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Abstract

Despite the successes of distant supervision approaches to relation extraction in the news do-

main, the lack of a comprehensive ontology of medical relations makes it difficult to apply such

approaches to relation classification in the medical domain. In light of this difficulty, we propose

an ensemble approach to this task where we exploit human-supplied knowledge to guide the de-

sign of members of the ensemble. Results on the 2010 i2b2/VA Challenge corpus show that our

ensemble approach yields a 19.8% relative error reduction over a state-of-the-art baseline.

1 Introduction

Medical relation (MR) classification, an information extraction task in the clinical domain that was re-

cently defined in the 2010 i2b2/VA Challenge (Uzuner et al., 2011), involves determining the relation

between a pair of medical concepts (problems, treatments, or tests). The ability to classify MRs is indis-

pensable to sound automatic analysis of patient health records.

While MR classification is a relatively new task, there has been a lot of work on extracting semantic

relations from news articles. Supervised approaches train classifiers on data annotated with the target

relation types, typically using a rich feature set (Zhou et al., 2005; Surdeanu and Ciaramita, 2007; Zhou et

al., 2007). Since obtaining annotated data is a time-consuming and labor-intensive process, researchers

have considered unsupervised approaches (Shinyama and Sekine, 2006; Banko et al., 2007). While

unsupervised approaches can use a large amount of unannotated data and extract a large number of

relations, it may not be easy to map the resulting relations to those needed for a given knowledge base.

One way to mitigate this problem is semi-supervised learning: starting from a given set of seed instances,

a bootstrapping algorithm is used to iteratively learn extraction patterns and extract instances (Brin,

1999; Riloff and Jones, 1999; Agichtein and Gravano, 2000; Ravichandran and Hovy, 2002; Etzioni et

al., 2005; Pantel and Pennacchiotti, 2006; Bunescu and Mooney, 2007; Rozenfeld and Feldman, 2008).

However, the resulting patterns often suffer from semantic drift and low precision. Recent years have

seen a surge of interest in distant supervision for relation extraction (Mintz et al., 2009; Nguyen and

Moschitti, 2011; Krause et al., 2012; Min et al., 2013). The idea is to automatically create annotated

relation instances by extracting their labels from relation instances in a knowledge base such as Freebase

(Bollacker et al., 2008) and YAGO (Suchanek et al., 2007).

Our goal in this paper is to advance the state of the art in MR classification. One of the major chal-

lenges in MR classification is the scarcity of labeled data. At first glance, we can mitigate this problem

using distant supervision approaches. However, there is difficulty in applying these approaches to MR

classification: only one of the relation types defined in the 2010 i2b2 Challenge is represented in the

Unified Medical Language System1, the most comprehensive medical ontology available to date.

In light of this difficulty, we propose an ensemble approach to MR classification, where we exploit

human-supplied knowledge to guide the design of different members of the ensemble. Unlike state-

of-the-art supervised approaches to this task, which represent contextual information largely as flat (i.e.,
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discrete- or real-valued) features (de Bruijn et al., 2011; Rink et al., 2011) or structured tree features (Zhu

et al., 2013), we represent contexts as sequences, specifically word sequences and dependency sequences,

and use them to derive lexical and dependency patterns. Our ensemble approach exploits human-supplied

knowledge in three ways. First, while existing approaches employ similarity functions already defined

in off-the-shelf learning algorithms (e.g., linear kernel (Rink et al., 2011), tree kernel (Zhu et al., 2013))

to compute the similarity between two relation instances, we define functions to compare the similarity

between two patterns. Second, to complement the automatically induced patterns, we hand-craft patterns

based on manual observations made on the training set, specifically by having a human identify the

contexts of two concepts that are strongly indicative of a medical relation class. Finally, we employ

human knowledge to identify the constraints on the classification of different relation instances, and

enforce the resulting constraints in an integer linear programming (ILP) framework. Evaluation results

on the 2010 i2b2/VA Challenge corpus (henceforth the i2b2 corpus) show that our ensemble approach

yields a 19.8% relative error reduction over a state-of-the-art system.

The rest of the paper is organized as follows. Section 2 provides an overview of the i2b2 corpus. Sec-

tion 3 describes the baseline systems. Sections 4 and 5 describe our new components and our ensemble

approach. Section 6 discusses our constraints for enforcing global consistency. We present evaluation

results in Section 7, conduct an error analysis in Section 8, and conclude in Section 9.

2 Corpus

For evaluation, we use the i2b2 corpus, which comprises 426 de-identified discharge summaries. We

adopt the i2b2 organizers’ partition of the 426 summaries into a training set (170 summaries) and a test

set (256 summaries). As many of the algorithms in our approach require parameter tuning, we reserve

30 of the 170 summaries in the training set for development purposes.

In each discharge summary, the concepts and the medical relation between each pair of concepts

are marked up. Each concept is annotated with a type attribute that indicates whether it is a TEST,

a PROBLEM, or a TREATMENT. In addition, a PROBLEM concept has an assertion attribute, which

specifies whether the problem was present, absent, or possible in the patient, conditionally present in

the patient under certain circumstances, hypothetically present in the patient at some future point, or

mentioned in the patient report but associated with someone other than the patient.

Eleven types of intra-sentential pairwise relations are annotated. A brief description of these relation

types and the relevant statistics are provided in Table 1. As we can see from the table, each medical

relation has a type and is defined only on intra-sentence TREATMENT-PROBLEM, TEST-PROBLEM, and

PROBLEM-PROBLEM concept pairs. Also, while there are 11 relation types, three of them, namely

Relations 6, 9, and 11, denote the absence of a medical relation between the corresponding concepts.

The purpose of having “no relation” classes is to ensure that every pair of TEST/PROBLEM/TREATMENT

concepts is annotated, whether or not a medical relation exists between them.

3 Baseline MR Classification Systems

We employ two supervised MR classification systems as baselines. The first baseline is a state-of-the-art

system that achieved the best performance in the official 2010 i2b2 evaluation. The second baseline is a

tree kernel-based system, motivated by the fact that tree kernels are frequently used in relation extraction

(e.g., Zhou et al. (2007), Zhu et al. (2013)).

3.1 SVM with Flat Features

Our first baseline, Rink et al.’s (2011) system, employs an SVM classifier trained on a set of flat features

(i.e., features that are discrete- or real-valued).

Following Rink et al., we create training instances as follows. First, we form training instances be-

tween every pair of (PROBLEM, TEST, and TREATMENT) concepts in the training documents, labeling

an instance with its relation type. Since the instances belonging to the three “no relation” classes signifi-

cantly outnumber those belonging to the remaining eight classes, we reduce data skew by downsampling



Id Relation Example Total (%)

1 TrIP: Treatment improves medical problem Her pain resolved after surgery 203 (0.6)

2 TrWP: Treatment worsens medical problem treated with Zofran with no relief 133 (0.4)

3 TrCP: Treatment causes medical problem Transdermal nitroglycerin caused headache 526 (1.8)

4 TrAP: Treatment is administered for medical
problem

start on Decadron 4 mg q6 to prevent swelling 2613 (8.9)

5 TrNAP: Treatment is not administered be-
cause of medical problem

His Avandia was discontinued secondary to the
side effect profile

174 (0.6)

6 NTrP: No relation between treatment and
problem

with sutures intact and no erythema or puru-
lence noted .

4462 (15.2)

7 TeRP: Test reveals medical problem A postoperative MRI revealed no remarkable
findings

3051 (10.4)

8 TeCP: Test conducted to investigate medical
problem

An ultrasound was done to rule out cholestasis 504 (1.7)

9 NTeP: No relation between test and problem Throughout the stay his labs remained normal
and his pain controlled .

2964 (10.1)

10 PIP: Medical problem indicates medical prob-
lem

with a moderate-sized , dense , fixed inferior
defect indicative of scar

2202 (7.5)

11 NPP: No relation between paired medical
problems

He is somewhat cantankerous and demanding
of the nurses .

12503 (42.6)

Table 1: The 11 relation types for medical relation classification. Each relation type is defined on an

ordered pair where concepts in the pair are as specified by the relation. The “Total” and “%” columns

show the number and percentage of instances annotated with the corresponding relation type over all 426

discharge summaries, respectively.

instances belonging to the three “no relation” classes.2 Specifically, we downsample the instances be-

longing to the three “no relation” classes (i.e., NTrP, NTeP, and NPP) by ensuring that (1) the ratio of

the number of NTrP instances to the number of TREATMENT-PROBLEM instances is 0.06; (2) the ratio

of the number of NTeP instances to the number of TEST-PROBLEM instances is 0.03; and (3) the ratio

of the number of NPP instances to the number of PROBLEM-PROBLEM instances is 0.5. These ratios are

selected using our 30-summary development set, as described in Section 2. As mentioned above, each

instance corresponds to a pair of concepts, c1 and c2, and is represented using 37 groups of features that

can be divided into five categories:3

Context (13 groups). The words, the POS tags, the bigrams, the string of words, the sequence of

phrase chunk types, and the concept types used between c1 and c2; the word preceding c1/c2; any of the

three words succeeding c1/c2; the predicates associated with c1/c2; the predicates associated with both

concepts; and a feature that indicates whether a conjunction regular expression matched the string of

words between c1 and c2.

Similarity (5 groups). We find the concept pairs in the training set that are most similar to the (c1,c2)

pair (i.e., its nearest neighbors), and create features that encode the statistics collected from these nearest

neighbors. To find the nearest neighbors, we (1) represent each pair in the training set as a sequence; (2)

define the number of nearest neighbors to use; and (3) define a similarity metric to compute the similarity

of two sequences.

Following Rink et al. (2011), we employ five methods to represent a pair. The five methods are: (1) as a

sequence of POS tags for the entire sentence containing the pair; (2) as a phrase chunk sequence between

the two concepts; (3) as a word lemma sequence beginning the two words before the first concept, up to

and including the second word following the second concept in the pair; (4) as a concept type sequence

for all the concepts found in the sentence containing the pair; and (5) as a shortest dependency path

sequence connecting the two concepts. Table 2 shows an example of these five methods of generating

sequences from the TEST concept her exam and the PROBLEM concept her hyperreflexia in the sentence

2Other methods for addressing class imbalance, such as over-sampling (Chawla et al., 2002) and cost-sensitive learning
(Turney, 1995), can also be employed.

3To compute the features, we use (1) the Stanford CoreNLP tool (Manning et al., 2014) to obtain POS tags, word lemmas,
and dependency structures; (2) GENIA (http://www.nactem.ac.uk/tsujii/GENIA/tagger) to obtain phrase
chunks; and (3) SENNA (Collobert et al., 2011) to obtain predicate-argument structures.



Generation Method Sequence

(1) RB VB , testc1 RB VBD RB IN problemc2 .

(2) ADVP VP ADVP PP

(3) postop , testc1 only improve slightly in problemc2 .

(4) testc1 problemc2

(5) testc1–nsubj–> prep <–pobj–problemc2

Table 2: Examples of the five methods of sequence generation.

Postop, her exam only improved slightly in her hyperreflexia . Note that for better generalization, the

two concepts are replaced with their concept type (i.e., her exam and her hyperreflexia are replaced

with testc1 and problemc2 respectively) before sequence generation. Like Rink et al., we seek different

numbers of nearest neighbors for the five methods of generating sequences. For the first method, we use

100 nearest neighbors; for the second method, 15 neighbors; for the third method, 20 neighbors; for the

fourth method, 100 neighbors; and for the fifth method, 20 neighbors. We use the Levenshtein distance

(Levenshtein, 1966) as the similarity metric.

After finding the nearest neighbors for each of the five methods of sequence representation, we create

features as follows. For each method, we compute the percentage of nearest neighbors belonging to each

of the 11 relation types, and then create 11 features whose values are these 11 numbers.

Single concept (11 groups). Any word lemma from c1/c2; any word used to describe c1/c2; the concept

type for c1/c2; the string of words in c1/c2; the concatenation of assertion types for both concepts; and the

sentiment category (i.e., positive or negative) of c1/c2 obtained from the General Inquirer lexicon (Stone

et al., 1968).

Wikipedia (6 groups). Six features are computed based on the Wikipedia articles, their categories, and

the links between them. The first feature encodes whether neither c1 nor c2 contains any substring that

may be matched against the title of an article. The second feature encodes whether the links between

the articles retrieved based on the two concepts are absent. The next two features encode whether a link

exists from the article pertaining to c1 (c2) to the article pertaining to c2 (c1). The fifth feature encodes

whether there are links between the articles pertaining to both concepts. The last feature encodes whether

both concepts have the same concept type according to their Wikipedia categories.

Vicinity (2 groups). The concatenation of the type of c1 and the type of the closest concept preceding

c1; and the concatenation of the type of c2 and the type of the closest concept succeeding c2.

After creating the training instances, we train a 11-class classifier on them using SVMmulticlass

(Tsochantaridis et al., 2004). We set C, the regularization parameter, to 10,000, since preliminary exper-

iments indicate that preferring generalization to overfitting (by setting C to a small value) tends to yield

poorer classification performance. The remaining learning parameters are set to their default values. Af-

ter training, we use the resulting classifier to make predictions on the test instances, which are generated

in the same way as the training instances.

3.2 SVM with Structured Feature

In this framework, each instance is represented using a single structured feature computed from the

parse tree of the sentence containing the concept pair. Since publicly available SVM learners capable

of handling structured features can only make binary predictions, we train 11 SVM classifiers, one for

representing each medical relation. In each classifier’s training data, a positive instance is one whose

class value matches the medical relation class value of the classifier, and a negative instance is one with

other class values applicable to the given concept pair. Since the negative instances significantly out-

number the positive instances in each of these binary classifiers, we reduce data skew by downsampling

the negative instances. Following the order of the 11 relations listed in Table 1, the optimal ratios of

negative-to-positive instances according to our 30-summary development set are 0.2, 0.2, 0.06, 0.2, 0.5,

1, 1, 0.3, 0.06, 0.06, and 0.09, respectively. We set C to 100 based on the development data.

While we want to use a parse tree directly as a feature for representing an instance, we do not want

to use the entire parse tree as a feature. Specifically, while using the entire parse tree enables a richer



representation of the syntactic context of the two concepts than using a partial parse tree, the increased

complexity of the tree also makes it more difficult for the SVM learner to make generalizations.

To strike a better balance between having a rich representation of the context and improving the

learner’s ability to generalize, we extract a subtree from a parse tree and use it as the value of the struc-

tured feature of an instance. Specifically, given two concepts in an instance and the associated syntactic

parse tree T , we retain as our subtree the portion of T that covers (1) all the nodes lying on the shortest

path between the two entities, and (2) all the immediate children of these nodes that are not the leaves of

T . This subtree is known as a simple expansion tree.

After training the 11 tree kernel-based relation classifiers, we can apply them to classify a test instance.

The class value of an instance is determined based on the classifier with the maximum classification

confidence, where the confidence value of an instance is its signed distance from the SVM hyperplane.

4 Exploiting Sequences for MR Classification

Unlike the two baselines, which exploit flat features and parse-based structured features for MR classifi-

cation, in this section we describe three MR classification systems that exploit sequences.

4.1 Dependency-Based Sequences

The first system is based on sequences of dependency relations. To see why dependency relations could

be useful for MR classification, consider the sentences in Table 3:

(1)

(2)

Table 3: Example dependency paths.

In sentences (1) and (2), the PROBLEM concepts His pain and The patient’s pain occur as the subject

of the verb controlled and the TREATMENT concepts oral medication and Motrin occur as objects of the

prepositional with modifier of the same verb controlled. In other words, intuitively, the verb controlled

cues that the PROBLEM concept is being controlled, and together with the preposition with it cues that the

TREATMENT concept is doing the controlling. Note that in each case the relation between the PROBLEM

and TREATMENT is TrIP, which can now be easily inferred given the dependency relations of the concept

pairs with the verb controlled. These examples suggest that the verb closest to each of the two concepts

is an important word as it cues the relation.

Given the usefulness of dependency structures and the verb closest to each concept for MR classifica-

tion, we represent each training/test instance as a paired dependency sequence with separate dependency

paths traced from each concept in the pair to its closest verb. To reduce data sparsity, for the argument

words found in a dependency path, we replace them with their POS tags. For example, given sentence (1),

the path extracted from His pain is “nsubjpass ( controlled NN )” and from oral medication is “prep (

controlled with ) pobj ( with NN )”.4

Next, we describe how to classify a test instance inst. First, we identify the set of training instances T

that satisfy two conditions: (a) the ancestor verb pair in the training instance is the same as that in inst,

and (b) each of the two dependency sequences in the training instance either is the same as, or contains,

or is contained in the corresponding dependency sequences in inst. Second, we find for inst its nearest

neighbor in T by employing the following similarity function:

Similarity(train, test) = cosine(pathtrainc1
, pathtestc1 ) · cosine(pathtrainc2

, pathtestc2 ) (1)

4Note that sometimes a dependency path cannot be traced (e.g., a verb does not exist, which is not uncommon in a discharge
report) for a given concept pair. If this happens, no instance will be generated from the concept pair.



where cosine(x, y) is a function that computes the cosine similarity of x and y.5 Finally, if the similarity

between inst and its nearest neighbor in T is greater than a threshold, we classify inst using the class

value of its nearest neighbor.6 Otherwise, this system will leave inst unclassified. In other words, this

system is precision-oriented, classifying only those instances it can classify confidently.

4.2 Lexical Patterns

In our second system, we represent each concept pair as a lexical pattern. Specifically, we employ

Generation Method 3 as described in the Similarity features in Section 3.1 to generate a lexical pattern

from a concept pair. To classify a test instance inst, we employ the one-nearest-neighbor algorithm. To

identify the nearest neighbor of inst, we employ the Levenshtein distance as the similarity metric.

Two questions naturally arise. First, since these lexical patterns have already been used to generate

features in the flat-feature baseline, why do we still employ them in a separate system? To answer

this question, note that although these lexical patterns were used to generate features for training the

flat-feature baseline classifier, we have no control over whether these features are deemed useful by the

learning algorithm and are subsequently used by the resulting classifier. Having a separate system that

employs these patterns ensures that they will be used when making the final classification decision.

Second, given that we described five methods to generate sequences in Section 3.1, why do we employ

Generation Method 3 but not the remaining methods? In principle, we can employ the remaining four

generation methods for generating lexical patterns as well: all we need to do is to create four additional

systems, each of which makes use of the patterns created by exactly one of the four methods. In prac-

tice, however, not all generation methods are equally good: if a method does not generate patterns that

adequately capture context, then employing the resulting patterns may yield poor-performing systems.

Consequently, we employ only the system corresponding to the generation method that yields the best

performance on the development data, which turns out to be the system corresponding to Method 3.

4.3 Rules

In the previous subsection, we employ automatically induced patterns. In contrast, our third system em-

ploys patterns that are hand-crafted based on manual observations made on the training set. Specifically,

we ask a human to identify the contexts of two concepts that are strongly indicative of a relation class.

Like the automatically induced patterns, each hand-crafted pattern is composed of the types of the two

concepts involved and the context in which they occur. For example, in the pattern due to PROBLEM by

TREATMENT, the TREATMENT is likely to cause the PROBLEM and therefore it will be labeled as TrCP.

As another example, in the pattern attributed to PROBLEM as a result of PROBLEM, the two PROBLEMs

are likely to have an indicative relation and therefore it will be labeled as PIP. At the end of this process,

we end up with 136 manually labeled patterns, which we will subsequently refer to as a ruleset.

Next, we order these rules in decreasing order of accuracy, where the accuracy of a rule is defined

as the number of times it yields the correct MR type divided by the number of times it is applied, as

measured on the training set.

Given this ruleset, we can classify a test instance using the first applicable rule in it. If no rules are

applicable, the test instance will remain unclassified.7

5 The Ensemble

In the previous section, we described three systems for MR classification. Together with the two baseline

systems, we have five systems for MR classification. A natural way to make use of all of them for MR

classification is to include them in an ensemble. The question, then, is: how do we classify a test instance

using this ensemble? The simplest approach is perhaps majority voting, but that presumes that each

5To apply cosine similarity, we represent each path as a frequency-count vector, where each dimension in the vector corre-
sponds to a dependency type or an argument word appearing in the path.

6Based on development set experiments, the similarity threshold values for each concept pair type are: TTreatment−Problem

= 0.85; TTest−Problem = 0.75; and TProblem−Problem = 0.75.
7Space limitations preclude a complete listing of these rules. See our website at https://www.hlt.utdallas.edu/

˜jld082000/medical-relations/ for the complete list of rules.



member of the ensemble is equally important. In practice, however, some members are more important

than the others, so the votes cast by these members should have higher weights.

To model this observation, we combine the (probabilistic) votes of the members in a weighted fashion

using the following formula:

Pcombined(c) = w1 · Ptree(c) + w2 · Pflat(c) + w3 · Pdependency(c) + w4 · Pword(c) + w5 · Prules(c)
(2)

where wi (i = 1, . . . , 5) is a combination weight, and Px(c) is the probability that the test instance

belongs to class c according to system x.

Two questions naturally arise. First, how can the combination weights be determined? We perform an

exhaustive search on held-out development data to find the combination of weights that jointly maximizes

overall accuracy on the development set. We allow each weight to vary between 0 and 1 in steps of 0.1,

subject to the constraint that the five weights sum to 1.

Second, how can Px(c) be computed? In other words, how can each system compute the probability

that a given test instance belongs to a certain class? To answer this question, we have to convert the

output of each system for each test instance into a 11-element probability vector, which is used to encode

the probability that the given test instance belongs to each of the 11 relation types.

We perform the conversion as follows. For the two baseline systems, the SVM outputs a confidence

value for each class. Hence, to obtain the probability vector, we first normalize the confidence value

associated with each class so that it falls within the [0,1] range, and then normalize the resulting values

so that they sum to 1. For the systems employing lexical patterns and dependency-based sequences, the

class chosen by each system receives a probability of 0.6, and each of the other classes applicable to

the test instance under consideration receives an equal share of the remaining probability mass. For the

rule-based system, we take the rule that is used to classify the test instance and apply this rule to each

instance in the training set to estimate the probability that the rule is correct with respect to each of the

11 classes. We can then use the resulting 11 probabilities to create the 11-element probability vector.

Finally, recall that some of these systems are not applicable to all of the test instances. If this happens,

the corresponding system(s) will return a vector in which all of its elements are set to 0.

6 Enforcing Global Consistency

So far we have had an ensemble that, given a test instance, returns the probability that it belongs to each

of the 11 classes. Since the test instances are classified independently of each other, there is no guarantee

that the resulting classifications are globally consistent. To enforce global consistency, we employ global

constraints implemented in the Integer Linear Programming (ILP) framework (Roth and Yih, 2004).

Since our constraints are intra-sentential, we formulate one ILP program for each sentence s in each

training summary. Each ILP program contains 11×Ns variables, where Ns is the number of test instances

formed from the concept pairs in s. In other words, there is one binary indicator variable xi,j,r for each

relation class r of each test instance inst formed from concept i and concept j, which will be set to 1 by

the ILP solver if and only if it thinks inst should belong to class r.

Our objective is to maximize the linear combination of these variables and their corresponding proba-

bilities given by the ensemble (see (3) below) subject to two types of constraints, the integrity constraints

and the consistency constraints. The integrity constraints ensure that each concept pair is assigned ex-

actly one relation type (see the equality constraint in (4)). The consistency constraints ensure consistency

between the predictions made for different instances in the same sentence.

Maximize:

∑

(i,j)∈R

∑

r∈L

pi,j,rxi,j,r (3)

subject to:

∑

r∈L

xi,j,r = 1 ∀ (i, j) ∈ R (4)



Relation Relations in Conflict

TrIP(tri,pj) TrWP(tri,pk),TrCP(tri,pm),TrNAP(tri,pn)
TrWP(tri,pj) TrIP(tri,pk),TrCP(tri,pm),TrNAP(tri,pn)
TrCP(tri,pj) TrIP(tri,pk),TrWP(tri,pm),TrNAP(tri,pn)
TrAP(tri,pj) TrNAP(tri,pk)

TrNAP(tri,pj) TrAP(tri,pk),TrIP(tri,pm),TrWP(tri,pn),TrCP(tri,po)
TeRP(tei,pj) TeCP(tei,pk)
TeCP(tei,pj) TeRP(tei,pk)

Table 4: Constraints on relation types.

and consistency constraints.

Note that (1) pi,j,r is the probability that the instance formed from concept i and concept j belongs to

relation type r according to the ensemble; (2) L denotes the set of unique relation types; and (3) R is the

set of instances in the sentence under consideration.

The consistency constraints are listed in Table 4. Each row of the table represents a constraint and can

be interpreted as follows. If the relation in the first column holds, then none of the relations in the second

column can hold. Consider, for instance, the constraint in the first row of the table, which says that if

TREATMENT tri improves PROBLEM pj , then tri cannot worsen, cause, or be administered for any other

PROBLEM. At first glance, it may not seem intuitive that a treatment that improves one problem cannot

also worsen or cause other problems. This can be attributed to the way a patient discharge summary

is written: while the constraint can be violated for concept pairs in different sentences, there is no case

in which the constraint is violated for concept pairs in the same sentence in the training set. These

constraints can be implemented as linear constraints in ILP. For example, the constraint “if TREATMENT

tri improves PROBLEM pj , then tri cannot worsen PROBLEM pk” can be implemented as follows.

xi,j,TrIP ≤ 1− xi,k,TrWP (5)

7 Evaluation

7.1 Experimental Setup

Following the 2010 i2b2/VA evaluation scheme, we assume that (1) gold concepts and their types are

given, and (2) a medical relation classification system is evaluated on all but the “no relation” types. In

other words, a system will not be directly rewarded if it correctly identifies a “no relation” instance, but

will be penalized if it misclassifies a “no relation” instance as one of the eight relation types.

As mentioned before, we use 170 training summaries from the 2010 i2b2/VA corpus for classifier

training and reserve 256 test summaries for evaluating system performance. Thirty training summaries

are used for development purposes in all experiments that require parameter tuning.

7.2 Results and Discussion

Table 5 shows the 8-class classification results for our MR classification task, where results are expressed

in terms of recall (R), precision (P), and micro F-score (F).

Row 1 and row 2 show the results of the flat-feature baseline and the structured-feature baseline,

respectively. As we can see, the flat-feature baseline performs significantly better than the structured-

feature baseline.8 It is worth mentioning that since the dataset available to the research community which

we are using contains a subset of the summaries from the dataset that was available to the shared task

participants, we were unable to directly compare our system’s performance with theirs. Nevertheless, we

believe that the results of our reimplementation of Rink et al.’s (2011) system in row 1 can be taken to be

roughly the state of the art results on this dataset.

Rows 3–5 show the results of the three systems we introduced. As we can see from row 3, by using

simple lexical patterns in combination with the Levenshtein similarity metric, we achieve an F-score that

is significantly better than that of the structured-feature baseline but significantly worse (at p < 0.01) than

8All statistical significance tests are paired t-tests with p < 0.05 unless otherwise stated.



Individual System R P F
1 Flat 66.7 58.1 62.1
2 Tree 64.3 55.6 59.6
3 Lexical Patterns 63.9 59.2 61.4
4 Dependencies 4.3 82.9 8.2
5 Rules 11.9 84.4 9.1

Ensemble System R P F
6 Ensemble(1+2) 69.2 61.3 65.0
7 Ensemble(1+2+3) 70.4 63.1 66.6
8 Ensemble(1+2+3+4) 70.0 64.7 67.2
9 Ensemble(1+2+3+4+5) 71.1 64.8 67.8
10 Ensemble(1+2+3+4+5) + ILP 72.9 66.7 69.6

Single Classifier R P F
11 Single(1+2) 53.0 73.6 61.7
12 Single(1+2+3) 54.4 74.7 63.0
13 Single(1+2+3+4) 56.4 73.7 63.9
14 Single(1+2+3+4+5) 56.3 74.5 64.1
15 Single(1+2+3+4+5) + ILP 58.9 75.0 66.0

Bagged System R P F
16 Bagging(1+2) 54.6 73.6 62.7
17 Bagging(1+2+3) 54.5 73.8 62.7
18 Bagging(1+2+3+4) 56.9 73.2 64.0
19 Bagging(1+2+3+4+5) 56.7 73.9 64.2
20 Bagging(1+2+3+4+5) + ILP 59.2 75.5 66.4

Table 5: Medical relation classification results.

that of the flat-feature baseline. On the other hand, the remaining two systems are precision-oriented:

they classify an instance only if they can do so confidently, thus resulting in poor recall.

Rows 6–10 show the results of our ensemble approach when the individual MR classification systems

are added incrementally to the flat-feature baseline. Except for the addition of the dependency-based

system and the hand-crafted rules, which yielded insignificant improvements in F-score, the addition of

all other components yielded significant improvements. In fact, every significant improvement in F-score

is accompanied by a simultaneous rise in recall and precision. The best-performing system is the one

that comprises all of our components, achieving an F-score of 69.6. This translates to a relative error

reduction of 19.8% and a highly significant improvement (p < 0.001) over our reimplementation of

Rink et al.’s (2011) state-of-the-art baseline. The weights learned for the members of the ensemble are

indeed different: both baselines have a weight of 0.3, the rule-based system and the lexical patterns have

a weight of 0.1, and the remaining weight goes to the dependency-based component.

7.3 Additional Comparisons

Given the above results, a natural question is: is an ensemble approach ever needed to combine the

knowledge sources exploited by different systems in order to obtain these improvements? In other words,

can we achieve similar performance by training a single classifier using a feature set containing all the

features currently exploited by different members of the ensemble?

To answer this question, we repeat the experiments in rows 6–10 of Table 5, except that in each ex-

periment we train a single classifier on a feature set formed from the union of those features employed

by all the members of the corresponding ensemble. Results are shown in rows 11–15 of Table 5. In each

of these five experiments the F-score obtained by our ensemble approach is significantly better than that

achieved by the corresponding single-classifier approach. In addition, although we see improvements

in F-score as we add the individual extensions (including ILP) incrementally to the flat-feature base-

line, none of these improvements is statistically significant. Nevertheless, when applied in combination,

these extensions yield a system that is significantly better than the flat-feature baseline. Overall, these

results provide suggestive evidence that to achieve the same level of performance we cannot replace our

ensemble approach with a simpler setup that relies on a single classifier.

Given that our ensemble approach performs better than a single-classifier approach, a relevant question

is: do we have to use our ensemble approach, or can we still achieve similar performance by replacing it

with a generic ensemble learning method such as bagging (Breiman, 1996)?

To answer this question, we repeat the experiments in rows 6-10 of Table 5, except that we train a

committee of classifiers using bagging. Recall that in bagging each classifier in the committee is trained

on a bootstrap sample created by randomly sampling instances with replacement from the training data

until the size of the bootstrap sample is equal to that of the training data. In our implementation, we

train 20 multi-class SVM classifiers using SVMmulticlass. Given a test instance, each member of the

committee will independently cast a probabilistic vote, and the class that receives the largest number

of probabilistic votes from the committee members will be assigned to the test instance. Results are

shown in rows 16–20 of Table 5. In each of these five experiments, the F-score obtained by bagging



is significantly worse that that achieved by our ensemble approach. In fact, comparing bagging and the

single-classifier approach, their results are statistically indistinguishable in all but one case (row 11 vs.

row 16), where bagging achieves significantly better performance. Like in the single-classifier experi-

ments, in the bagging experiments we see improvements in F-score as we add the individual extensions

(including ILP) incrementally to the flat-feature baseline, although the improvements are significant only

with the addition of ILP and the dependency-based system. Nevertheless, when applied in combination,

these extensions yield a system that is significantly better than the flat-feature baseline. Overall, these

results provide suggestive evidence that to achieve the same level of performance we cannot replace our

ensemble approach with bagging.

8 Error Analysis

To gain additional insights into our ensemble approach and to provide directions for future work, we

conduct an error analysis of our best-performing system.

NTeP confused as TeRP. This is a frequent type of confusion where 34% of the TEST–PROBLEM pairs

that do not have a relation are misclassified as having a “Test Reveals Problem” relation. Below are two

subcategories of errors commonly made by the system in this confusion category.

• TEST with numeric results followed by PROBLEM concepts in written text

The following example illustrates this confusion:

. . . [test mean gradient] 33 mm , [problem decreased disc motion] , [problem mobile mass in LVOT] ,

[problem mild AI] , [problem mild to moderate MR] . . .

In sentences like the one above where a TEST concept has a numeric result (result of TEST mean

gradient is 33 mm), since the TEST concept is already associated with its result, it has no relation with

any other concepts in the sentence. While in some cases the system is able to correctly classify the

relation between the TEST concept and the first following PROBLEM concept, in almost all cases, it fails

to propagate this no relation class down through the other PROBLEMs listed in a series following the

TEST concept. For the sentence above, it incorrectly classifies the relation between TEST concept mean

gradient and each of the PROBLEM concepts mobile mass in LVOT, mild AI, and mild to moderate MR

as TeRP instead of NTeP.

• TEST reveals PROBLEM that is consistent with other PROBLEM

This is a common error where a TEST concept is classified as revealing two consistent PROBLEM

concepts when in actuality it only reveals one of the PROBLEMs. Consider the following sentence:

[testRadiograph] revealed [problem bilateral diffuse granular pattern] consistent with [problem surfactant

deficiency] .

In this sentence, PROBLEM concept bilateral diffuse granular pattern is described as being consistent

with another PROBLEM concept surfactant deficiency. While the system correctly classifies the pair (Ra-

diograph, bilateral diffuse granular pattern) as TeRP, it misclassifies the pair (Radiograph, surfactant

deficiency) as TeRP. In case of the second pair, the TEST concept has no relation with the PROBLEM

concept. From this common error type, an insight one can derive is that the system is currently missing

knowledge of the association of the two PROBLEMs w.r.t. each other, and thus in turn cannot make an

informed decision of which of the two PROBLEMs the TEST concept actually reveals.

PIP confused as NPP. The second major confusion in the system’s output concerns misclassifying

PROBLEM concept pairs that are indicative of each other as having “no relation”. We observe that 39.5%

of the PIP instances get classified as NPP.

• PROBLEM without another PROBLEM

In a sentence, if a PROBLEM concept is actually said to be without another PROBLEM, then such a pair is

commonly misclassified by the classifier into the no-relation class NPP instead of the has-relation class

PIP. An example of this can be found in the sentence “[problem Angio site] was clean , dry , and intact

without [problem bleeding] or [problem drainage] .”, where PROBLEM Angio site is classified as NPP with



both concepts bleeding and drainage, respectively. Such cases call for domain-specific knowledge that

can aid in identifying attributes of PROBLEMs, like that the PROBLEM concepts bleeding and drainage

are commonly associated attributes of the PROBLEM concept Angio site. With this information the

system is better equipped to recognize that PROBLEM Angio site is related to its attributes.

9 Conclusion

We investigated a new approach to the medical relation classification task, where we employed human-

supplied knowledge to assist the construction of relation classification systems based on sequences, com-

bined them via an ensemble, and then enforced global consistency using constraints in an ILP framework.

Experimental results on the i2b2 corpus show a significant relative error reduction of 19.8% over a state-

of-the-art baseline.
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