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Abstract

Software system development is guided by
the evolution of requirements. In this pa-
per, we address the task of requirements
traceability, which is concerned with pro-
viding bi-directional traceability between
various requirements, enabling users to
find the origin of each requirement and
track every change made to it. We pro-
pose a knowledge-rich approach to the
task, where we extend a supervised base-
line system with (1) additional training
instances derived from human-provided
annotator rationales; and (2) additional
features derived from a hand-built ontol-
ogy. Experiments demonstrate that our ap-
proach yields a relative error reduction of
11.1–19.7%.

1 Introduction

Software system development is guided by the
evolution and refinement of requirements. Re-
quirements specifications, which are mostly doc-
umented using natural language, are refined with
additional design details and implementation in-
formation as the development life cycle pro-
gresses. A crucial task throughout the entire de-
velopment life cycle is requirements traceability,
which is concerned with linking requirements in
which one is a refinement of the other.

Specifically, one is given a set of high-level
(coarse-grained) requirements and a set of low-
level (fine-grained) requirements, and the goal of
requirements traceability is to find for each high-
level requirement all the low-level requirements
that refine it. Note that the resulting mapping be-
tween high- and low-level requirements is many-

to-many, because a low-level requirement can po-
tentially refine more than one high-level require-
ment. As an example, consider the three high-
level requirements and two low-level requirements
shown in Figure 1 about the well-known Pine
email system. In this example, three traceabil-
ity links should be established: (1) HR01 is re-
fined by UC01 (because UC01 specifies the short-
cut key for saving an entry in the address book);
(2) HR02 is refined by UC01 (because UC01 spec-
ifies how to store contacts in the address book);
and (3) HR03 is refined by UC02 (because both of
them are concerned with the help system).

From a text mining perspective, requirements
traceability is a very challenging task. First, there
could be abundant information irrelevant to the
establishment of a link in one or both of the re-
quirements. For instance, all the information un-
der the Description section in UC01 is irrelevant
to the establishment of the link between UC01
and HR02. Worse still, as the goal is to induce
a many-to-many mapping, information irrelevant
to the establishment of one link could be rele-
vant to the establishment of another link involv-
ing the same requirement. For instance, while
the Description section is irrelevant when linking
UC01 and HR02, it is crucial for linking UC01 and
HR01. Above all, a link can exist between a pair
of requirements (HR01 and UC01) even if they do
not possess any overlapping or semantically simi-
lar content words.

Virtually all existing approaches to the require-
ments traceability task were developed in the soft-
ware engineering (SE) research community. Re-
lated work on this task can be broadly divided into
two categories. In manual approaches, require-
ments traceability links are recovered manually by
developers. Automated approaches, on the other



Figure 1: Samples of high- and low-level requirements.

hand, have relied on information retrieval (IR)
techniques, which recover links based on comput-
ing the similarity between a given pair of require-
ments. Hence, such similarity-based approaches
are unable to recover links between those pairs that
do not contain overlapping or semantically similar
words or phrases.

In light of this weakness, we recast require-
ments traceability as a supervised binary classifi-
cation task, where we classify each pair of high-
and low-level requirements as positive (having a
link) or negative (not having a link). In particular,
we propose a knowledge-rich approach to the task,
where we extend a supervised baseline employ-
ing only word pairs and LDA-induced topics as
features (see Section 4) with two types of human-
supplied knowledge. First, we employ annotator
rationales. In the context of requirements trace-
ability, rationales are human-annotated words or
phrases in a pair of high- and low-level require-
ments that motivated a human annotator to estab-
lish a link between the two. In other words, ra-
tionales contain the information relevant to the es-
tablishment of a link. Therefore, using them could
allow a learner to focus on the relevant portions of
a requirement. Motivated by Zaidan et al. (2007),
we employ rationales to create additional training
instances for the learner.

Second, we employ an ontology hand-built by
a domain expert. A sample ontology built for the
Pine domain is shown in Table 1. As we can see,
the ontology contains a verb clustering and a noun
clustering: the verbs are clustered by the function
they perform, whereas a noun cluster corresponds
to a (domain-specific) semantic type. We employ

the ontology to derive additional features.
There are at least two reasons why the ontology-

based features might be useful for identifying
traceability links. First, since only those verbs
and nouns that (1) appear in the training data and
(2) are deemed relevant by the domain expert for
link identification are included in the ontology,
it provides guidance to the learner as to which
words/phrases in the requirements it should fo-
cus on in the learning process.1 Second, the verb
and noun clusters provide a robust generalization
of the words/phrases in the requirements. For in-
stance, a word pair that is relevant for link identifi-
cation may still be ignored by the learner due to its
infrequency of occurrence. The features computed
based on these clusters, on the other hand, will be
more robust to the infrequency problem and could
therefore provide better generalizations.

Our contributions are three-fold. First, the
knowledge-rich approach we propose for require-
ments traceability significantly outperforms a su-
pervised baseline on two traceability datasets, Pine
and WorldVistA. Second, we increase the NLP
community’s awareness of this under-studied,
challenging, yet important problem in SE, which
could lead to fruitful inter-disciplinary collabora-
tion. Third, to facilitate future research on this
problem, we make our annotated resources, in-
cluding the datasets, the rationales, and the ontolo-

1Note that both the rationales and the words/phrases in the
ontology could help the learner by allowing it to focus on rel-
evant materials in a given pair of requirements. Nevertheless,
they are not identical: rationales are words/phrases that are
relevant to the establishment of a particular traceability link,
whereas the words/phrases in the ontology are relevant to link
establishment in general in the given domain.



Category Terms
Message mail, message, email, e-mail, PDL, subjects
Contact contact, addresses, multiple addresses
Folder folder, folder list, tree structure
Location address book, address field, entry, address
Platform windows,unix,window system,unix system
Module help system, spelling check, Pico, shell
Protocol MIME,SMTP
Command shortcut key, ctrl+c, ctrl+m, ctrl+p, ctrl+x

(a) Noun clustering

Category Terms
System Operation evoke, operate, set up, activate, log
Message Search search, find
Contact
Manipulation add, store, capture

Message
Manipulation compose, delete, edit, save, print

Folder
Manipulation create, rename, delete, nest

Message
Communication reply, send, receive, forward, cc, bcc

User Input input, type, enter, press, hit, choose
Visualization display, list, show, prompt, highlight
Movement move,navigate
Function support, have, perform, allow, use

(b) Verb clustering

Table 1: Manual ontology for Pine.

gies, publicly available.2

2 Related Work

Related work on traceability link prediction can be
broadly divided into two categories, manual ap-
proaches and automatic approaches.

Manual requirement tracing. Traditional man-
ual requirements tracing is usually accomplished
by system analysts with the help of requirement
management tools, where analysts visually exam-
ine each pair of requirements documented in the
requirement management tools to build the Re-
quirement Traceability Matrix (RTM). Most ex-
isting requirement management tools (e.g., Ra-
tional DOORS3, Rational RequisitePro4, CASE5)
support traceability analysis. Manual tracing is
often based on observing the potential relevance
between a pair of requirements belonging to dif-
ferent categories or at different levels of detail.
The manual process is human-intensive and error-
prone given a large set of requirements.

2See our website at http://lyle.smu.edu/
˜lghuang/research/Traceability/ for these
annotated resources.

3http://www-03.ibm.com/software/
products/en/ratidoor

4http://www.ibm.com/developerworks/
downloads/r/rrp

5http://www.analysttool.com

Automated requirement tracing. Automated
or semi-automated requirements traceability, on
the other hand, generates traceability links auto-
matically, and hence significantly increases effi-
ciency. Pierce (1978) designed a tool that main-
tains a requirements database to aid automated re-
quirements tracing. Jackson (1991) proposed a
keyphrase-based approach for tracing a large num-
ber of requirements of a large Surface Ship Com-
mand System. More advanced approaches rely-
ing on information retrieval (IR) techniques, such
as the tf-idf-based vector space model (Sundaram
et al., 2005), Latent Semantic Indexing (Lormans
and Van Deursen, 2006; De Lucia et al., 2007;
De Lucia et al., 2009), probabilistic networks
(Cleland-Huang et al., 2005), and Latent Dirichlet
Allocation (Port et al., 2011), have been investi-
gated, where traceability links were generated by
calculating the textual similarity between require-
ments using similarity measures such as Dice, Jac-
card, and Cosine coefficients (Dag et al., 2002).
All these methods were developed based on either
matching keywords or identifying similar words
across a pair of requirements, and none of them
have studied the feasibility of employing super-
vised learning to accomplish this task, unlike ours.

3 Datasets

For evaluation, we employ two publicly-available
datasets annotated with traceability links. The first
dataset, annotated by Sultanov and Hayes (2010),
involves the Pine email system developed at the
University of Washington. The second dataset, an-
notated by Cleland-Huang et al. (2010), involves
WorldVistA, an electronic health information sys-
tem developed by the USA Veterans Administra-
tion. Statistics on these datasets are shown in Ta-
ble 2. For Pine, 2499 instances can be created
by pairing the 49 high-level requirements with the
51 low-level use cases. For WorldVistA, 9193
instances can be created by pairing the 29 high-
level requirements with the 317 low-level specifi-
cations. As expected, these datasets have skewed
class distributions: only 10% (Pine) and 4.3%
(WorldVistA) of the pairs are linked.

While these datasets have been annotated with
traceability links, they are not annotated with an-
notator rationales. Consequently, we employed
a software engineer specializing in requirements
traceability to perform rationale annotation. We
asked him to annotate rationales for a pair of re-



Datasets Pine WorldVistA
# of (high-level) requirements 49 29
# of (low-level) specifications 51 317
Avg. # of words per requirement 17 18
Avg. # of words per specification 148 26
Avg. # of links per requirement 5.1 13.6
Avg. # of links per specification 4.9 1.2
# of pairs that have links 250 394
# of pairs that do not have links 2249 8799

Table 2: Statistics on the datasets.

quirements only if he believed that there should
be a traceability link between them. The reason
is that in traceability prediction, the absence of a
traceability link between two requirements is at-
tributed to the lack of evidence that they should be
linked, rather than the presence of evidence that
they should not be linked. More specifically, we
asked the annotator to identify as rationales all the
words/phrases in a pair of requirements that mo-
tivated him to label the pair as positive. For in-
stance, for the link between HR01 and UC01 in
Figure 1, he identified two rationales from HR01
(“shortcut key” and “control and the shortcut key
are pressed”) and one from UC01 (“press ctrl+x”).

4 Hand-Building the Ontologies

A traceability link prediction ontology is com-
posed of a verb clustering and a noun cluster-
ing. We asked a software engineer with exper-
tise in requirements traceability to hand-build the
ontology for each of the two datasets. Using his
domain expertise, the engineer first identified the
noun categories and verb categories that are rele-
vant for traceability prediction. Then, by inspect-
ing the training data, he manually populated each
noun/verb category with words and phrases col-
lected from the training data.

As will be discussed in Section 8, we evalu-
ate our approach using five-fold cross validation.
Since the nouns/verbs in the ontology were col-
lected only from the training data, the software
engineer built five ontologies for each dataset, one
for each fold experiment. Hence, nouns/verbs that
appear in only the test data in a fold experiment
are not included in that experiment’s ontology. In
other words, our test data are truly held-out w.r.t.
the construction of the ontology. Tables 1 and 3
show the complete lists of noun and verb cate-
gories identified for Pine and WorldVistA, respec-
tively, as well as sample nouns and verbs that pop-
ulate each category. Note that the five ontologies
employ the same set of noun and verb categories,

Category Terms
Signature signature, co-signature, identity
Prescription prescription, electronic prescription
Authorization authorized users, administrator
Patient Info patient data, health summary
General Info information, data
Component platform, interface, integration
Laboratory lab test results, laboratory results
Customization individual customization,customization
Discharge discharge, discharge instruction
Records progress note, final note, saved note
Details specifications, order details
Medication medications, drug
Side-effect allergy, drug-drug interaction, reaction
Code ICD-9, standards, management code
User user class hierarchy, roles, user roles
Order orderable file, order, medication order
List problem list,problem/diagnosis list
Rules business rules, C32, HITSP C32
Document documents, level 2 CCD documents
Schedule appointments, schedule, reminders
Warning warning, notice warning
Encounter encounter, encounter data
Hospitalization hospitalization data,procedure data
Arrangement templates, clinical templates, data entry
Immunization immunization, immunization record
Protocol protocol,HL7,HTTP,FTP,HL7-ASTM
System data codified data,invalid data,data elements
Key key, security key, computer key
Identity social security number,account number
Audit audit log, audit records, audit trail
Duty assignment, task

(a) Noun clustering

Category Terms
Interface actions click, select, search, browse
Authentication sign, co-sign, cosign, authenticate
Customization fit, customize, individualize
Notification check, alert
Security control control, prevent, prohibit, protect
Data manipulation capture,associate,document,create
Visualization display, view, provide, generate
Recording audit, log
Data retrieval export, retrieve
Deletion remove, delete
System operation 1 save, retain
System operation 2 abort, restrict, delay, lock
Search find, query
Communication forward, redirect

(b) Verb clustering

Table 3: Manual ontology for WorldVistA.

differing only w.r.t. the nouns and verbs that pop-
ulate each category. As we can see, for Pine, eight
groups of nouns and ten groups of verbs are de-
fined, and for WorldVistA, 31 groups of nouns and
14 groups of verbs are defined. Each noun cate-
gory represents a domain-specific semantic class,
and each verb category corresponds to a function
performed by the action underlying a verb.



5 Baseline Systems

In this section, we describe three baseline systems
for traceability prediction.

5.1 Unsupervised Baselines
The Tf-idf baseline. We employ tf-idf as our
first unsupervised baseline. Each document is
represented as a vector of unigrams. The value
of each vector entry is its associated word’s tf-
idf value. Cosine similarity is used to compute
the similarity between two documents. Any pair
of requirements whose similarity exceeds a given
threshold is labeled as positive.
The LDA baseline. We employ LDA (Blei et
al., 2003) as our second unsupervised baseline.
We train an LDA model on our data to produce
n topics. For Pine, we set n to 10, 20, . . ., 50. For
WorldVistA, because of its larger size, we set n
to 50, 60, . . ., 100. We then represent each docu-
ment as a vector of length n, with each entry set to
the probability that the document belongs to one
of the topics. Cosine similarity is used as the sim-
ilarity measure. Any pair of requirements whose
similarity exceeds a given threshold is labeled as
positive.

5.2 Supervised Baseline
Each instance corresponds to a high-level require-
ment and a low-level requirement. Hence, we cre-
ate instances by pairing each high-level require-
ment with each low-level requirement. The class
value of an instance is positive if the two require-
ments involved should be linked; otherwise, it is
negative. Each instance is represented using two
types of features:
Word pairs. We create one binary feature for
each word pair (wi, wj) collected from the train-
ing instances, where wi and wj are words appear-
ing in a high-level requirement and a low-level re-
quirement respectively. Its value is 1 if wi and wj

appear in the high-level and low-level pair under
consideration, respectively.
LDA-induced topic pairs. Motivated by previ-
ous work, we create features based on the top-
ics induced by an LDA model for a requirement.
Specifically, we first train an LDA model on our
data to obtain n topics, where n is to be tuned
jointly with C on the development (dev) set.6

Then, we create one binary feature for each topic
6As in the LDA baseline, for Pine we set n to 10, 20, . . .,

50, and for WorldVistA, we set n to 50, 60, . . ., 100.

pair (ti, tj), where ti and tj are the topics corre-
sponding to a high-level requirement and a low-
level requirement, respectively. Its value is 1 if ti
and tj are the most probable topics of the high-
level and low-level pair under consideration, re-
spectively.

We employ LIBSVM (Chang and Lin, 2011) to
train a binary SVM classifier on the training set.
We use a linear kernel, setting all learning param-
eters to their default values except for the C (reg-
ularization) parameter, which we tune jointly with
n (the number of LDA-induced topics) to maxi-
mize F-score on the dev set.7 Since we conduct
five-fold cross validation, in all experiments that
require a dev set, we use three folds for training,
one fold for dev, and one fold for evaluation.

6 Exploiting Rationales

In this section, we describe our first extension to
the baseline: exploiting rationales to generate ad-
ditional training instances for the SVM learner.

6.1 Background

The idea of using annotator rationales to improve
binary text classification was proposed by Zaidan
et al. (2007). A rationale is a human-annotated
text fragment that motivated an annotator to as-
sign a particular label to a training document. In
their work on classifying the sentiment expressed
in movie reviews as positive or negative, Zaidan
et al. generate additional training instances by re-
moving rationales from documents. Since these
pseudo-instances lack information that the anno-
tators thought was important, an SVM learner
should be less confident about the labels of these
weaker instances, and should therefore place the
hyperplane closer to them. A learner that suc-
cessfully learns this difference in confidence as-
signs a higher importance to the pieces of text that
are present only in the original instances. Thus
the pseudo-instances help the learner both by in-
dicating which parts of the documents are impor-
tant and by increasing the number of training in-
stances.

6.2 Application to Traceability Prediction

Unlike in sentiment analysis, where rationales can
be identified for both positive and negative train-
ing reviews, in traceability prediction, rationales

7C was selected from the set {1, 10, 100, 1000, 10000}.



can only be identified for the positive training in-
stances (i.e., pairs with links). As noted before, the
reason is that in traceability prediction, an instance
is labeled as negative because of the absence of ev-
idence that the two requirements involved should
be linked, rather than the presence of evidence that
they should not be linked.

Using these rationales, we can create positive
pseudo-instances. Note, however, that we cannot
employ Zaidan et al.’s method to create positive
pseudo-instances. According to their method, we
would (1) take a pair of linked requirements, (2)
remove the rationales from both of them, (3) create
a positive pseudo-instance from the remaining text
fragments, and (4) add a constraint to the SVM
learner forcing it to classify it less confidently than
the original positive instance. Creating positive
pseudo-instances in this way is problematic for our
task. The reason is simple: as discussed previ-
ously, a negative instance in our task stems from
the absence of evidence that the two requirements
should be linked. In other words, after removing
the rationales from a pair of linked requirements,
the pseudo-instance created from the remaining
text fragments should be labeled as negative.

Given this observation, we create a positive
pseudo-instance from each pair of linked require-
ments by removing any text fragments from the
pair that are not part of a rationale. In other
words, we use only the rationales to create positive
pseudo-instances. This has the effect of amplify-
ing the information present in the rationales.

As mentioned above, while Zaidan et al.’s
method cannot be used to create positive pseudo-
instances, it can be used to create negative pseudo-
instances. For each pair of linked requirements,
we create three negative pseudo-instances. The
first one is created by removing all and only the
rationales from the high-level requirement in the
pair. The second one is created by removing all
and only the rationales from the low-level require-
ment in the pair. The third one is created by re-
moving all the rationales from both requirements
in the pair.

To better understand our annotator rationale
framework, let us define it more formally. Recall
that in a standard soft-margin SVM, the goal is to
find w and ξ to minimize

1

2
|w|2 + C

∑
i

ξi

subject to

∀i : ciw · xi ≥ 1− ξi, ξi > 0

where xi is a training example; ci ∈ {−1, 1} is the
class label of xi; ξi is a slack variable that allows
xi to be misclassified if necessary; and C > 0 is
the misclassification penalty (a.k.a. the regulariza-
tion parameter).

To enable this standard soft-margin SVM to also
learn from the positive pseudo-instances, we add
the following constraints:

∀i : w · vi ≥ µ(1− ξi),

where vi is the positive pseudo-instance created
from positive example xi, ξi ≥ 0 is the slack vari-
able associated with vi, and µ is the margin size
(which controls how confident the classifier is in
classifying the pseudo-instances).

Similarly, to learn from the negative pseudo-
instances, we add the following constraints:

∀i, j : w · uij ≤ µ(1− ξij),

where uij is the jth negative pseudo-instance cre-
ated from positive example xi, ξij ≥ 0 is the slack
variable associated with uij , and µ is the margin
size.

We let the learner decide how confidently it
wants to classify these additional training in-
stances based on the dev data. Specifically, we
tune this confidence parameter µ jointly with the
C value to maximize F-score on the dev set.8

7 Extension 2: Exploiting an Ontology

Next, we describe our second extension to the
baseline: exploiting ontology-based features.

7.1 Ontology-Based Features
As mentioned before, we derive additional fea-
tures for the SVM learner from the verb and noun
clusters in the hand-built ontology. Specifically,
we derive five types of features:
Verb pairs. We create one binary feature for
each verb pair (vi, vj) collected from the training
instances, where (1) vi and vj appear in a high-
level requirement and a low-level requirement re-
spectively, and (2) both verbs appear in the ontol-
ogy. Its value is 1 if vi and vj appear in the high-
level and low-level pair under consideration, re-
spectively. Using these verb pairs as features may

8C was selected from the set {1, 10, 100, 100, 10000},
and µ was selected from the set {0.2, 0.3, 1, 3, 5}.



allow the learner to focus on verbs that are relevant
to traceability prediction.
Verb group pairs. For each verb pair feature de-
scribed above, we create one binary feature by re-
placing each verb in the pair with its cluster id in
the ontology. Its value is 1 if the two verb groups
in the pair appear in the high-level and low-level
pair under consideration, respectively. These fea-
tures may enable the resulting classifier to provide
robust generalizations in cases where the learner
chooses to ignore certain useful verb pairs owing
to their infrequency of occurrence.
Noun pairs. We create one binary feature for
each noun pair (ni, nj) collected from the training
instances, where (1) ni and nj appear in a high-
level requirement and a low-level requirement re-
spectively, and (2) both nouns appear in the on-
tology. Its value is computed in the same manner
as the verb pairs. These noun pairs may help the
learner to focus on verbs that are relevant to trace-
ability prediction.
Noun group pairs. For each noun pair feature
described above, we create one binary feature by
replacing each noun in the pair with its cluster id
in the ontology. Its value is computed in the same
manner as the verb group pairs. These features
may enable the classifier to provide robust gener-
alizations in cases where the learner chooses to ig-
nore certain useful noun pairs owing to their infre-
quency of occurrence.
Dependency pairs. In some cases, the
noun/verb pairs may not provide sufficient
information for traceability prediction. For
example, the verb pair feature (delete, delete) is
suggestive of a positive instance, but the instance
may turn out to be negative if one requirement
concerns deleting messages and the other con-
cerns deleting folders. As another example, the
noun pair feature (folder, folder) is suggestive of a
positive instance, but the instance may turn out to
be negative if one requirement concerns creating
folders and the other concerns deleting folders.

In other words, we need to develop features that
encode the relationship between verbs and nouns.
To do so, we first parse each requirement using
the Stanford dependency parser (de Marneffe et
al., 2006), and collect each noun-verb pair (ni,vj)
connected by a dependency relation. We then cre-
ate binary features by pairing each related noun-
verb pair found in a high-level training require-
ment with each related noun-verb pair found in a

low-level training requirement. The feature value
is 1 if the two noun-verb pairs appear in the pair of
requirements under consideration. To enable the
learner to focus on learning from relevant verbs
and nouns, only verbs and nouns that appear in the
ontology are used to create these features.

7.2 Learning the Ontology

An interesting question is: is it possible to learn an
ontology rather than hand-building it? This ques-
tion is of practical relevance, as hand-constructing
the ontology is a time-consuming and error-prone
process. Below we describe the steps we propose
for ontology learning.

Step 1: Verb/Noun selection. We select the
nouns, noun phrases (NPs) and verbs in the train-
ing set to be clustered. Specifically, we select a
verb/noun/NP if (1) it appears more than once in
the training data; (2) it contains at least three char-
acters (thus avoiding verbs such as be); and (3) it
appears in the high-level but not the low-level re-
quirements and vice versa.

Step 2: Verb/Noun representation. We repre-
sent each noun/NP/verb as a feature vector. Each
verb v is represented using the set of nouns/NPs
collected in Step 1. The value of each feature is
binary: 1 if the corresponding noun/NP occurs as
the direct or indirect object of v in the training
data (as determined by the Stanford dependency
parser), and 0 otherwise. Similarly, each noun n is
represented using the set of verbs collected in Step
1. The value of each feature is binary: 1 if n serves
as the direct or indirect object of the corresponding
verb in the training data, and 0 otherwise.

Step 3: Clustering. To produce a verb cluster-
ing and a noun clustering, we cluster the verbs
and the nouns/NPs separately using the single-link
algorithm. Single-link is an agglomerative algo-
rithm where each object to be clustered is initially
in its own cluster. In each iteration, it merges the
two most similar clusters and stops when the de-
sired number of clusters is reached. Since we are
using single-link clustering, the similarity between
two clusters is the similarity between the two most
similar objects in the two clusters. We compute
the similarity between two objects by taking the
dot product of their feature vectors.

Since we do not know the number of clusters to
be produced a priori, for Pine we produce three
noun clusterings and three verb clusterings (with
10, 15, and 20 clusters each). For WorldVistA,



given its larger size, we produce five noun cluster-
ings and five verb clusterings (with 10, 20, 30, 40,
and 50 clusters each). We then select the combi-
nation of noun clustering, verb clustering, and C
value that maximizes F-score on the dev set, and
apply the resulting combination on the test set.

To compare the usefulness of the hand-built and
induced ontologies, in our evaluation we will per-
form separate experiments in which each ontology
is used to derive the features from Section 7.1.

8 Evaluation

8.1 Experimental Setup
We employ as our evaluation measure F-score,
which is the unweighted harmonic mean of recall
and precision. Recall (R) is the percentage of links
in the gold standard that are recovered by our sys-
tem. Precision (P) is the percentage of links recov-
ered by our system that are correct. We preprocess
each document by removing stopwords and stem-
ming the remaining words. All results are obtained
via five-fold cross validation.

8.2 Results and Discussion
Results on Pine and WorldVistA are shown in Ta-
ble 4(a) and Table 4(b), respectively.

8.2.1 No Pseudo-instances
The “No pseudo” column of Table 4 shows the re-
sults when the learner learns from only real train-
ing instances (i.e., no pseudo-instances). Specifi-
cally, rows 1 and 2 show the results of the two un-
supervised baselines, tf-idf and LDA, respectively.

Recall from Section 5.1 that in both baselines,
we compute the cosine similarity between a pair
of requirements, positing them as having a trace-
ability link if and only if their similarity score ex-
ceeds a threshold that is tuned based on the test
set. By doing so, we are essentially giving both
unsupervised baselines an unfair advantage in the
evaluation. As we can see from rows 1 and 2
of the table, tf-idf achieves F-scores of 54.5% on
Pine and 46.5% on WorldVistA. LDA performs
significantly worse than tf-idf, achieving F-scores
of 34.2% on Pine and 15.1% on WorldVistA.9

Row 3 shows the results of the supervised base-
line described in Section 5.2. As we can see,
this baseline achieves F-scores of 57.5% on Pine
and 63.3% on WorldVistA, significantly outper-
forming the better unsupervised baseline (tf-idf)

9All significance tests are paired t-tests (p < 0.05).

on both datasets. When this baseline is aug-
mented with features derived from manual clusters
(row 4), the resulting system achieves F-scores of
62.6% on Pine and 64.2% on WorldVistA, outper-
forming the supervised baseline by 5.1% and 0.9%
in F-score on these datasets. These results repre-
sent significant improvements over the supervised
baseline on both datasets, suggesting the useful-
ness of the features derived from manual clusters
for traceability link prediction. When employing
features derived from induced rather than manual
clusters (row 5), the resulting system achieves F-
scores of 61.7% on Pine and 64.6% on World-
VistA, outperforming the supervised baseline by
4.2% and 1.3% in F-score on these datasets. These
results also represent significant improvements
over the supervised baseline on both datasets. In
addition, the results obtained using manual clus-
ters (row 4) and induced clusters (row 5) are statis-
tically indistinguishable. This result suggests that
the ontologies we induced can potentially be used
in lieu of the manually constructed ontologies for
traceability link prediction.

8.2.2 Using Positive Pseudo-instances
The “Pseudo pos only” column of Table 4 shows
the results when each of the systems is trained with
additional positive pseudo-instances.

Comparing the first two columns, we can
see that employing positive pseudo-instances in-
creases performance on Pine (F-scores rise by 0.7–
1.1%) but decreases performance on WorldVistA
(F-scores drop by 0.3–2.1%). Nevertheless, the
corresponding F-scores in all but one case (Pine,
induced) are statistically indistinguishable. These
results seem to suggest that the addition of posi-
tive pseudo-instances is not useful for traceability
link prediction.

Note that the addition of features derived from
manual/induced clusters to the supervised baseline
no longer consistently improves its performance:
while F-scores still rise significantly by 4.6–5.5%
on Pine, they drop insignificantly by 0.1–0.5% on
WorldVistA.

8.2.3 Using Positive and Negative
Pseudo-instances

The “Pseudo pos+neg” column of Table 4 shows
the results when each of the systems is trained with
additional positive and negative pseudo-instances.

Comparing these results with the correspond-
ing “Pseudo pos only” results, we can see that



No pseudo Pseudo pos only Pseudo pos+neg Pseudo residual
System R P F R P F R P F R P F

1 Tf-idf baseline 73.6 43.3 54.5 – – – – – – – – –
2 LDA baseline 30.4 39.2 34.2 – – – – – – – – –
3 Supervised baseline 50.4 67.0 57.5 51.2 67.3 58.2 53.9 73.8 62.3 31.6 68.6 43.2
4 + manual clusters 54.4 73.9 62.6 55.6 74.7 63.7 57.6 77.0 65.9 30.0 72.1 42.3
5 + induced clusters 53.6 72.8 61.7 54.8 73.6 62.8 55.2 75.0 63.6 30.0 73.5 42.6

(a) Pine

No pseudo Pseudo pos only Pseudo pos+neg Pseudo residual
System R P F R P F R P F R P F

1 Tf-idf baseline 60.4 37.8 46.5 – – – – – – – – –
2 LDA baseline 25.9 10.6 15.1 – – – – – – – – –
3 Supervised baseline 52.5 79.9 63.3 52.2 79.2 63.0 55.9 80.6 66.0 49.2 71.5 58.3
4 + manual clusters 52.5 82.8 64.2 51.5 80.8 62.9 57.1 83.0 67.6 47.7 76.1 58.6
5 + induced clusters 52.8 83.2 64.6 51.0 80.7 62.5 57.1 82.1 67.4 47.7 76.4 58.7

(b) WorldVistA

Table 4: Results of supervised systems on the Pine and WorldVistA datasets.

additionally employing negative pseudo-instances
consistently improves performance: F-scores rise
by 0.8–4.1% on Pine and 3.0–4.9% on World-
VistA. In particular, the improvements in F-score
in three of the six cases (Pine/Baseline, World-
VistA/manual, WorldVistA/induced) are statisti-
cally significant. These results suggest that the ad-
ditional negative pseudo-instances provide useful
information for traceability link prediction.

In addition, the use of features derived from
manual/induced clusters to the supervised baseline
consistently improves its performance: F-scores
rise significantly by 1.3–3.6% on Pine and signifi-
cantly by 1.4–1.6% on WorldVistA.

Finally, the best results in our experiments are
achieved when both positive and negative pseudo-
instances are used in combination with man-
ual/induced clusters: F-scores reach 63.6–65.9%
on Pine and 67.4–67.6% on WorldVistA. These
results translate to significant improvements in F-
score over the supervised baseline by 6.1–8.4% on
Pine and 4.1–4.3% on WorldVistA, or relative er-
ror reductions of 14.3–19.7% on Pine and 11.1–
11.7% on WorldVistA.

8.2.4 Pseudo-instances from Residuals

Recall that Zaidan et al. (2007) created pseudo-
instances from the text fragments that remain after
the rationales are removed. In Section 6.3, we ar-
gued that their method of creating positive pseudo-
instances for our requirements traceability task is
problematic. In this subsection, we empirically
verify the correctness of this claim.

Specifically, the “Pseudo residual” column of
Table 4 shows the results when each of the “No
pseudo” systems is additionally trained on the pos-

itive pseudo-instances created using Zaidan et al.’s
method. Comparing these results with the corre-
sponding “Pseudo pos+neg” results, we see that
replacing our method of creating positive pseudo-
instances with Zaidan et al.’s method causes the
F-scores to drop significantly by 7.7–23.6% in all
cases. In fact, comparing these results with the
corresponding “No pseudo” results, we see that
except for the baseline system, employing posi-
tive pseudo-instances created from Zaidan et al.’s
method yields significantly worse results than not
employing pseudo-instances at all. These results
provide suggestive evidence for our claim.

9 Conclusion

We investigated a knowledge-rich approach to an
important yet under-studied SE task that presents
a lot of challenges to NLP researchers: traceabil-
ity prediction. Experiments on two evaluation
datasets showed that (1) in comparison to a su-
pervised baseline, this method reduces relative er-
ror by 11.1–19.7%; and (2) results obtained us-
ing induced clusters were competitive with those
obtained using manual clusters. To stimulate re-
search on this task, we make our annotated re-
sources publicly available.
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