
Chinese Noun Phrase Coreference Resolution:
Insights into the State of the Art

Chen CHEN Vincent NG
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688, USA

{yzcchen,vince}@hlt.utdallas.edu

Abstract
Compared to the amount of research on English coreference resolution, relatively little work has
been done on Chinese coreference resolution. Worse still, it has been difficult to determine the
state of the art in Chinese coreference resolution, owing in part to the lack of a standard evaluation
dataset. The organizers of the CoNLL-2012 shared task, Modeling Unrestricted Multilingual
Coreference in OntoNotes, have recently addressed this issue by providing standard training and
test sets for developing and evaluating Chinese coreference resolvers. We aim to gain insights into
the state of the art via extensive experimentation with our Chinese resolver, which is ranked first
in the shared task on the Chinese test data.

Title and Abstract in Chinese
中文名词短语共指消解：探究研究现状

Ϣ䞣ⱘ㣅文共指消解研究Ⳍ↨ˈ䩜ᇍ中文ⱘ共指研究Ⳍᇍ䕗ᇥǄ㊳㊩ⱘᰃˈ中文共
指消解ᕜ䲒⹂ᅮᔧࠡⱘ研究现状ˈ䚼ߚॳᰃ㔎ᇥᷛޚⱘ䆘⌟䲚ǄCoNLL-2012共ৠӏࡵ
˄ OntoNotesϞᇍ᮴䰤ࠊ语㿔共指消解ⱘᓎ˅ⱘ㒘㒛㗙解އњ䖭Ͼ䯂乬ˈҪӀᦤկ
њᷛ࣪ޚⱘ䆁㒗䲚⌟䆩䲚կᓔথ䆘ᅮ中文共指消解㋏㒳Ǆ៥Ӏⱘ㋏㒳中文⌟䆩䲚ⱘ
䆘⌟中ᥦ名ϔǄᴀ文ॳ㋏㒳ⱘ⸔Ϟخњᑓ⊯ⱘᅲ偠ˈҹ探究中文共指消解ⱘ研究现
状Ǆ

Keywords: coreference resolution, anaphora resolution, Chinese language processing,
OntoNotes, CoNLL shared task.

Keywords in Chinese: 共指消解,指ҷ消解,中文语㿔໘⧚, OntoNotes, CoNLL共ৠ
ӏࡵ.



1 Introduction
Coreference resolution is the task of determining which noun phrases (NPs) in a text refer to the
same real-world entity. Compared to the amount of research on English coreference resolution,
relatively little work has been done on Chinese coreference resolution. Worse still, it has been
difficult to determine the state of the art in Chinese coreference resolution. The reason can be
attributed in part to the lack of a standard evaluation dataset: while recently developed Chinese
resolvers are typically evaluated on the ACE datasets, different researchers have used different
splits of the ACE data for training and testing, making performance comparisons difficult.1 The
organizers of the CoNLL-2012 shared task, Modeling Unrestricted Multilingual Coreference in
OntoNotes, have recently addressed this issue by providing free access to the training and test sets
used in the official evaluation (Pradhan et al., 2012).

Our goal in this paper is to gain a better understanding of the state of the art in Chinese coreference
resolution by providing an extensive empirical analysis of our Chinese resolver, which is ranked first
on the Chinese subtask of the CoNLL-2012 shared task. Briefly, our resolver adopts a hybrid rule-
based/machine learning approach to coreference resolution, extending the successful rule-based
multi-pass sieve approach (Raghunathan et al., 2010; Lee et al., 2011) with lexical features that
have proven useful in machine learning approaches (Rahman and Ng, 2011a, 2011b). Our analysis
is focused on four issues.

1. Mention detection. Previous work has shown that the quality of the extracted mentions
(i.e., the NPs participating in a coreference chain) plays an important role in the performance
of a resolver. To what extent is the performance of our resolver limited by the recall and
precision of our mention detector? To improve the precision of our mention detector, we
need to improve its mention pruning strategy, but to what extent is its precision limited by
our current mention pruning strategy? To improve the recall of our mention detector, we
need to improve the extraction of mentions from syntactic parse trees, but to what extent is
its recall limited by themention extraction strategy versus the quality of the syntactic parses?

2. Preprocessing. After mention detection, we need to compute features based on the extracted
mentions using preprocessing tools such as syntactic parsers and named entity (NE) recog-
nizers. To what extent is the performance of our resolver limited by the correctness of the
output produced by these tools?

3. The coreference algorithm. To better understand our hybrid approach, we focus on three
questions. First, do we really need a hybrid approach? In other words, will our approach
work equally well without the learning component? Second, how much does each sieve in
the multi-pass sieve approach contribute to overall performance? Third, how important is the
ordering of the sieves as far as performance is concerned?

4. Comparison with classifier-based approaches. In the shared task, our resolver outper-
formed those systems that adopted the popularly-used mention-pair (MP) model (Soon et al.,
2001), a classifier trained to determine whether two given NPs are coreferent. However,
we cannot claim that our coreference algorithm is superior to the MP model because we do
not know which component(s) of our resolver (e.g., mention detection, feature computation,
resolution) contributed to the superiority. In fact, much of the previous work focuses on com-
paring systems rather than models/methods. We determine whether our resolution method is
better than the MP model if both are given the same set of mentions and features.

1One may wonder why researchers did not simply follow the same train-test split used in the official ACE evaluations.
The reason is that only the training sets used in the official evaluations are released to the public.



Docs Mentions Chains Mentions/Chain
Train 1391 102854 28257 3.6

Development 172 3875 14183 3.7
Test 166 3559 12801 3.6

Table 1: Statistics of the training, development and test sets.

2 Datasets and Evaluation Measures
The training, development and test sets that we use in our experiments are the same as those in
the official CoNLL-2012 shared task evaluation (see Table 1 for their statistics). As we will see
in the next section, we use the training set for learning probabilities (e.g., how likely is it that two
mentions are coreferent?), the development set for tuning thresholds, and the test set for evaluating
our resolver.

We follow the method adopted by the shared task for evaluating a resolver. Specifically, the score
of a resolver is the unweighted average of the F-measure scores computed by three scoring pro-
grams (MUC, B3, and entity-based CEAF), whose implementation is provided by the shared task
organizers. It is worth mentioning that (1) a resolver is not rewarded for correctly identifying sin-
gleton mentions; and (2) a mention is considered correctly extracted if and only if there is an exact
phrase match between the gold mention and the extracted mention. In addition, elided pronouns,
copulars, and appositive constructions are excluded in this (and the official shared task) evaluation.

3 Our Coreference Resolver
In this section, we give an overview of our two-step resolver as used for the shared task (see Chen
and Ng (2012) for details). Note that linguistic annotations such as word segmentation and syntactic
parses come with the shared task datasets and do not need to be computed separately.

Step 1: Mention Detection. To build a mention detector, we employ a two-step approach. First,
in the extraction step, we extract mentions from all the NP and QP nodes in syntactic parse trees.
Then, in the pruning step, we identify and filter erroneously extracted mentions by employing two
types of pruning. In heuristic pruning, we use simple heuristics to prune erroneous mentions. For
instance, we prune a candidate mention mk if it is an interrogative pronoun or an NE that is a
PERCENT or QUANTITY. In learning-based pruning, we prune mk if the probability that it is a
mention in the training data is less than tC , where tC is a threshold whose value is determined using
the development set.

Step 2: Sieve-Based Coreference Resolution. A sieve is composed of one or more manually-
designed rules for establishing the coreference relation between two mentions. A sieve-based re-
solver is composed of a set of sieves ordered by their precision, with the most precise sieves ap-
pearing first. When given a text, the resolver makes multiple passes over it: in the i-th pass, it uses
only the rules in the i-th sieve to establish coreference relations.

Our resolver is composed of 10 sieves. The Chinese Head Match (CHM) sieve identifies the
coreference relation between two same-head mentions where one is embedded within the other
in newswire articles. The Discourse Processing (DP) sieve resolves mentions, especially first-
and second-person pronouns, in dialogues. The Exact String Match (ESM) sieve resolves a non-
pronominal mention to a mention with the same string. The Precise Constructs (PC) sieve posits
two mentions as coreferent based on lexical and syntactic information, such as whether one is an
acronym of the other and whether the mentions are in an appositive construction. In addition,
we incorporated Chinese-specific rules for determining whether one mention is an abbreviation of



the other based on NE information. Strict Head Match A−C (SHMA−C) are three head match
sieves that contain progressively less precise coreference rules based on headmatching. TheProper
Head Match (PHM) is a relaxed version of Strict Head Match C applicable only to proper nouns.
The Pronouns (Pro) sieve contains rules for resolving pronouns based on features that we learned
from the training set, such as gender and number. Finally, the Lexical Pair (LP) sieve identifies
coreference relations based on lexical features. For example, one rule specifies that two mentions
are coreferent if the probability that their heads are coreferent according to the training data is
greater than tHPU , where tHPU is a threshold determined using the development set.

Note that the usual linguistic constraints on non-coreference are applied before a rule in any of
the sieves posits two mentions as coreferent. These constraints are implemented as a single non-
coreference rule, which specifies that two mentions mi and m j cannot be coreferent if one of the
following five conditions holds: (1) they satisfy the i-within-i constraint (Haghighi and Klein,
2009); (2) they refer to different speakers in a dialogue despite being the same string; (3) they are in
a copular construction; (4) mi is composed of two NPs connected by an "and" and m j is one of the
conjuncts; and (5) the probability that mi and m j are coreferent (as calculated from training data)
falls below a certain threshold.

Step 3: Postprocessing. We postprocess the coreference partition before sending it to the scor-
ing program. Specifically, we remove from it (1) all coreference links between two mentions in
appositive constructions and (2) singleton clusters.

4 Evaluation
In this section, we conduct extensive experimentation with our resolver in an attempt to shed light
on the four issues raised in the introduction.

4.1 Mention Detection and Preprocessing
We begin by describing the experimental setup related to the first two issues.

The first issue concerns how the performance of our resolver is affected by the quality of the men-
tions. Stoyanov et al. (2009) show that for English coreference, results obtained using goldmentions
(i.e., mentions taken directly from gold-standard coreference annotations) are substantially better
than those produced using system mentions (i.e., automatically extracted mentions). While we will
explore gold mentions in our Chinese experiments, we seek to gain a better understanding of this
issue by considering three types of system mentions. The first type, system mentions from system
parses with imperfect pruning, is typically what researchers use to produce end-to-end coreference
results. It is composed of mentions extracted from system parse trees (i.e., automatically gener-
ated parse trees) and pruned using the method described in Step 1 of Section 3. The second type,
system mentions from system parses with perfect pruning, is the same as the first type except that
an oracle is used to prune all the erroneous mentions. The third type, system mentions from gold
parses with imperfect pruning, is the same as the first type except that the mentions are extracted
from gold-standard parse trees. Experiments involving the last two types of mentions will enable
us to determine the role of pruning and syntactic parsing in coreference resolution.

The second issue concerns the impact of preprocessing. In particular, we address two questions.
First, to what extent will the performance of our resolver be affected if the linguistic features used
to create the rules in the sieves are computed based on system rather than gold parse trees? Second,
to what extent will its performance be affected if the features are computed based on system rather



Feature Computation MUC B3 CEAFe Avg
Mention Type Parse Type NE Type R P F R P F R P F F
System System NEs 62.5 67.1 64.7 71.2 78.4 74.6 53.6 49.1 51.3 63.5
Mentions System Parses Gold NEs 62.2 67.0 64.5 71.0 78.6 74.6 53.5 48.9 51.1 63.4
from System No NEs 59.9 64.7 62.2 69.7 77.8 73.6 53.4 48.7 51.0 62.2
Parses with System NEs 62.4 67.2 64.8 71.0 78.4 74.6 53.8 49.0 51.3 63.5
Imperfect Gold Parses Gold NEs 62.2 67.2 64.6 70.8 78.7 74.5 53.7 48.8 51.1 63.4
Pruning No NEs 60.0 65.0 62.4 69.6 77.9 73.5 53.5 48.7 51.0 62.3
System System NEs 65.4 92.5 76.6 65.8 92.4 76.8 79.1 44.9 57.3 70.3
Mentions System Parses Gold NEs 65.4 92.6 76.7 65.6 92.7 76.8 79.2 44.9 57.3 70.3
from System No NEs 64.3 91.6 75.6 64.3 92.2 75.8 78.8 44.4 56.8 69.4
Parses with System NEs 65.5 92.6 76.7 65.9 92.4 76.9 79.2 45.0 57.4 70.3
Perfect Gold Parses Gold NEs 65.5 92.7 76.8 65.7 92.7 76.9 79.3 45.0 57.4 70.4
Pruning No NEs 64.5 91.7 75.7 64.4 92.2 75.9 78.9 44.5 56.9 69.5
System System NEs 73.5 74.3 73.9 76.3 80.5 78.3 58.2 57.3 57.8 70.0
Mentions System Parses Gold NEs 73.3 74.4 73.9 76.1 80.9 78.4 58.3 57.1 57.7 70.0
from Gold No NEs 70.8 72.1 71.4 74.4 79.9 77.0 58.0 56.4 57.2 68.5
Parses with System NEs 74.8 74.9 74.9 77.1 80.8 78.9 58.6 58.5 58.6 70.8
Imperfect Gold Parses Gold NEs 74.6 75.0 74.8 76.9 81.2 79.0 58.6 58.1 58.4 70.7
Pruning No NEs 72.1 72.8 72.5 75.3 80.2 77.7 58.4 57.6 58.0 69.4

System NEs 78.1 93.2 85.0 75.0 91.6 82.5 84.0 59.2 69.4 79.0
System Parses Gold NEs 78.1 93.4 85.0 74.8 92.0 82.5 84.2 59.1 69.4 79.0

Gold No NEs 76.6 92.4 83.8 73.0 91.4 81.2 83.6 57.9 68.4 77.8
Mentions System NEs 79.1 93.6 85.7 75.8 91.9 83.1 84.8 60.4 70.6 79.8

Gold Parses Gold NEs 79.2 93.7 85.8 75.7 92.3 83.2 84.9 60.5 70.6 79.9
No NEs 77.9 92.9 84.7 74.0 91.7 81.9 84.3 59.5 69.7 78.8

Table 2: Impact of the quality of mentions, parse trees and NEs on coreference performance.

than gold NE information, and what if no NE information is used by the resolver?2 We hypothesize
that coreference performance will drop when gold parses and NEs are replaced with their system
counterparts, since these two types of linguistic annotations are used extensively by the rules in our
resolver: syntactic parses are used to identify copular and appositive constructions, find speakers in
dialogue, and determine the modifier(s) of a mention, whereas NEs are used in the Chinese-specific
abbreviation rules in the Precise Constructs sieve, the pronoun resolution rules (for computing the
animacy of an NP), and some of the relaxed head matching rules in the Proper Head Match sieve.

Considering both issues together, we have 24 coreference experiments resulting from different com-
binations of four types of mentions (gold mentions and the three types of system mentions), two
types of syntactic parse trees (gold and system), and three types of NE annotations (gold, system,
and none). Table 2 shows the test results of these 24 experiments, which are organized as follows.
There are four blocks of results corresponding to the four types of mentions (column 1); for each
type of mentions, we conduct experiments using two types of parses (column 2) and three types of
NEs (column 3). Hence, each row of the table corresponds to one of these 24 experiments. Results
are reported in terms of the recall (R), precision (P), and F-score provided by three scoring programs
(MUC, B3, CEAFe) as well as the unweighted average of their F-scores (Avg).

Comparing the first two blocks of results, which differ in terms of whether imperfect or perfect
pruning is applied to system mentions extracted from system parses, we see that coreference results
with perfect pruning surpass those with imperfect pruning by an Avg F-score of 6.8−7.2%. Not

2Two points concerning NE annotations deserve mention. First, when "no NE" is used, all the coreference rules that
depend on NE information are removed from the sieves. We consider the "no NE" option because the use of NEs is not
permitted in the official closed track evaluation in the shared task. Second, system NEs are not provided by the shared task
organizers. To obtain system NEs for the development and test sets, we employ a CRF-based NE recognizer trained on the
gold NEs in the training set using 18 lexical, semantic, and gazetteer-based features.



No Pruning Imperfect Pruning Perfect Pruning
Mention Type R P F R P F R P F
System mentions from system parses 86.1 33.0 47.7 83.5 43.7 57.4 86.1 100 92.5
System mentions from gold parses 98.7 36.6 53.4 96.3 48.9 64.8 98.7 100 99.3
Gold mentions 100 100 100 --- --- --- --- --- ---

Table 3: Mention detection results.

surprisingly, improvements stem primarily from increases in precision according to MUC and B3,
since these pruned mentions will not be (erroneously) resolved.3

A related question is: how well does our pruning method perform at the mention detection level?
To answer this question, we show in Table 3 the results of mention detection when different mention
extraction methods are combined with different mention pruning methods. From row 1, we can see
that our (imperfect) pruning method leaves a lot of room for improvement: currently it only yields
a precision of 43.7%. However, row 1 also shows that our pruning method is somewhat useful:
pruning increases precision by more than 10% with only a 3% drop in recall.
Conclusion 1: Improving the mention pruning algorithm can substantially improve coreference performance.

Comparing the first and third blocks of results, we see that coreference results obtained using men-
tions from gold parse trees surpass those obtained using mentions from system parse trees by an
Avg F-score of 6.3−7.3%. Additional insights can be gained by considering the mention detection
results in Table 3. From row 2, we can see that without pruning, we manage to recall 98.7% of the
mentions from gold parse trees using our simple mention extraction heuristic. We believe that the
high recall can be attributed to the fact that the manual coreference annotations in OntoNotes were
performed on top of gold parse trees.
Conclusion 2: Improving the recall of mention detection can substantially improve coreference performance.

Note, however, that conclusion 2 does not necessarily hold true for other languages: Pradhan et al.
(2012) found in their gold mention boundaries experiments that merely increasing the recall of
mention detection does not lead to improvements in coreference performance for English and Ara-
bic.4 We hypothesize that this can be attributed to the failure of the resolution algorithm to find
the correct antecedent in these languages despite the increase in the number of correct mentions.
Additional experiments are needed to precisely determine the reason, however.

Comparing the third and fourth blocks of results, we see that coreference results obtained using gold
mentions surpass those obtained using system mentions from gold parse trees by an Avg F-score
of 9.0−9.4%. This improvement is accompanied by a simultaneous rise in recall and precision
for MUC and B3. This should not be surprising: precision increases because erroneous mentions
are pruned and will not be resolved, and recall increases because mentions are more likely to be
correctly resolved due to the reduction in the number of candidate antecedents.

Comparing the first and fourth blocks of results, the improvement is even more dramatic: coref-
erence results obtained using gold mentions surpass those obtained using system mentions from
system parse trees by an Avg F-score of 15.5−16.5%. An interesting question is: how much of
this difference can be attributed to the recall versus the precision of our mention detector? We can
answer this question by comparing the third and fourth blocks of results in Table 2 again. Row 2
of Table 3 says that 96.3% of the gold mentions are used when producing the third block of results

3Note that results obtained from CEAFe do not show the same trend as those from MUC and B3 owing to the somewhat
counterintuitive definitions of CEAFe recall and precision, but space limitations preclude further discussion.

4We repeated the experiments in Table 2 on the mentions with gold boundaries and obtained results that are identical to
those of the system mentions obtained from system parses.



in Table 2. Hence, the difference between the third and fourth blocks of results in Table 2 can be
attributed mostly to the precision of our mention detector. Returning to our question with this as-
sumption, we can attribute approximately 58% of the difference (i.e., 9.0−9.4 of 15.5−16.5) to the
precision of the mention detector and the remaining 42% to its recall.5

Conclusion 3: Improving both the recall and precision of mention detection can yield substantially better
coreference performance than improving one of them.

Next, we examine how coreference performance varies when different types of parse trees and NEs
are used for feature computations.6 Regardless of which of the four types of mentions are used, we
can see from Table 2 that (1) replacing gold parses with system parses and/or replacing gold NEs
with system NEs for feature computations has little impact on coreference performance; (2) Avg
F-score drops by 1.0−1.5% when NE information is not used. A closer examination of the results
reveals that (1) NE information is particularly useful in establishing a mention and its abbreviated
form; and (2) the insignificant difference between the results using gold NEs and those using system
NEs can be attributed to the fact that our NE recognizer achieves reasonably good F-scores ( 80%)
for PERSON and GPE, the NE classes that our resolver relies on.7

Conclusion 4: Improving syntactic parsing and NE recognition for the sake of feature computation is unlikely
to improve coreference performance.

4.2 The Coreference Algorithm
Our next set of experiments aims to address three questions concerning our rule-based and learning-
based coreference algorithm. All experiments in this subsection are performed with system men-
tions extracted from system parse trees, with features computed over system parses and NEs.

First, how important is the ordering of the sieves? Raghunathan et al. (2010) implicitly suggest
that ordering matters by noting that the sieves should be arranged in decreasing order of precision,
although they never show how important this particular ordering is to coreference performance. To
answer this question, we randomly order the sieves in our resolver and measure the performance
of the resulting resolver on the test set. Results averaged over five random orderings are shown in
row 2 of Table 4. For convenience, the results of our unperturbed resolver are shown in row 1. As
we can see, Avg F-score decreases significantly by 1.2% when the sieves are ordered randomly.
Conclusion 5: The ordering of the sieves in our resolver is important.

Second, how important is the learning component of our resolver? To answer this question, we
remove all components of our resolver that are learning-based, including (1) the String Pair sieve;
(2) the last condition of the non-coreference rule; and (3) learning-based mention pruning. Test
results of the resulting resolver are shown in row 3 of Table 4. In comparison to row 1, Avg F-score
drops significantly by 0.6%.
Conclusion 6: The learning component plays a significant role in our hybrid approach.

Finally, how much performance gain is provided by each sieve? To answer this question, we start
with only the first sieve and then add the sieves incrementally to our resolver. The Avg F-score
obtained after adding each sieve is shown in Table 5. As we can see, Chinese Head Match and
Exact String Match contribute the most to performance, followed by Discourse Processing.

5Note that this estimation is very rough: it does not take into account the fact that it tends to be harder to get from, say,
80% F-score to 90% F-score than it is to get from 70% F-score to 80% F-score.

6Note that we distinguish between using parse trees for feature computations versus using them for mention extraction.
Hence, we can compute features from system parses while extracting mentions from gold parses.

7All statistical significance test results in this paper are obtained using the paired t-test, with p < 0.05.



MUC B3 CEAFe Avg
System Variation R P F R P F R P F F
Our resolver 62.5 67.1 64.7 71.2 78.4 74.6 53.6 49.1 51.3 63.5
With randomly ordered sieves 60.8 65.5 63.1 69.9 77.2 73.3 52.8 48.2 50.4 62.3
Without learning 61.6 66.7 64.1 70.4 78.2 74.1 53.2 48.3 50.6 62.9

Table 4: Results on perturbing the components of our resolver.
Sieve CHM DP ESM PC SHMA SHMB SHMC PHM Pro SP
Avg F 32.6 39.0 56.8 58.2 58.9 59.7 59.7 59.8 63.3 63.5

Table 5: Avg F-scores of our resolver as sieves are incrementally inserted.
MUC B3 CEAFe Avg

R P F R P F R P F F
Our resolver 62.5 67.1 64.7 71.2 78.4 74.6 53.6 49.1 51.3 63.5
MP (atomic features) 56.7 54.2 55.4 71.2 70.0 70.6 41.9 44.0 42.9 56.3
MP (atomic features + non-coreference) 56.2 55.3 55.7 70.6 71.1 70.8 42.7 43.5 43.1 56.5
MP (rules as features) 55.1 62.8 58.7 66.4 78.4 71.9 52.3 45.2 48.5 59.7
MP (rules as features + non-coreference) 54.8 63.9 59.0 66.0 79.4 72.1 53.2 44.8 48.6 59.9

Table 6: Comparison of our resolver with the mention-pair model.

4.3 Comparison with the Mention-Pair Model
Our final set of experiments aims to compare our resolver with theMPmodel. To implement theMP
model, we use SVMl i ght (Joachims, 1999) for classifier training with the instances created using
Soon et al.'s (2001) method. We then apply the resulting classifier in combination with Soon et al.'s
closest-first clustering algorithm to create a coreference partition for each test document.

For a fairer comparison, both models are given the same set of mentions (i.e., system mentions
extracted from system parse trees). To ensure that they are given the same set of features, we
experiment with two methods of creating features for the MP model from the coreference rules
used by our resolver. In the first method, we create one binary feature from each rule used in the
sieves, setting its value to 1 if and only if the corresponding rule was used to establish a coreference
link between the two mentions in our resolver. In the second method, we create one binary feature
from each distinct rule condition8; employing these atomic features will enable us to determine
whether the difference in performance between our resolver and the MP model can be attributed
to the way the SVM combines features. Recall that our resolver also employs lexical features and
the non-coreference rule. To ensure fairness, we incorporate lexical features into the MP model's
feature set by creating one binary feature from each head, head pair and string pair found in the
training data. In addition, we employ the non-coreference rule as a hard constraint for the closest-
first clustering algorithm: the clustering algorithm cannot posit two mentions as coreferent if they
satisfy the non-coreference rule, even if the classifier posits them as coreferent.

Given two feature generation methods and a choice of whether the non-coreference constraint is
applied in the clustering process, we have four experiments with the MP model. Their results are
shown in rows 2−5 of Table 6, and the results of our resolver are shown in row 1 for convenience.
As we can see, our resolver is significantly better than the MP models that use rules as features,
which in turn are significantly better than those that use atomic features. However, the use of the
non-coreference constraint has an insignificant impact on the performance of the MP model.
Conclusion 7: The SVM used to train the MP model is unable to combine features as well as a human.

8Recall that each rule is of the form A1 ∧ A2 ∧ · · ·An, where each Ai is a condition that needs to be satisfied in order for
the rule to posit two mentions as coreferent. If Ai appears in multiple rules, only one binary feature will be created.



Acknowledgments
We thank the three anonymous reviewers for their invaluable comments on an earlier draft of the
paper. This work was supported in part by NSF Grants IIS-1147644 and IIS-1219142.

References
Chen, C. and Ng, V. (2012). Combining the best of two worlds: A hybrid approach to multilin-
gual coreference resolution. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning: Shared Task,
pages 56−63.
Haghighi, A. and Klein, D. (2009). Simple coreference resolution with rich syntactic and semantic
features. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language
Processing, pages 1152−1161.
Joachims, T. (1999). Making large-scale SVM learning practical. In Scholkopf, B. and Smola,
A., editors, Advances in Kernel Methods - Support Vector Learning, pages 44−56. MIT Press.

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., and Jurafsky, D. (2011). Stanford's
multi-pass sieve coreference resolution system at the CoNLL-2011 shared task. In Proceedings
of the Fifteenth Conference on Computational Natural Language Learning: Shared Task, pages
28−34.
Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., and Zhang, Y. (2012). CoNLL-2012 shared task:
Modeling multilingual unrestricted coreference in OntoNotes. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning: Shared Task, pages 1−40.
Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky, D., and Man-
ning, C. (2010). A multi-pass sieve for coreference resolution. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pages 492−501.
Rahman, A. and Ng, V. (2011a). Coreference resolution with world knowledge. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 814−824.
Rahman, A. and Ng, V. (2011b). Narrowing the modeling gap: A cluster-ranking approach to
coreference resolution. Journal of Artificial Intelligence Research, 40:469−521.
Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A machine learning approach to coreference
resolution of noun phrases. Computational Linguistics, 27(4):521−544.
Stoyanov, V., Gilbert, N., Cardie, C., and Riloff, E. (2009). Conundrums in noun phrase coref-
erence resolution: Making sense of the state-of-the-art. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 656−664.


	Introduction
	Datasets and Evaluation Measures
	Our Coreference Resolver
	Evaluation
	Mention Detection and Preprocessing
	The Coreference Algorithm
	Comparison with the Mention-Pair Model


