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Abstract

We present a generative model for unsuper-
vised coreference resolution that views coref-
erence as an EM clustering process. For
comparison purposes, we revisit Haghighi

and Klein’s (2007) fully-generative Bayesian

model for unsupervised coreference resolu-
tion, discuss its potential weaknesses and con-
sequently propose three modifications to their

complexity of coreference models, have made these
supervised approaches more dependent on labeled
data and less applicable to languages for which lit-
tle or no annotated data exists. Given the growing
importance of multi-lingual processing in the NLP
community, however, the development of unsuper-
vised and weakly supervised approaches for the au-
tomatic processing of resource-scarce languages has
become more important than ever.

model. Experimental results on the ACE data
sets show that our model outperforms their
original model by a large margin and com-
pares favorably to the modified model.

In fact, several popular weakly supervised learn-
ing algorithms such as self-training, co-training
(Blum and Mitchell, 1998), and EM (Dempster et
al., 1977) have been applied to coreference resolu-
tion (Ng and Cardie, 2003) and the related task of
pronoun resolution (Muller et al., 2002; Kehler et
Coreference resolution is the problem of identifyingal" 2004; Cherry and Bergsma, 2005). Given a smal
which mentions (i.e., noun phrases) refer to Whichnumber of coreference-annotated documents and a
d large number of unlabeled documents, these weakly

coreference corpora produced as aresult of the Mugjperwsed learners am .to mcremgntally augment
conferences and the ACE evaluations has promptdd€ abeled data by iteratively training a classffier
the development of a variety of supervised machin@" the labeled data and using it to label mention
learning approaches to coreference resolution in rRairs randomly drawn from the unlabeled documents
cent years. The focus of learning-based coreferen@éCQREFERENTgr NOT_CORE_FERENT I_—|owe_ver,
research has also shifted from the acquisition of glassﬁymg mentlor_l pairs using such iterative ap-
pairwise model that determines whether two menp_roaches is undesirable for cc_>refere_nce_ re_splutlon:
tions are co-referring (e.g., Soon et al. (2001), N&mce the non—c_oreferent mention pairs significantly
and Cardie (2002), Yang et al. (2003)) to the degutnumb_e_r their coreferent coun_terparts_, the result-
velopment of rich linguistic features (e.g., Ji et a9 cl,_assmers gengrally have an increasing tendency
(2005), Ponzetto and Strube (2006)) and the e>£9 (mis)label a pair as non-corefer_ent as bootstrap-
ploitation of advanced techniques that involve joinpIng p_rogress_es (see Ng and Cardie (2003)).
learning (e.g., Daumé Il and Marcu (2005)) and Motivated in part by these results, we present a
joint inference (e.g., Denis and Baldridge (2007)peneratlve, unsupervised model for probabilistically

for coreference resolution and a related extraction iror co-training, a pair ofiew classifiers are trained; and
task. The rich features, coupled with the increasefr EM, a generative model is trained instead.

1 Introduction

real-world entities. The availability of annotate



inducing coreferencgartitions on unlabeleddoc- 2.2 The Model
uments, rather than classifying mention pairs, viaAS mentioned previously,

EM clustering (Section 2). In fact, our model com-g a4a5 4t the document level, inducing a valid clus-

bines the best of two worlds: it operates at th?ering on a given documen. More specifically,

document level, while exploiting essential ImgwstlcOur model consists of two steps. It first chooses a

constraints on coreferent_mentlons (?'_g" genqer_ar&ﬂ.lsteringc based on some clustering distribution
number agreement) provided by traditional pammqu(C) and then generate3 givenC:
classification models. '

For comparison purposes, we revisit a fully- P(D,C)=P(C)P(D | C).
generative Bayesian model for unsupervised coref- 1o facilitate the incorporation of linguistic con-
erence resolution recently introduced by Haghighitraints defined on a pair of mentions, we represent
and Klein (2007), discuss its potential weaknesses py its mention pairsPairs(D). Now, assuming

and consequently propose three modifications at these mention pairs are generated conditionally

ACE data sets show that our model outperforms their
original model by a large margin and compares fa-
vorably to the modified model (Section 4).

our generative model op-

P(D|C)= 11 P(mij | Cij).

m;; €Pairs(D)

2 Coreference as EM Clustering Next, we represent;; as a set of seven features
that is potentially useful for determining whethes

In this SeCtion, we will eXpIain how we recast Un'andmj are coreferent (See Table %_Hence’ we can
supervised coreference resolution as EM clusteringewrite P(D | C) as

We begin by introducing some of the definitions and

1 7
notations that we will use in this paper. 11 P(mig,...omi; | Cig),

m;; € Pairs(D)
2.1 Definitions and Notations wheremfj is the value of théith feature ofm;;.

A mention can be a pronoun, a name (i.e., a proper To reduce data sparseness and improve the es-
noun), or a nominal (i.e., a common noun). Am timation of the above probabilities, we make con-
tity is a set of coreferent mentions. Given a docyditional independence assumptions about the gen-
mentD consisting ofn. mentions m; e We eration of these feature values. Specifically, as
Iy ey My, ) _ .
usePairs(D) to denote the set df)) mention pairs, shown ‘in the first column of Table 1, we di-
{mij | 1 < i< j < n}, wherems; is formed vide the seven features into thrgeoups (namely,
frorzri mentionsim. andm. ’The pairvvizée probabil- strong coreference indicators, linguistic constraints,
7 e

ity formed fromm; andm; refers to the probabil- and mention types), assuming that two feature

ity that the pairm;; is coreferent and is denoted asYa'“eS are conditionally independent if and only

Pryres(mij). A clustering of n mentions is am x if the correspon_ding _features pelong to differ-
n Boolean matrixC', whereC;; (the §.j)-th entry of ent groups. With this assumption, we can de-

1 7 Y i
C)is 1 if and only if mentionsn,; andm,; are coref- compose P (mj, .. 17 | ICZ )2|nt03 a product
erent. An entry inC is relevant if it corresponds ©f three probabilities: P(mj;, mi;, mi; | Cij),

4 .5 6 | 7 .
to a mention pair inPairs(D). A valid clustering £ (7> ™ij: M | Cij), andP(mj; | Cy). Each of

is a clustering in which the relevant entries satisf)yhes_e di_stributions represents a pair of mgltinom_ial

the transitivity constraint. In other wordg; is valid distributions, one for the coreferent mention pairs

if and only if (C;; = 1 A Cy = 1) Cow = 1 (Cs; = 1) and the other for the non-coreferent men-
17 7 7

V1<i<j<k<n Hence avalid clustering tion pairs (C;; = 0). Hence, the set of parameters

; 1,2 .3
corresponds to partition of a given set of mentions, of OLiI’ m?del6,®, CO”Z';[S OJP(m ym”,m” | c),
and the goal of coreference resolution is to producg(m ym?,m? | ¢), andP(m" | c).
a valid clustering in which each cluster corresponds 2gee so0n et al. (2001) for details on feature value compu-
to a distinct entity. tations. Note that all feature values are computed autcalbti



Feature Type | Feature ID Feature Description

Strong 1 STRMATCH | T if neither of the two mentions is a pronoun and after distaydleterminers,
Coreference the string denoting mentiom; is identical to that of mentiom;; else F.
Indicators 2 ALIAS T if one mention is an acronym, an abbreviation, or a hameauanf the

other; else F. For instanc8jll Clinton andPresident Clinton are aliases, sd
areMIT andMassachusetts I nstitute of Technology.

3 APPOSITIVE | T if the mentions are in an appositive relationship; else F.
Linguistic 4 GENDER T if the mentions agree in gender; F if they disagree; NA ifdmrinformation
Constraints for one or both mentions cannot be determined.
5 NUMBER T if the mentions agree in number; F if they disagree; NA if mmeminforma-
tion for one or both mentions cannot be determined.
6 SEM_CLASS | T if the mentions have the same semantic class; F if they dbi&tif the
semantic class information for one or both mentions canaatdiermined.
Mention Types 7 NPTYPE the feature value is the concatenation of the mention typleestfwo mentions,

tit;, wheret;, t; € { PRONOUN NAME, NOMINAL }.

Table 1: Feature set for representing a mention pair. Thesficdeatures are relational features that test whetheesom
property P holds for the mention pair under consideratioth iadicate whether the mention pairTRUE or FALSE
w.r.t. P; avalue oNOT APPLICABLE is used when property P does not apply.

2.3 The Induction Algorithm a probability of one to the correct clustering of the
labeled document (see Section 4.1 for details).

To induce a clustering’ on a documenD, we run Aft fimat i the M-st q
EM on our model, treating> as observed data and er (re-)estimating® in the -Slep, we proceed
to the E-step, where the goal is to find the condi-

C as hidden data. Specifically, we use EM to iterat-, | clusteri babilit Gi q ;
tively estimate the model paramete€s, from doc- l';’”f;] clus etr)mg ?ro a f' ies. l'Vin a documen
uments that are probabilistically labeled (with clus-"" € number of corelerence CIUSIerngs 1S expo-

terings) and apply the resulting model to probabilispen'l[?al_tIn the t?ur?bertoftr:nenu?hni b, eV(la_g IfT
tically re-label a document (with clusterings). More'V€ IMit our attention 1o those that are valid. - 10

formally, we employ the following EM algorithm: cope with this computational complexity, we ap-

proximate the E-step by computing only the condi-
E-step: Compute the posterior probabilities of thetional probabilities that correspond to thé most
clusterings,P(C|D, ©), based on the curre. probable coreference clusterings given the current

M-step: Using P(C|D, ©) computed in the E-step, ©. We identify theN most probable clusterings and
find the © that maximizes the expected complet€ompute their probabilities as follows. First, using
log likelihood, " P(C|D,®©) log P(D,C|O"). the current®, we reverse the generative model and
. . ) computeFPe,..¢(m;;) for each mention pairn;; in

i We begin the mo_luc_tlon process at the M-stefo Pairs(D). Next, using these pairwise probabilities,
find the® that maximizes the expected complete log, . apply Luo et al’s (2004) Bell tree approach to
likelihood, we use maximum likelihood eStimationcoreference resolution to compute thebest clus-
W'th_ add—qne sm(.)othmg.. S'nC_E(C‘D’Q) IS not terings and their probabilities (see Section 2.4 for
available in the first EM iteration, we instead USgyeails). Finally, to obtain the required conditional

an inij[ial distribgt?on c_>ver clusteringsi?(C’). Jhe clustering probabilities for the E-step, we normalize
ques.tu.)p, then, IS: \.NhIClﬁ’(.C).ShO.uld we use: Ong the probabilities assigned to thé-best clusterings
possibility is the uniform distribution over all (possi- so that they sum to one.

bly invalid) clusterings. Another, presumably better,
choice is a distribution that assigns non-zero prol2.4 Computing the N-Best Partitions

ability mass to only the valid clusterings. Yet an-as described above, given the pairwise probabilities,
other possibility is to se’(C’) based on a docu- \ye yse Luo et al.’s (2004) algorithm to heuristically
ment labeled with coreference information. In OUlzompute theV-best clusterings (or, more precisely.
experiments, we employ this last method, assigning;_pest partitiond) and their probabilities based on

3Another possibility, of course, is to begin at the E-step by  *Note that Luo et al.’s search algorithm only produces valid
making an initial guess &b. clusterings, implying that the resultiny-best clusterings are



Input: M ={ma, ,mn} mentions,N: no. of best partitions has a score of one (|ine 2) Then it processes the
Output: N-best partitions ti tiall tarti ithes (li 4
1. /linitialize the data structures that store partial partitions mentions SeqL_Jen 1a .y, Starting wi 2 (line )
2. Hy :={PP:={[mi]}},S(PP)=1 When processingn;, it takes each partial partition
3. Ha, ..., Hn =0 PP in H;_, and creates a set ath-order parti-

tions by extending” P with m; in all possible ways.

5. /I process each partial partition >,
6. foreachPPe Hi-1 Specifically, for each clustet’ (formed by a subset
; ]{é fégifscezcr]‘;i')”ger inPP of the firsti—1 mentions) inP P, the algorithm gen-
9: ExtendPP to PP’ by linking m; to C erates a newvith-order partition,P P’, by linking m;
10: ComputeS(PP) to C (line 9), and stores®P’ in H; (line 11). The
11 H; = H;U {PPE} . . score of PP', S(PP’), is computed by using the
12 ExtendP P to PP° by puttingm; into a new cluster . . )
13 Computes(PP*) pairwise coreference probabilities as follows:
14:  H,:= H,u {PP°} )
15: return N most probable partitions ifil,, S(PP") = S(PP) - max, Proref(mii).

mp€

Figure 1: Our implementation of Luo et al.'s algorithm Of course,PP can also be extended by putting

into a new cluster (line 12). This yieldBP?, an-

the Bell tree. Informally, each node in a Bell treeother partition to be inserted intd; (line 14), and
corresponds to aith-orderpartial partition (i.e., a
partition of the firsti mentions of the given docu- S(PF°) = 5'S(PP)'(1_ke{{na}§_l}Pcoref(mki))a
ment), and théth level of the tree contairal possi-
ble ith-order partial partitions. Hence, the set of leafvhered (the start penalty) is a positive constantq(
nodes constitutes all possible partitions of all of the) used to penalize partitions that start a new clus-
mentions. The search for tHé most probable parti- ter. After processing each of the mentions using
tions starts at the root, and a partitioning of the merthe above steps, the algorithm returns fiiemost
tions is incrementally constructed as we move dowRrobable partitions i, (line 15).
the tree. Since an exhaustive search is computation-Our implementation of Luo et al.'s search algo-
ally infeasible, Luo et al. employ a beam search prdithm differs from their original algorithm only in
cedure to explore only the most probable paths &rms of the number of pruning strategies adopted.
each Step of the search process. Figure 1 shows cﬁpeCiﬁca”y, Luo et al. introduce a number of heuris-
implementation of this heuristic search algorithm. tics to prune the search space in order to speed up the

The algorithm takes as input a setiofmentions search. We employ only the beam search heuristic,
(and their pairwise probabiiities), and returns thie with a beam size that is five times Iargel’ than theirs.
most probable partitionings of the mentions. It use®Ur larger beam size, together with the fact that we
data structures and theH;’s to store intermediate do not use other pruning strategies, implies that we
results. SpecificallyS(PP) stores the score of the are searching through a larger part of the space than
partial partition PP. H; is associated with theh them, thus potentially yielding better partitions.
level of the Bell tree, and is used to store the mo
probableith-order partial partitions. EacH; has a
maximum size of &: if more than 2V partitions  To gauge the performance of our model, we com-
are inserted into a givefi;, then only the 2V most  pare it with a Bayesian model for unsupervised
probable ones will be stored. This amounts to prurgoreference resolution that was recently proposed by
ing the search space by employing a beam size gfaghighi and Klein (2007). In this section, we will
2N (i.e., expanding only the/Z most probable par- give an overview of their model, discuss its weak-
tial partitions) at each step of the search. nesses and propose three modifications to the model.

The algorithm begins by initializingZ, with the
only partial partition of order one{[m;]}, which 3.1 Notations
indeed partitions. This is desirable, as there is no reasond  FOI consistency, we follow Haghighi and Klein's
to put non-zero probability mass on invalid clusterings. (H&K) notations. Z is the set of random variables

S§ Haghighi and Klein’s Coreference Model



that refer to (indices of) entitiesg. is the set of \wheren, is the number of mentions i~/ labeled
parameters associated with entity ¢ is the entire  with entity indexz, andz,.., is a new entity index
set of model parameters, which includes allihé&s. ot already inZ 7. To perform inference, we use
Finally, X is the set of observed variables (e.g., th&ibbs sampling (Geman and Geman, 1984) to gen-
head of a mention). Given a document, the goal igrate samples from this conditional distribution:
to find the most probable assignment of entity in- i i iy
dices to its mentions given the observed values. IR(ZW’Z yH) oc P(Zi4|Z7") P(Hi |2, H™)
other words, we want to maximiz€(Z|X). In a where the two distributions on the right are defined
Bayesian approach, we compute this probability bgs above. Starting with a random assignment of en-
integrating out all the parameters. Specifically,  tity indices to mentions, the Gibbs sampler itera-
tively re-samples an entity index according to this
P(Z|X) = /P(Z|X7 ¢)P(¢|X)do. posterior distribution given the current assignment.

3.2 The Original H&K Model 3.2.2 Pronoun Head Model
iNot surprisingly, the basic model is too simplistic: it
has a strong tendency to assign the same entity index
to mentions having the same head. This is particu-
larly inappropriate for pronouns. Hence, we need a
different model for generating pronouns.
3.2.1 Basic Model Before introducing this pronoun head model, we
The basic model generates a mention in a two-stépeed to augment the set of entity-specific param-
process. First, an entity index is chosen according ®iers, which currently contains only a distribution
anentity distribution, and then the head of the men-over heads«?). Specifically, we add distributions
tion is generated given the entity index based on aff;, ¢%, and ¢% over entity properties. ¢/, is a
entity-specifichead distribution. Here, we assume distribution over semantic type®gR ORG, LOC,
that (1) all headd7 are observed and (2) a mentionMISC), ¢, over gender NIALE, FEMALE, EITHER,
is represented solely by its head noun, so nothindEUTER), and¢?, over number$c, pL). We assume
other than the head is generated. Furthermore, wat each of these distributions is drawn from a sym-
assume that the head distribution is drawn from metric Dirichlet. A small concentration parameter
symmetric Dirichlet with concentratioh;;. Hence, is used, since each entity should have a dominating
—ij value for each of these properties.

P(Hij = hZ, H™") o< iy + An Now, to estimatep,, ¢%, and ¢, we need to
where H; ; is the head of mentiori in document know the gender, number, and semantic type of each
i, andny, . is the number of times heaflis emit- mention. For some mentions (e.g., “he”), these
ted by entity index: in (Z,H~%7).5 On the other properties are easy to compute; for others (e.g., “it"),
hand, since the number of entities in a document ipey are not. Whenever a mention has unobserved
not known a priori, we draw the entity distribution properties, we need to fill in the missing values. We
from a Dirichlet process with concentrationo, ef-  could resort to sampling, but sampling these prop-
fectively yielding a model with an infinite number erties is fairly inefficient. So, following H&K, we
of mixture components. Using the Chinese restalkeep soft counts for each of these properties and use
rant process representation (see Teh et al. (2006))them rather than perform hard sampling.

When an entity: generates a pronounusing the
pronoun head modélit first generates a gendera
numbern, and a semantic typeindependently from

®H&K also present a cross-document coreference modethe distributionsp?, ¢, and¢!; and then generates

but since it focuses primarily on cross-document corefegen f, using the distributionP(H — h|G = g, N =

and improves within-document coreference performance by

only 1.5% in F-score, we will not consider this model here. "While pronouns are generated by this pronoun head model,
®H " is used as a shorthand far— {H, ;}. names and nominals continue to be handled by the basic model.

The original H&K model is composed of a set o
models: thebasic model and two other models
(namely, thepronoun head model and thesalience
model) that aim to improve the basic model.

a , if 2= zpew
n, , otherwise

P(Zy; = 2|27 {



n,T = t,0). Note that this last distribution is a Sa“e”TCgPFeat““‘ Pr(‘)”;‘;““ gal’?e Ng'gé“a
glopal_distribu_tion that is independent of the chosen HIGH 0.55 0.28 0.17
entity index.d is a parameter drawn from a symmet- MID 0.39 0.40 0.21
i ivi ; i Low 0.20 0.45 0.35
ric Dirichlet (with concentration\p) that encodes NONE 0.00 0.88 012

our prior knowledge of the relationship between a
semantic type and a_lpron_oun. Forlnst_a?nce, given tH%me 2: Posterior distribution of mention type given
type PERSON there is a higher probability of gener-
ating “he” than “it". As a result, we maintain a list
of compatible semantic types for each pronoun, angl3 Modifications to the H&K Model

give a pronoun a count of (1 xp) if itis compatible eyt we discuss the potential weaknesses of H&K’s
with the drawn semantic type; otherwise, we give ity qde| and propose three modifications to it.
a count ofAp. In essence, we use this prior to prefer

the generation of pronouns that are compatible witRelaxed head generation. The basic model fo-
the chosen semantic type. cuses on head matching, and is therefore likely to
) (incorrectly) positthe large airport and the small
3.2.3 Salience Model airport as coreferent, for instance. In fact, head
Pronouns typically refer to salient entities, so thenatching is a relatively inaccurate indicator of coref-
basic model could be improved by incorporatingerence, in comparison to the “strong coreference in-
salience. We start by assuming that each entity hggcators” shown in the first three rows of Table 1. To
an activity score that is initially set to zero. Givenimprove H&K’s model, we replace head matching
a set of mentions and an assignment of entity inyith these three strong indicators as follows. Given
dices to mentionsZ, we process the mentions in ag document, we assign each of its mentioread
left-to-right manner. When a mentiom, is encoun-  index, such that two mentions have the same head
tered, we multiply the activity score of each entity byindex if and only if at least one of the three strong
0.5 and add one to the activity score of the entity tghdicators returns a value of True. Now, instead of
whichm belongs. This captures the intuitive notiongeneratmg a head, the head model generates a head
that frequency and recency both play a role in detejndex, thus increasing the likelihood that aliases are
mining salience. Next, we rank the entities based Ofssigned the same entity index, for instance. Note
their activity scores and discretize the ranks into fivghat this modification is applied only to the basic
“salience” bucketsS: TOP (1), HIGH (2-3),MID (4~ model. In particular, pronoun generation continues
6), Low (7+), andNONE. Finally, this salience in- to pe handled by the pronoun head model and will
formation is used to modify the entity distributién: ot pe affected. We hypothesize that this modifica-
P(Zij = 2|Z7) « n, - P(M;|S; ;,Z) tion would improve precision, as the strong indica-
tors are presumably more precise than head match.
where 5; ; is the salience value of thgth mention  Agreement constraints. While the pronoun head
in document;, and M; ; is its mention type, which odel naturally prefers that a pronoun be generated
can take on one of three values: pronoun, name, aw an entity whose gender and number are compati-
nominal. P(M;;|Si;,Z), the distribution of men- e with those of the pronoun, the entity (index) that
tion type given salience, was computed from H&K'Ss re-sampled for a pronoun according to the sam-
development corpus (see Table 2). According t%ling equation forP(Z; ;|Z~7, H) may still not be
the table, pronouns are preferred for salient entitie@ompaﬂme with the pronoun with respect to gen-
whereas names and nominals are preferred for enfier and number. The reason is that an entity in-
ties that are less active. dex is assigned based not only on the head distri-
®Rather than having just one probability term on the rightoution but also on the entity distribution. Since enti-
hand side of the sampling equation, H&K actually have a prodijes with many mentions are preferable to those with

uct of probability terms, one for each mention that appestes | . o .
than mentiory in the given document. However, they acknowl-]cew mentions, it is possible for the model to favor

edge that having the product makes sampling inefficient, and€ assignment of a grammatically incompatible en-
decided to simplify the equation to this form in their evaloa.  tity (index) to a pronoun if the entity is sufficiently

salience (taken from Haghighi and Klein (2007))



large. To eliminate this possibility, we enforce the BNEWS | NWIRE
. . Number of documents 51 29

agreement constraints at _the global Igvel. Spe.cm- Number of true mentions 2608 2630

cally, we sample an entity index for a given mention | Number of system mentions| 5424 5197

with a non-zero probability if and only if the corre-

sponding entity and the head of the mention agree ifable 3: Statistics of the BNEWS and NWIRE test sets

gender and number. We hypothesize that this modi-

fication would improve precision.

. . percentage of coreferenti@ks in the reference par-
Pronoun-only salience. In Section 3.2.3, we Mo- tjtion that appear in the system partition; precision is
tivate the need for salience using pronouns Onlyjefined in a similar fashion as recall, except that the
since proper names can to a large extent be resolvggles of the reference partition and the system parti-
using string-matching facilities and are not particUsion are reversed. As kink-based scoring program,
larly sensitive to salience. Nominals (especially defiye MUC scorer (1) does not reward successful iden-
inite descriptions), though more sensitive to saliencgfication of singleton entities and (2) tends to under-
than names, can also be resolved by simple stringngajize partitions that have too few entities. The
matching heuristics in many cases (Vieira and Po%htity-based CEAF scorer was proposed in response
sio, 2000; Strube et al.,, 2002). Hence, we hypothgy these two weaknesses. Specifically, it operates
size that the use of salience for names and nomma&, computing the optimal alignment between the set
would adversely affect their resolution performancegs reference entities and the set of system entities.
as incorporating salience could diminish the role ofpaAF precision and recall are both positively corre-
string match in the resolution process, according tyted with the score of this optimal alignment, which
the sampling equations. Consequently, we modify computed by summing over each aligned entity
H&K'’s model by limiting the application of salience pair the number of mentions that appear in both en-
to the resolution of pronouns only. We hypothesizgitias of that pair. As a consequence, a system that
that this change would improve precision. proposes too many entities or too few entities will

. have low precision and recall.
4 Evaluation P

Parameter initialization. We use a small amount
of labeled data for parameter initialization for the
To evaluate our EM-based model and H&K’s modeltwo models. Specifically, for evaluations on the
we use the ACE 2003 coreference corpus, WhicBNEWS test data, we use as labeled data one
is composed of three sections: Broadcast Newandomly-chosen document from the BNEWS train-
(BNEWS), Newswire (NWIRE), and Newspapering set, which has 58 true mentions and 102 system
(NPAPER). Each section is in turn composed of aentions. Similarly for NWIRE, where the chosen
training set and a test set. Due to space limitationglocument has 42 true mentions and 72 system men-
we will present evaluation results only for the testions. For our model, we use the labeled document
sets of BNEWS and NWIRE, but verified that theto initialize the parameters. Also, we sat (the
same performance trends can be observed on NPAamber of most probable partitions) to 50 ahthe
PER as well. Unlike H&K, who report results us-start penalty used in the Bell tree) to 0.8, the latter
ing only true mentions (extracted from the answebeing recommended by Luo et al. (2004).

keys), we show results for true mentions as well as For H&K’s model, we use the labeled data to tune
system mentions that were extracted by an in-hougge concentration parameter While H&K seta to
noun phrase chunker. The relevant statistics of thg 4 without much explanation, a moment's thought
BNEWS and NWIRE test sets are shown in Table Geveals that the choice of should reflect the frac-
Scoring programs. To score the output of the tion of mentions that appear in a singleton cluster.
coreference models, we employ the commonly-used/e therefore estimate this value from the labeled
MUC scoring program (Vilain et al., 1995) and thedocument, yielding 0.4 for true mentions (which is
recently-developed CEAF scoring program (Luogonsistent with H&K'’s choice) and 0.7 for system
2005). Inthe MUC scorer, recall is computed as thenentions. The remaining parameters, N'& are all

4.1 Experimental Setup



set toe—4, following H&K. In addition, as is com- duced fewer entities than it should. Perhaps more
monly done in Bayesian approaches, we do not sarimterestingly, in comparison to the Heuristic base-
ple entities directly from the conditional distribution line, Degenerate EM performs consistently worse
P(Z|X); rather, we sample from this distribution according to CEAF but generally better according to
raised to the powesxp % wherec=1.5,7 is the MUC. This discrepancy stems from the aforemen-
current iteration number that starts at 0, @an@he tioned properties that MUC under-penalizes parti-
number of sampling iterations) is set to 20. Finallytions with too few entities, whereas CEAF lowers

due to sampling and the fact that the initial assignboth recall and precision when given such partitions.

ment of entity indices to mentions is random, all they,r EM-based coreference model. Our model
reported results for H&K’s model are averaged OVepperates in the same way as the Degenerate EM
five runs. baseline, except that EM is run until convergence,
with the test set being used as unlabeled data for pa-
o ] ] ] rameter re-estimation. Any performance difference
The Heuristic baseline. As our first baseline, we between our model and Degenerate EM can thus be
employ a simple rule-based system that posits tWeyirted to EM's exploitation of the unlabeled data.
mentions as coreferent if and only if at least one Results of our model are shown in row 3 of Tables
of the three strong coreference indicators listed ig and 5. In comparison to Degenerate EM, MUC
Table 1 returns True. Results of this baseline, & _score .increases by 4-5% for BNEWS and ’4_21%
ported in term_s of recall (R), precision (P), andfor NWIRE; CEAF F-score increases even more dra-
F-score (F) using the MUC scorer and the CEARqtically. by 12-16% for BNEWS and 27-32% for
Scorér, are shown in row 1 of Tables 4 and 5, 'NWIRE. Improvements stem primarily from large
spectively. Each row in these tables shows perfo'ijains in precision and comparatively smaller loss in

mance using true mentions and system mentions ff’é;call. Such improvements suggest that our model
the BNEWS and NWIRE data sets. As we can S€fas effectively exploited the unlabeled data.

(1) recall is generally low, since this simple heuris-
tic can only identify a small fraction of the coref- fairly large increases in both recall and precision

erence relations; (2) CEAF recall for true mention§Nhen system mentions are used, and as a result, F-
is by definition equal to CEAF precision; (3) CEAI:score improves substantially by 5-15%. When true

recall is consistently higher than MUC re.call, SINCqentions are used, we again see large increases in
CEAF also rewards successful identification of non;

o . CEAF recall and precision; MUC recall also in-
coreference relations; and (4) precision for true men: cases considerably, but such gains are accompa-

tions is higher than that for system mentions, Sincﬁied by a small loss in MUC precision. Overall, F-
the number of non-coreferent pairs that satisfy thgCore for true mentions increases by 3'_22% ’
heuristic is larger for system mentions. '

The Degenerate EM baseline. Our second base- ghe ?”g't?]alg&K rrll?ﬂd;:% Vgeluse a; Ol:.r thgdz
line is obtained by running only one iteration of our aseline the rigina model (see Section 3.2).

EM-based coreference model. Specifically, it startgesgltggocf)thls Irlnidelcz;lre shfown in row 4 dofl'll')abl6es
with the M-step by initializing the model parame- and 5. Lverall, It underperiorms our modet by ©-

ters using the labeled document, and ends with t 6% m MUIC ::-score_dandbi?—ldl% ”.1 %EQF F—slcloreé
E-step by applying the resulting model (in combi- ue pnimarily 1o considerable drop in both recail an

nation with the Bell tree search algorithm) to obPrecisionin all cases.

tain the most probable coreference partition for eachhe Modified H&K model.  Next, we incorporate
test document. Since there is no parameter r&ur three modifications into the Original H&K base-
estimation, this baseline is effectively a purely suline one after the other. Results are shown in rows
pervised system trained on one (labeled) documenk:7 of Tables 4 and 5. Several points deserve men-

Results are shown in row 2 of Tables 4 and 5. %The H&K results shown here are not directly comparable

As we can see, recall is consistently much highe&yith those reported in Haghighi and Klein (2007), since H&K
than precision, suggesting that the model has prevaluated their system on the ACE 2004 coreference corpus.

4.2 Results and Discussions

In comparison to the Heuristic baseline, we see



Broadcast News (BNEWS) Newswire (NWIRE)
True Mentions System Mentions True Mentions System Mentions

Experiments R P F R P F R P F R P F
1 [ Heuristic Baseline 278 720 401 309 443 364 31.2Z 70.3 433 36.3 534 4372
2 | Degenerate EM Baseline 63.6 531 579 70.8 36.3 480 645 426 ©51.3] 69.0 251 36.8
3 [ Our EM-based Model 56.1 /14 ©628] 424 ©6.0 5106 470 ©8.3 55.7] 55.Z2 ©60.6 57.8
4 [ Haghighi and Klein Baseling 49.4 60.2 54.3| 50.8 40.7 45.2|| 447 555 4905 43.0 409 419
5| + Relaxed Head Generation53.0 65.4 58.6| 48.3 45.7 47.0|| 45.1 625 524 409 50.0 45.0
6| + Agreement Constraints | 53.6 68.7 60.2| 50.4 475 48.9| 446 63.7 525 417 512 46.0
7| +Pronoun-only Salience | 56.8 68.3 62.0 52.2 53.0 52.6| 46.8 66.2 54.8 443 57.3 50.0
8 [ Fully Supervised Model 53.7 70.8 ©6I1.1 53.0 70.3 ©604| 52.0 ©69.6 59.6] 53.1 /0.5 ©60.6

Table 4: Results obtained using the MUC scoring programiferBroadcast News and Newswire data sets

Broadcast News (BNEWS) Newswire (NWIRE)
True Mentions System Mentions True Mentions System Mentions

Experiments R P F R P F R P F R P F
1 [ Heuristic Baseline 53.7 53.7 53.7] 543 43.7 48.4| 58.0 58.0 58.0] 58.9 50.Z 54.Z7
2 | Degenerate EM Baseline 48.6 48.6 4806 495 327 394 341 341 3471 382 220 279
3 | Our EM-based Model 60.9 609 60.9]5/7.0 546 557 61.Z ©61.Z 61.2| 629 56.5 59.6
4 ["Haghighi and Klein Baseling 50.3 50.3 50.3] 53.2 39.3 457|| 535 535 535 545 4427 488
5| + Relaxed Head Generation 53. 53.4 53.4| 53.4 428 47.5| 58.1 58.1 58.1| 559 49.8 52.6
6| +Agreement Constraints | 59.2 59.2 59.2| 57.8 46.3 51.4| 59.9 599 59.9 579 515 545
7| +Pronoun-only Salience | 60.7 60.7 60.7| 59.2 50.8 54.7| 60.9 60.9 60.9 594 556 57.4
8 | Fully Supervised Model 61.3 61.3 61.3] 634 ©60.3 61.8]| 64.2 0642 6427 65.8 63.2 645

Table 5: Results obtained using the CEAF scoring prograrthidBroadcast News and Newswire data sets

tioning. First, the addition of each modification im-model by training a discriminative learner (the C4.5
proves the F-score for both true and system mentiorecision tree induction system (Quinlan, 1993)) with
in both data sets using both scorers. These resuldiverse set of features (the 34 features described in
provide suggestive evidence that our modificationslg (2007)) on a large training set (the entire ACE
are highly beneficial. The three modifications, wher2003 coreference training corpus), and cluster using
applied in combination, improve Original H&K sub- the Bell tree search algorithm. The fully supervised
stantially by 5-8% in MUC F-score and 7-10% inresults shown in row 8 of Tables 4 and 5 suggest that
CEAF F-score, yielding results that compare favoreur EM-based model has room for improvements,
ably to those of our model in almost all cases. especially when system mentions are used.

Second, the use of agreement constraints yields
larger improvements with CEAF than with MUC.

This discrepancy can be attributed to the fact thajve have presented a generative model for unsuper-
CEAF rewards the correct identification of non-yised coreference resolution that views coreference
coreference relations, whereas MUC does not. Singg an EM clustering process. Experimental results
agreement constraints are intended primarily for disndicate that our model outperforms Haghighi and
allowing coreference, they contribute to the succes|ein’s (2007) coreference model by a large margin
ful identification of non-coreference relations and agn the ACE data sets and compares favorably to a
a result yield gains in CEAF recall and precision. modified version of their model. Despite these im-

Third, the results are largely consistent with ouprovements, its performance is still not comparable
hypothesis that these modifications enhance pregb that of a fully supervised coreference resolver.
sion. Together, they improve the precision of the A natural way to extend these unsupervised coref-
Original H&K baseline by 8-16% (MUC) and 7- erence models is to incorporate additional linguis-
12% (CEAF), yielding a coreference model thatic knowledge sources, such as those employed by
compares favorably with our EM-based approach. our fully supervised resolver. However, feature en-
Comparison with a supervised model. Finally, gineering is in general more difficult for generative
we compare our EM-based model with a fully supermodels than for discriminative models, as the former
vised coreference resolver. Inspired by state-of-thdypically require non-overlapping features. We plan
art resolvers, we create our supervised classificatido explore this possibility in future work.

Conclusions
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