 3 3
+ Plur-plur 3
+ Plur-sing 3 3 3
+ MTL 3 3 3 3
+ Sing-sing 3

• Anaphor detection model: The selected ratio
is 0.4.


