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Abstract

Event coreference resolution is a challenging problem since it relies on several components of the
information extraction pipeline that typically yield noisy outputs. We hypothesize that exploiting
the inter-dependencies between these components can significantly improve the performance
of an event coreference resolver, and subsequently propose a novel joint inference based event
coreference resolver using Markov Logic Networks (MLNs). However, the rich features that are
important for this task are typically very hard to explicitly encode as MLN formulas since they
significantly increase the size of the MLN, thereby making joint inference and learning infeasible.
To address this problem, we propose a novel solution where we implicitly encode rich features
into our model by augmenting the MLN distribution with low dimensional unit clauses. Our
approach achieves state-of-the-art results on two standard evaluation corpora.

1 Introduction

Within-document event coreference resolution is the task of determining which event mentions in a text
refer to the same real-world event. Event coreference is arguably more challenging and less studied than
entity coreference. The challenge stems in part from the fact that an event coreference resolver typically
lies towards the end of the standard information extraction (IE) pipeline, assuming as input the noisy
outputs of its upstream components. Specifically, a standard event coreference resolver takes as input
the extracted event triggers, their arguments, and the entity coreference information, and aggregates this
information through rules to resolve coreferent event mentions. Each component of this pipeline can
introduce errors that naturally propagate to the event coreference resolver, thereby significantly affecting
its performance. Further, the aforementioned pipeline architecture also fails to exploit inter-dependencies
between the various components that can provide valuable insights to the resolver.

In light of these weaknesses, we propose a novel approach to within-document event coreference
resolution based on Markov Logic Networks (MLNs) (Domingos and Lowd, 2009). In our approach,
we jointly perform four key tasks in the IE pipeline: trigger identification and subtyping, argument
identification and role determination, entity coreference resolution, and event coreference resolution. To
our knowledge, this is the first attempt to design an MLN for event coreference resolution. MLNs are
particularly well-suited for modeling joint inference tasks in natural language processing (NLP) due to the
inherent relational structure and uncertainty typically associated with challenging NLP problems.

A major obstacle to the successful application of MLNs to NLP tasks is the high computational
complexity of probabilistic inference and learning algorithms. The MLNs used in NLP are so large
that even linear time inference algorithms are computationally infeasible. For instance, the rich sets of
features that are typically used to solve the four tasks in the IE pipeline for event coreference, are ill-suited
for modeling as explicit MLN formulas, since they will yield a large MLN having millions of features.
Therefore, a major contribution of our work lies in the proposal of a novel hybrid approach where we
embed such features as weighted unit clauses in a low-dimensional space, and then integrate these clauses
with the rest of the MLN formulas during inference. Since this idea is generally applicable to modeling
NLP tasks using MLNs, we believe that our work will be of interest to other NLP researchers as well.
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Georges Cipriani[Person], a former militant of the French far-left group Action Directe, {left}ev1 the prison[Origin]

in Ensisheim in northern France on parole on Wednesday[Time]. He[Person] {left}ev2 Ensisheim[Origin] in a
police vehicle[Instrument] bound for an open prison near Strasbourg.

Table 1: Event coreference resolution example.

We evaluate our approach on corpora involving two languages, the new KBP 2015 English corpus and
the Chinese portion of the ACE 2005 corpus. On both corpora, our approach performs significantly better
than the baseline pipeline-based resolver. In particular, on the KBP corpus, we achieve the best result
reported to date surpassing the previous best result by around 0.43 percentage points in average F1-score.

2 Definitions and Corpora

2.1 Definitions
We employ the following definitions in our discussion of event extraction and coreference:

• An event mention is an explicit occurrence of an event consisting of a textual trigger, arguments or
participants (if any), and the event type/subtype.

• An event trigger is a string of text that most clearly expresses the occurrence of event, usually a
word or a multi-word phrase

• An event argument is an argument filler that plays a certain role in an event.

• An event coreference chain (a.k.a. an event hopper) is a group of event mentions that refer to the
same real-world event. They must have the same event (sub)type.

To understand these definitions, consider first the example shown in Table 1, which contains two event
mentions, ev1 and ev2. Here, left is the trigger for both ev1 and ev2 with subtype Movement.Transport-
Person. ev1 has three arguments, Georges Cipriani, prison, and Wednesday with roles Person, Origin,
and Time respectively. ev2 also has three arguments, He and Ensisheim, and police vehicle with roles
Person, Origin, and Instrument respectively.

2.2 Corpora
We employ two text corpora in two languages for evaluation. The English corpus was used in the Event
Nugget Detection and Coreference task in the TAC KBP 2015 Event Track (henceforth the KBP 2015
corpus). This corpus is composed of two types of documents, newswire documents and discussion forum
documents. The training set consists of 158 documents with 6538 event mentions distributed over 3335
event coreference chains, and the test set consists of 202 documents with 6438 event mentions distributed
over 4125 event coreference chains. The Chinese corpus is the Chinese portion of the ACE 2005 training
corpus. This corpus is composed of documents taken from six sources, and consists of 633 documents
with 3333 event mentions distributed over 2521 event coreference chains. Note that ACE and KBP employ
slightly different event ontologies: ACE defines 33 event subtypes and KBP defines 38 event subtypes,
among which 31 subtypes are shared by both ontologies.

2.3 Key Differences between ACE and KBP
While both ACE and KBP rely on the aforementioned definitions, the guidelines they employ when
annotating triggers and event coreference chains are slightly different. Below we highlight the differences
that are relevant to our discussion.1

First, there are slight differences w.r.t. the annotation of triggers. ACE only allows single-word triggers,
whereas KBP additionally allows multi-word triggers (e.g., laid off). Also, each word in ACE may trigger
at most one event mention, whereas each (multi-)word in KBP may trigger multiple event mentions (e.g.,
murder can trigger two event mentions with subtypes Life.Die and Conflict.Attack).

creativecommons.org/licenses/by/4.0/
1For detailed definitions, see http://cairo.lti.cs.cmu.edu/kbp/2015/event/annotation and http:

//www.itl.nist.gov/iad/mig/tests/ace/2005/ for the definitions of event coreference adopted by KBP 2015
and ACE 2005 respectively.



Second, KBP adopts a more relaxed definition of event coreference than ACE. Specifically, KBP
requires that two event mentions be coreferent as long as they intuitively refer to the same real-world
event. In our running example, ev1 and ev2 are coreferent according to KBP because they both refer
to the same event of Cipriani leaving the prison. ACE, on the other hand, additionally requires that the
corresponding arguments in the two event mentions be coreferent. In the example, ev1 and ev2 are not
coreferent according to ACE because their Origin arguments are not coreferent (one Origin argument
involves a prison and the other involves the city Ensisheim). Note that determining whether two entity
mentions are coreferent is the task of entity coreference. Like event mentions, entity mentions have
corpus-specific entity types.

3 Background

In this section, we give a brief overview of MLNs and discuss related work in event coreference resolution.

3.1 Markov Logic Networks
Formally, an MLNM is a set of pairs (fi, θi) where fi is a formula in first-order logic and θi is a real
number. Given a set of constants, an MLN represents a ground Markov network, in which we have one
binary random variable for each possible ground atom and one propositional feature for each possible
grounding of each first-order formula. The weight associated with the feature is the weight attached to the
corresponding formula. The ground Markov network represents the following probability distribution:

PM(ω) =
1

Z
exp

∑
fi

θiNfi(ω)

 (1)

where Nfi(ω) is the number of groundings of fi that evaluate to True given a world ω (an assignment
of {0, 1} to all ground atoms). The use of first-order logic enables the user to succinctly represent prior,
relational knowledge about the application domain, while the weights help model uncertainty in the truth
of the first-order logic sentences.

3.2 Related Work
Existing within-document English event coreference resolvers have been evaluated on different corpora,
such as MUC (e.g., Humphreys et al. (1997)), ACE (e.g., Ahn (2006), McConky et al. (2012), Chen
and Ji (2009), S. and Arock (2012)), OntoNotes (e.g., Chen et al. (2011)) the (not publicly-available)
Intelligence Community (IC) corpus (e.g., Cybulska and Vossen (2012), Araki et al. (2014)); the ECB
corpus (e.g., Bejan and Harabagiu (2010; 2014), Lee et al. (2012)) and its extension, ECB+ (e.g.,Yang et
al. (2015)); and ProcessBank (e.g., Araki and Mitamura (2015)). The newest event coreference corpus is
the one used in the KBP 2015 Event Nugget Detection and Coreference shared task, in which the best
performers are RPI’s system (Hong et al., 2015), LCC’s system (Monahan et al., 2015), and UI-CCG’s
system (Sammons et al., 2015). Among these corpora, ACE is the only one that is additionally composed
of event coreference-annotated Chinese documents. It has been used to train SinoCoreferencer (Chen and
Ng, 2014), a publicly-available Chinese event coreference resolver. Not all such corpora were carefully
annotated: as Liu et al. (2014) pointed out, OntoNotes and ECB have only been partially annotated with
event coreference links, for instance.

4 Baseline System

Our pipeline-based baseline system has five steps:
Step 1: Entity extraction. Our entity extraction model jointly identifies the entity mentions and their
entity types. We train this model using CRF++2, treating each sentence as a word sequence. Specifically,
we create one instance for each word w and assign it a class label that indicates whether it begins an entity
mention with type tj (B-tj), is inside an entity mention with type tj (I-tj), or is outside an entity mention

2https://taku910.github.io/crfpp/



(O). The features used to represent each instance for training the English CRF and the Chinese CRF are
shown in Tables 2(a) and 3(a), respectively.

Step 2: Entity coreference resolution. Our entity coreference classifier is a pairwise classifier that
determines whether two entity mentions are coreferent or not. To train this classifier, we employ SVMlight

(Joachims, 1999), creating training instances using Soon et al.’s (2001) training instance creation method.
Each training instance represents two entity mentions in each training document. The class value of a
training instance is either positive or negative, depending on whether the two entity mentions are coreferent
in the associated text. The features used to represent each instance for training the entity coreference
classifiers for English and Chinese are shown in Tables 2(b) and 3(b), respectively.

After training, the resulting classifier can be used to classify each pair of entity mentions extracted in
Step 1 as coreferent or not. We select as the antecedent of an entity mention em the closest preceding
mention that is classified as coreferent with em.

Step 3: Trigger identification and subtyping. Since ACE allows only single-word triggers, our SVM-
based Chinese trigger classifier takes as input a candidate trigger word (i.e., a word that survives Li et
al.’s (2012) filtering rules) and outputs its event subtype (if it is a true trigger) or None (if it is not a trigger).
In essence, it jointly (1) identifies event trigger words and (2) assigns a subtype to each identified trigger.
To train this classifier, we create one training instance for each word wi in each training document. If the
word does not correspond to a trigger, the class label of the corresponding instance is None. Otherwise,
the class label is the subtype of the trigger. The features used to represent each instance for training this
classifier are shown in Table 3(c).

Because KBP additionally allows multi-word triggers, we recast the task of identifying English triggers
as a sequence labeling task, where we train models using CRF++. Recall that since each (multi-)word may
trigger multiple event mentions having different (sub)types, we train one CRF for each type. Specifically,
to train the CRF for type tj , we create one instance for each word wi, assigning it a class label that
indicates whether it begins a trigger with subtype sjk (B-sjk), is inside a trigger with subtype sjk (I-sjk),
begins a trigger with other types (B-tm 6=j), is inside a trigger with other types (I-tm 6=j) or is outside a
trigger (O). The features used to represent each instance for training this CRF are shown in Table 2(c).
To improve the recall of event trigger detection, we augment the CRF output with heuristically extracted
triggers. Specifically, we first construct a wordlist containing triggers that appear infrequently (less than
10 times) in the training data and do not belong more than one subtype according to the training data.
Then, we extract any word as a trigger with the corresponding subtype as long as it appears in the wordlist.

Step 4: Argument identification and role labeling. Our argument identifier and role labeler is a
classifier trained using SVMlight that jointly learns the tasks of (1) identifying the true arguments of an
event mention and (2) assigning a role to each of its true arguments. To train this classifier, we create
the training instances by pairing each true event mention em (i.e., event mention consisting of a true
trigger) with each of em’s candidate event arguments, considering an entity mention extracted in Step 1 a
candidate argument of em if it appears in the same sentence as em. If the candidate argument is indeed a
true argument of em, the class label of the training instance is the argument’s role. Otherwise, its class
label is None. The features used to represent each instance for training the English classifier and the
Chinese classifier are shown in Tables 2(d) and 3(d), respectively.

After training, we can apply this classifier to classify test instances. To create test instances, we pair
each candidate trigger (extracted in Step 3) with each of its candidate event arguments.

Step 5: Event coreference resolution. The event coreference classifier is a pairwise classifier that
determines whether two event mentions are coreferent. To train this classifier, we use SVMlight, creating
training instances using Soon et al.’s (2001) training instance creation method. The features used to
represent each instance for training the event coreference classifier for English and Chinese are shown in
Tables 2(e) and 3(e), respectively.

After training, we apply the resulting classifier to classify test instances. We select as the antecedent of
an extracted event mention e the closest preceding mention that is classified as coreferent with e.



(a) Features for entity extraction. w is the word under consideration.
Lexical word unigrams, bigrams, and trigrams formed from w with a window size of five.
Grammatical w’s part-of-speech (POS) tag; whether w is part of a NP; whether w is part of a pronoun, whether w is

capitalized.
Semantic the WordNet synset id of w; the WordNet synset ids of w’s hypernym, its parent, and its grandparent.

(b) Features for entity coreference resolution. en2 is the entity mention to be resolved and en1 is a candidate antecedent of en2.
Lexical whether en1 is a pronoun; whether en1 is the subject of the sentence; whether en1 is a noun; whether en2

is a pronoun; whether en1 is a noun; whether en1 and en2 have the exactly the same string; whether the
modifiers of en1 and en2 match; the sentence distance between the strings of en1 and en2.

Grammatical the number, gender and animacy of en1 and en2; whether en1 and en2 agree w.r.t. number; whether en1

and en2 agree w.r.t. gender; whether en1 and en2 agree w.r.t. animacy.

(c) Features for event trigger identification and subtyping. t is the candidate trigger.
Lexical t’s POS tag, lemmatized and unlemmatized word unigrams, word bigrams, and word trigrams formed

from t with a window size of five.
Syntactic depth of t in its syntactic parse tree; path from the leaf node of t to the root in its syntactic parse tree;

phrase structure expanded by the parent of t’s node; phrase type of t’s node.
Semantic WordNet synset id of t; WordNet synset ids of t’s hypernym, its parent, and its grandparent.

(d) Features for event argument identification and role labeling. en is a candidate argument of trigger t.
Basic t’s event subtype; en’s entity type; en’s head word; event subtype + head word; event subtype + entity

type; t’s POS tag.
Neighboring
words

left/right neighbor word of en; left/right neighbor word of en + the word’s POS; left/right neighbor word
of en + the word’s POS.

Syntactic the phrase structure obtained by expanding the parent of t in the constituent parse tree; the phrase type of
t; the path from en to t in the constituent parse tree; the dependency path from en to t.

(e) Features for event coreference resolution. ev2 is the event mention to be resolved and ev1 is a candidate antecedent of ev2.
Event type
features

whether ev1 and ev2 agree w.r.t. event type; whether they agree w.r.t. event subtype; the concatenation of
their event types; and the concatenation of their event subtypes.

Trigger
features

whether ev1 and ev2 have the same trigger; whether they have the same lemmatized trigger; whether
the triggers of ev1 and ev2 or the hypernyms of these triggers are in the same WordNet synset; the
concatenation of their triggers; the concatenation of POS tags of their triggers; whether their triggers agree
in number if they are nouns; whether their triggers have the same modifiers and they are in the same entity
coreference chain if they are nouns; the sentence distance between the triggers of ev1 and ev2; whether
the triggers of ev1 and ev2 appear in a training document as a coreferent event mention pair; whether the
triggers of ev1 and ev2 appear in the first sentence and headline if this is a newswire document; whether
the sentence containing the the triggers of ev1 and ev2 are identical if this is a discussion forum document.

Argument
features

whether ev1 and ev2 have arguments with the same role; whether the arguments have the same head word;
whether they are in the same coreference chains; whether they have the same modifiers; the roles and
number of the arguments that only appear in ev1; and the roles and number of the arguments that only
appear in ev2.

Table 2: Features used in the English baseline system. POS tags, constituent parses and dependency parses are provided by

CoreNLP (Manning et al., 2014). For all uses of WordNet (Fellbaum, 1998), only the first synset is used.

5 Joint Model

In this section, we describe our MLN-based joint model for event coreference resolution.

5.1 MLN Structure

Figure 1 shows our proposed MLN for event coreference resolution. It has five predicates subdivided into
three categories: query, hidden and evidence.

The query predicate EventCoref(d,t1,t2) is true when two event mentions t1 and t2 in document
d are coreferent. The hidden predicates are those that cannot be directly observed in the data. Our
model contains three hidden predicates: (1) Trigger(d,t,p) is true when mention t in document d has
event/trigger subtype p. A special type called “None” indicates that t does not contain a trigger. (2)
Argument(d,t,a,r) asserts that entity mention a is an argument of event mention t in document d and its
role is r. Again, we include a special role called “None”, which indicates that the entity mention is not an
argument of the event mention. The ! symbol in the predicate definition indicates that every entity mention
must take one and only one argument role. (3) EntityCoref(d,a1,a2) is true when entity mentions
a1 and a2 in document d are coreferent. The evidence predicates represent (ground) random variables



(a) Features for entity extraction. w is the word under consideration.
Lexical word unigrams, bigrams, and trigrams formed from w with a window size of five.
Grammatical w’s POS tag; whether w is in a NP; whether w is part of a pronoun.
Wordlist-
based

whether w can be found in each of the following 10 wordlists: Chinese surnames; famous GPE and
location names (three wordlists); Chinese location suffixes; Chinese GPE suffixes; famous international
organization names; famous company names; famous person names; and a list of pronouns.

(b) Features for entity coreference resolution. en2 is an entity mention to be resolved and en1 is a candidate antecedent of en2.
Lexical whether en1 is a pronoun; whether en1 is the subject of the sentence; whether en1 is a noun; whether en2

is a pronoun; whether en1 is a noun; whether en1 and en2 are the same string; whether the modifiers of
en1 and en2 match; the sentence distance between en1 and en2.

Grammatical the number, gender and animacy of en1 and en2; whether en1 and en2 agree w.r.t. number; whether en1

and en2 agree w.r.t. gender; whether en1 and en2 agree w.r.t. animacy.

(c) Features for event trigger identification and subtyping. t is a candidate trigger.
Lexical word and POS n-grams formed from t with a window size of three
Syntactic depth of t in its syntactic parse tree; path from the leaf node of t to the root in its syntactic parse tree;

phrase structure expanded by the parent of t’s node; the path from the leaf node of t to the governing
clause; phrase type of t’s node.

Semantic whether t exists in a predicate list from the Chinese PropBank (Xue and Palmer, 2009); the entry number
of t in a Chinese synonym dictionary.

Closest entity
information

entity type of the syntactically/textually nearest entity to t in its syntactic parse tree; entity type of the
syntactically/textually left/right nearest entity to t in its syntactic parse tree + entity.

(d) Features for event argument identification and role labeling. en is a candidate argument of trigger t.
Basic t’s event subtype; en’s entity type; en’s head word; t’s subtype + en’s head word; t’s event subtype + en’s

entity type; t’s POS tag.
Neighboring
words

left/right neighbor word of en; left/right neighbor word of en + the word’s POS tag; left/right neighbor
word of t + the word’s POS tag.

Syntactic the phrase structure obtained by expanding the parent of t in the constituent parse tree; the phrase type of
t; the path from en to t in the constituent parse tree; the dependency path from en to t.

(e) Features for event coreference resolution. ev2 is the event mention to be resolved and ev1 is a candidate antecedent of ev2.
Event type
features

whether ev1 and ev2 agree w.r.t. event type; whether they agree w.r.t. event subtype; the concatenation of
their event types; and the concatenation of their event subtypes.

Trigger
features

whether ev1 and ev2 have the same trigger; whether the trigger of ev1 and ev2 partially matched; whether
they have the same lemmatized trigger; the concatenation of their triggers; the concatenation of part-
of-speech tags of their triggers; whether their triggers agree in number if they are nouns; whether their
triggers have the same modifiers if they are nouns; the sentence distance between the triggers of ev1 and
ev2; the number of words between ev1 and ev2; whether the triggers of ev1 and ev2 appear in a training
document as a coreferent event mention pair.

Argument
features

whether ev1 and ev2 have arguments of the same role; whether the arguments have the same head word;
whether they are in the same coreference chains; whether they have the same modifiers; the roles and
number of the arguments that only appear in ev1; and the roles and number of the arguments that only
appear in ev2.

Table 3: Features used in the Chinese baseline system. POS tags, constituent parses, and dependency parses are provided by

CoreNLP (Manning et al., 2014). A detailed description of the wordlists used in the wordlist-based features can be found in

Chen and Ng (2016). The Chinese synonym dictionary is HIT-SCIR’s Tongyici cilin (extended).3

that can be directly observed in the data. In our MLN, we assume that we only observe the words; the
predicate Word(d,t,w) is true when mention t in document d equals word w.

The MLN formulas are of two types. The first six formulas have infinite weight, which means
that they are hard formulas and must always be satisfied. The last two formulas are soft, and their
weights will be learned from the data. All logical variables in our formulas are universally quantified
and therefore for brevity, we do not use them in the formulas. Formula 1 encodes the hard constraint
that if two event mentions are coreferent, then they should share the same trigger subtype. Formula 2
specifies the hard constraint that if event mentions are coreferent, then their triggers subtypes cannot be
“None.” Formulas 3−6, all of which are hard formulas, specify the commutative and transitive properties
of coreferent event and entity mentions. Formula 7, which is a soft formula, specifies the following
dependency between coreferent entity mentions and coreferent event mentions: for two event mentions t1
and t2 having the same trigger subtype, if there exists an argument role r that is filled by argument a1 in t1

3http://ir.hit.edu.cn/



EventCoref(d,t1,t2)

(a) Query

EntityCoref(d,a1,a2)
Trigger(d,t,type!)
Argument(d,t,a,role!)

(b) Hidden

Word(d,t,word)

(c) Evidence

1. Trigger(d,t1,p) ∧ EventCoref(d,t1,t2) ∧ p 6= None ⇒ Trigger(d,t2,p)

2. EventCoref(d,t1,t2) ⇒ (¬Trigger(d,t1,None) ∧ ¬Trigger(d,t1,None))

3. EventCoref(d,t1,t2) ⇒ EventCoref(d,t2,t1)

4. EventCoref(d,t1,t2) ∧ EventCoref(d,t2,t3) ⇒ EventCoref(d,t3,t1)

5. EntityCoref(d,a1,a2) ⇒ EntityCoref(d,a2,a1)

6. EntityCoref(d,a1,a2) ∧ EntityCoref(d,a2,a3) ⇒ EntityCoref(d,a3,a1)

7. Trigger(d,t1,p) ∧ Trigger(d,t2,p) ∧ Argument(d,t1,a1,r) ∧ Argument(d,t2,a2,r) ∧
¬EntityCoref(d,a1,a2) ∧ p 6= None ∧ r 6= None ⇒ ¬EventCoref(d,t1,t2)

8. Word(d,t1,+w1) ∧ Word(d,t2,+w2) ∧ Trigger(d,t1,+p1) ∧ Trigger(d,t2,+p2) ⇒
EventCoref(d,t1,t2)

(d) Joint Formulas

Figure 1: MLN structure.

and by a2 in t2, then t1 and t2 are not event coreferent if a1 and a2 are not entity coreferent.4 Formula 8,
which is also a soft formula, encodes the dependency between words in the text, trigger subtypes and
event coreference. The + sign in this formula indicates that for every grounding of the variables marked
by the + sign, we use a different weight for the soft formula.

5.2 Augmenting the MLN Distribution
Notice that the MLN shown in Figure 1 does not model the features used in the baseline systems. These
features typically have high dimensionality and encoding them directly in the MLN is quite inefficient. For
example, describing a trigram as an MLN formula results in d3 ground formulas, where d is the number
of words in our vocabulary. Therefore, the ground Markov network of an MLN that explicitly models all
such high dimensional features would be extremely large and infeasible for inference. To address this
issue, we implicitly encode the high-dimensional features by embedding them as weighted unit clauses,
one for each grounding of the hidden and query predicates. Specifically, for each hidden/query ground
atom Xi, we derive a weight φ(Xi) using the baseline system. This weight is computed as the distance
from the hyperplane for the SVM-based classifiers and as a probability value for the CRF-based classifiers
in the baseline system. We normalize each weight between the interval [−1,1]. The modified MLN
distribution incorporating the new unit clauses is given by

PM′(ω) ∝ exp

∑
fi

θiNfi(ω)

Φ(ω) (2)

where ω is a world (assignment on every ground atom) and Φ(ω) acts as a prior on the set of hidden (H)
and query (Y) ground atoms in the original MLN and is given by,

Φ(ω) = exp

( ∑
X∈H∪Y

IX(ω)φ(X)

)
4According to the event coreference task definitions, arguments with certain roles cannot satisfy Formula 7. Hence, to reduce

memory requirements, we restrict the application of Formula 7 to arguments having the following roles: Position, Person, Entity,
Organization, Attack, Defendant, Adjudicator, Giver, Agent, Target, and Thing. In addition, we make it a soft (rather than hard)
formula in view of the noisy outputs of our entity coreference resolver.



where IX(ω) is an indicator function that is equal to 1 if X is true in ω and 0 otherwise.

5.3 Setting the Soft Formula Weights

During inference time, we dynamically set the weights for the soft formulas (Formulas 7 and 8 in Figure 1)
as follows. For each ground soft formula where its evidence atoms do not make it false, we set its weight
to be the sum of the (normalized) SVM weights or CRF probabilities corresponding to its hidden and
query atoms. We then multiply the soft weights with hyper-parameters η1 and η2 for Formulas 7 and 8
respectively and tune η1 and η2 using a grid search over the values {0.1, 0.25, 0.5, 0.75, 1.0} to optimize
the F1-score of event coreference resolution on the development set.

5.4 Inference

Given the prior-augmented MLN,M′, the key task we are interested in is finding a truth assignment to all
ground atoms of EventCoref that has the maximum probability given evidence on all ground atoms of
Word. The following standard MAP inference task, which computes a joint assignment to all hidden and
query variables given evidence, can be used to find the desired truth assignment.

arg max
ω

exp

∑
fi

θiNfi(ω)

Φ(ω)

 (3)

Unfortunately, the optimization problem given above is NP-hard in general. Moreover, the number of
possible worlds inM′ is extremely large and as a result naively searching over this large space (in order
to solve the optimization problem) is computationally infeasible. As a concrete example, for the KBP 15
training dataset, we have 50 million ground atoms.

Fortunately, we can exploit the structure of the MLN given in Figure 1 in order to scale up MAP infer-
ence. In particular, the subset of ground atoms corresponding to two distinct documents are independent of
each other. More formally, let Xi and Xj be the subset of ground atoms corresponding to two documents,
say Di and Dj respectively, then Xi is conditionally independent of Xj given evidence. Thus, given D
documents in our corpus, the joint distribution represented by our MLN can be expressed as a product
of D distributions. We can then perform inference independently over each such distribution, which
greatly reduces the complexity of inference. Our inference procedure therefore follows an efficient, lazy,
semi-lifted grounding strategy (Gogate and Domingos, 2011) that grounds the MLN for each document
independently and solves Eq. (3) for each document separately using Gurobi (2013), a state-of-the-art
integer linear programming solver.

6 Evaluation

6.1 Experimental Setup

We perform our evaluation on two corpora, the KBP 2015 English corpus and the Chinese portion of
the ACE 2005 training corpus. For English, we train models on 128 of the training documents, tune
parameters (the regularization parameters in SVM classifiers and the weights of the soft MLN formulas)
on the remaining 30 training documents, and report results on the official test set.5 For Chinese, since
the ACE 2005 test set is not publicly available, we report five-fold cross validation results on the ACE
2005 training corpus. For each fold experiment, we employ three folds for classifier training, one fold for
development (parameter tuning), and one fold for testing.

To evaluate event coreference performance on KBP, we follow the official KBP evaluation and employ
four commonly-used scoring measures as implemented in version 1.7 of the official scorer provided by the
KBP 2015 organizers, namely MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005) and BLANC (Recasens and Hovy, 2011), as well as the unweighted average of their F-scores.6

5Since the KBP 2015 corpus was not annotated with event arguments and entity coreference links, we train our entity mention
extractor, our entity coreference resolver, and our event argument identification and role classification model on two LDC corpora
provided by the TAC KBP 2015 task organizers (LDC2015E29 and LDC2015E68), as permitted by the rules of the shared task.

6The official KBP scorer is available at http://cairo.lti.cs.cmu.edu/kbp/2015/event/scoring .



Metric English/KBP 2015 Chinese/ACE 2005
Baseline MLNs Baseline MLNs

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
B3 53.48 39.21 45.20 50.27 41.63 45.54 38.21 37.93 37.66 36.87 42.54 39.50

CEAFe 42.33 38.54 40.35 47.53 33.48 39.29 40.28 37.76 38.98 41.02 41.19 41.10
MUC 50.52 29.13 36.96 47.07 38.21 42.18 40.02 40.27 40.14 39.37 44.70 41.86

BLANC 41.16 26.17 32.00 40.61 28.96 33.30 24.75 25.67 25.20 22.41 29.07 25.29
Average = 38.64 Average = 40.08 CoNLL = 39.02 CoNLL = 40.82

Table 4: Results for event coreference resolution on KBP 2015 and ACE 2005.

English/KBP 2015 Chinese/ACE 2005
Baseline MLNs Baseline MLNs

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
65.05 51.43 57.45 67.97 50.51 57.95 67.08 56.44 61.30 66.39 57.37 61.55

Table 5: Results for event trigger identification and subtyping on KBP 2015 and ACE 2005.

To evaluate event coreference performance on ACE, we follow previous work on event coreference
(e.g., Yang et al. (2015)) and employ the aforementioned four scoring measures as implemented in the
latest version (v8) of the CoNLL scorer (Pradhan et al., 2014), as well as the CoNLL score, which is
the unweighted average of the MUC, B3, and CEAFe F-scores.7 To our knowledge, there is only one
difference between the implementations of the four scoring measures in the two scorers: while the CoNLL
scorer considers an event mention correctly detected as long as it has an exact match with a gold event
mention in terms of its left and right boundaries, the KBP 2015 scorer is stricter in that it considers an
event mention correctly detected by additionally requiring that its event subtype be correctly determined.

6.2 Results and Discussion

The left half of Table 4 shows the results for English event coreference resolution on the KBP 2015 dataset.
As can be seen, MLNs outperform the baseline system when evaluated on all but the CEAFe metrics.
W.r.t. the Average metric, MLNs achieve an F-score of 40.08, outperforming the baseline significantly
by 1.44 points (paired t-tests, p < 0.05). To our knowledge, this is the best result reported to date on
this corpus, with the top system in the KBP 2015 shared task achieving an Average F-score of 39.65. In
general, the MLN could detect more event coreference chains than the baseline system, as seen from its
higher recall in all but the CEAFe metrics.8

The right half of Table 4 shows the results for event coreference resolution on the ACE 2005 Chinese
corpus. As can be seen, MLNs outperform the baseline significantly by 1.8 points w.r.t. the CoNLL metric.
In fact, MLNs achieve a higher score than the baseline w.r.t. each of the four scoring measures. Similar to
what we observed on the KBP corpus, the consistently superior performance achieved by the MLN-based
resolver can be attributed to its substantially higher recall accompanied by a slightly lower precision. In
particular, since MUC is a link-based metric, the fact that the MLNs achieve a higher MUC recall on both
datasets suggest that the MLNs are better at discovering event coreference links than the baseline.

One may argue that the MLNs may not be better than the baseline at discovering event coreference links:
it may simply be the case that the joint inference process has allowed additional triggers to be extracted,
which in turn allowed additional event coreference links to be established. To understand whether this is
indeed the case, we compute the results for trigger identification and subtyping in Table 5. As can be seen,
fewer English triggers are extracted after joint inference, whereas the reverse is true for Chinese. These
results suggest that at least for English, the higher event coreference recall achieved by the MLNs is not
attributable to better trigger identification and subtyping.

A closer examination of the outputs reveals that our resolver is comparatively better at extracting two
types of coreference links that are traditionally considered difficult to extract. The first type involves
triggers that are lexically different. For example, in the text segment “The former mayor of Detroit,

7The CoNLL scorer is available at https://github.com/conll/reference-coreference-scorers .
8As is commonly known, CEAFe sometimes produces unintuitive scores. Specifically, the CEAFe F-score may drop as more

coreference links are correctly identified. See Moosavi and Strube (2016) for a detailed discussion.



Michigan was sentenced to 28 years in prison . . . Prosecutors asked for a minimum of 28 years for
Kilpatrick, who resigned from the mayor’s office in 2008 . . .”, the link between event mentions triggered
by former and resigned, both of which have type Personnel.End-position, is discovered by our resolver
but not the baseline. The second type involves links between event mentions that are far from each other.

6.3 Error Analysis
To better understand how to improve our MLN-based resolver and to provide directions for future work,
we conduct a qualitative analysis of its major sources of error in this subsection.

6.3.1 Two Major Types of Precision Error
Erroneous triggers. For both languages, our trigger classifier had difficulties with correctly classifying
certain frequently-occurring words that are sometimes used as triggers and sometimes not. Specifically,
the classifier misclassified many non-trigger instances of these words as triggers, which were subsequently
used to establish coreference links by our resolver. A particularly interesting and challenging example
involves the word “violent”. Consider two sentences that appear in the same document: “The violent
arrest of Ahmed al-Alwani is likely to inflame tensions in Sunni-dominated Anbar” and “Iraq troops
arrest leading Sunni MP in violent raid”. The first sentence contains two event mentions, one triggered
by violent with type Conflict.Attack and the other triggered by arrest with type Justice.Arrestjail. The
second sentence, contains only one event mention: it is triggered by raid with type Conflict.Attack and
is coreferent with violent. While our system successfully detects all three triggers, it also erroneously
detects violent in the second sentence as a trigger. This error gets propagated to our event coreference
resolver, which posits the two occurrences of violent as coreferent.
Failure to extract arguments. Recall that our argument classifier does not extract any argument of an
event mention that does not appear in the same sentence as its trigger. This severely limits its ability to
extract arguments and has caused many spurious event coreference links to be established. For instance,
our resolver erroneously posits two violence events as coreferent: it does not know that the two events
took place in different countries, as the argument classifier failed to extract their location arguments (one
is Honduras and the other is Venezuela).

6.3.2 Two Major Types of Recall Error
Missing triggers. For both languages, the trigger classifier failed to identify trigger words/phrases that
are unseen or rarely-occurring in the training data. As a result, many links cannot be established.
Insufficient knowledge. Recall that our MLN-based resolver has achieved a higher recall than the
baseline by doing a better job at establishing links between event mentions containing lexically different
triggers. However, there are still many links between event mentions with lexically different triggers that
our resolver fails to discover owing to the insufficient knowledge made available to it. This type of error
is especially prominent on the Chinese corpus.

7 Conclusion

We proposed a novel joint inference based event coreference resolver using MLNs. Since encoding rich
NLP features in MLNs is a challenging task, we encoded these features implicitly by adding weighted unit
clauses to the MLN distribution. Results on an English corpus (KBP 2015) and a Chinese corpus (ACE
2005) show that our MLN based system achieved statistically significantly better performance than a
pipeline-based resolver. Future work includes transferring our approach to other NLP tasks and exploring
the possibility of incorporating active learning into our approach.
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