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Abstract

While virtually all existing work on Automated
Essay Scoring (AES) models an essay as a word
sequence, we put forward the novel view that
an essay can be modeled as a graph and subse-
quently propose GAT-AES1, a graph-attention
network approach to AES. GAT-AES models
the interactions among essay traits in a prin-
cipled manner by (1) representing each essay
trait as a trait node in the graph and connect-
ing each pair of trait nodes with directed edges,
and (2) allowing neighboring nodes to influence
each other by using a convolutional operator to
update node representations. Unlike compet-
ing approaches, which can only model one-hop
dependencies, GAT-AES allows us to easily
model multi-hop dependencies. Experimen-
tal results demonstrate that GAT-AES achieves
the best multi-trait scoring results to date on
the ASAP++ dataset. Further analysis shows
that GAT-AES outperforms not only alternative
graph neural networks but also approaches that
use trait-attention mechanisms to model trait
dependencies.

1 Introduction

While the majority of traditional work on Auto-
mated Essay Scoring (AES) has focused on holistic
scoring (the task of assigning a single score to an
essay that summarizes its overall quality), AES re-
searchers have begun work on the relatively new
task of multi-trait essay scoring, which is a natural
extension of the holistic scoring task that involves
scoring a given essay not only holistically but also
along different dimensions of essay quality (a.k.a.
traits), such as ORGANIZATION and COHERENCE.
The surge of interest in multi-trait scoring was in
part propelled by the release of ASAP++ (Mathias
and Bhattacharyya, 2018a), the first publicly avail-
able corpus in which an essay is annotated with
both its holistic score and its trait scores.

1Our code and trained checkpoint are available at https:
//github.com/samlee946/GAT-AES/

Multi-task essay scoring opens exciting opportu-
nities for both AES researchers and users. Specifi-
cally, ASAP++ has made it possible for researchers
to develop joint models that permit different traits
to influence each other when they are being scored
simultaneously. AES users could gain more de-
tailed feedback on their own essays. For exam-
ple, if they receive a low holistic score, they can,
through the trait scores, better understand which
aspects of their essay need improvement.

Early work on multi-trait scoring has arguably
not been very successful, producing holistic and
trait scoring results that are at best mediocre (Ku-
mar et al., 2022). In particular, not only does the
holistic score fail to benefit from the incorporation
of trait scoring into the model, but the trait scores
fail to benefit each other. One reason could be
that these multi-trait scoring architectures cannot
adequately capture the interactions among differ-
ent traits, as in these architectures the traits can
only interact with each other indirectly via a shared
representation layer. Another reason could be that
traits simply cannot benefit each other: after all,
they are different dimensions of essay quality.

To better understand whether the scoring of dif-
ferent traits can benefit each other, we compute
the Pearson Correlation Coefficient (PCC) for each
pair of traits in ASAP++. As can be seen in Ta-
ble 1, all pairs of traits are positively correlated
with a PCC of at least 0.6, indicating a strong cor-
relation, and 18 trait pairs even have a PCC of at
least 0.8, indicating a very strong correlation.2 A
closer examination of the rubrics reveals the reason
for these high PCC scores. Consider, for example,

2All correlations are statistically significant at the p <
0.001 level. Note that not all traits are evaluated for all
prompts. For example, LANGUAGE appears in prompts 3–6,
while ORGANIZATION appears in prompts 1, 2, 7, and 8. Thus,
no PCC is available for such trait pairs, and we use an em
dash in the table to indicate this. Similar trends can also be
observed on the ICLE++ essay corpus (Li and Ng, 2024d),
where certain pairs of traits are strongly correlated.

https://github.com/samlee946/GAT-AES/
https://github.com/samlee946/GAT-AES/


Content PA Lang Nar Org Conv WC SF Style Voice
Overall .697 .706 .643 .684 .685 .600 .725 .687 .883 .831
Content .913 .759 .833 .854 .713 .852 .834 .661 .861
PA .780 .848 – – – – – –
Lang .862 – – – – – –
Nar – – – – – –
Org .802 .833 .823 .758 .828
Conv .852 .893 .748 .683
WC .872 – .839
SF – .762
Style –

Table 1: Pearson Correlation between traits in the ASAP++ dataset.

SENTENCE FLUENCY and CONVENTIONS, which
have a PCC of 0.893. SENTENCE FLUENCY con-
cerns whether the writing has an easy flow, and
whether sentences have varied structures that make
oral reading easy, whereas WORD CHOICE con-
cerns proper use of conventions (e.g., spelling, cap-
italization, grammar). Intuitively, failure to use
conventions properly could result in sentences that
are difficult to parse and understand, implying a
positive correlation between the two traits.

Given that inter-trait dependencies exist, there
have been several attempts at modeling trait de-
pendencies. For instance, some multi-trait scoring
models are designed to output the trait scores in a
pre-specified order (Do et al., 2024a,b; Chu et al.,
2025), but the implication is that only the traits
that are predicted later in the output sequence can
leverage information from earlier predictions. An-
other line of work captures trait interaction using a
trait-attention mechanism (Ridley et al., 2021; Do
et al., 2023), but they can only capture one-hop
dependencies between traits.

In light of these weaknesses, we propose GAT-
AES, a graph attention network (GAT) approach
to multi-trait essay scoring. The key advantages of
a graph-based representation of an essay are that
we can easily (1) allow the traits to directly inter-
act with each other and, in addition, (2) capture
multi-hop dependencies, by using a graph node
to represent each trait and fully connecting these
nodes to capture their interactions. To our knowl-
edge, we are the first to propose modeling an essay
as a graph, as virtually all existing work on AES
models an essay as a word sequence.

Following existing work on multi-trait essay
scoring (Kumar et al., 2022; Do et al., 2024a,b), we
evaluate GAT-AES in a within-prompt setting, in
which AES systems are evaluated on essays written
for prompts that are seen during training. GAT-
AES achieves the best multi-trait essay scoring re-
sults to date on the ASAP++ dataset.

2 Related Work

In this section, we discuss related work on holistic
scoring and trait scoring.3

2.1 Holistic Scoring

The vast majority of work on holistic scoring has
focused on within-prompt holistic scoring, which
involves scoring essays written for prompts that
have already been seen during training. Early ap-
proaches to holistic scoring are rule-based (Attali
and Burstein, 2006) or are built using traditional
machine learning algorithms that focus on feature
engineering (Larkey, 1998; Burstein et al., 1998;
Miltsakaki and Kukich, 2004; Yannakoudakis et al.,
2011), while recent approaches are deep learning-
based (Uto et al., 2020; Wang et al., 2022b; Xie
et al., 2022; Boquio and Naval, 2024; Das et al.,
2024). Some recent work has focused on cross-
prompt holistic scoring, where models are trained
on essays from existing prompts and evaluated on
essays from an unseen prompt (Phandi et al., 2015;
Cummins et al., 2016; Jin et al., 2018; Li et al.,
2020; Ridley et al., 2020; Jiang et al., 2023; Chen
and Li, 2023; Zhang et al., 2025a; Wang et al.,
2025).

2.2 Trait Scoring

Early approaches to trait scoring have focused on
single-trait scoring, where heuristics or features are
hand-crafted to optimize performance for a specific
trait, such as COHERENCE (Higgins et al., 2004;
Somasundaran et al., 2014; Wu et al., 2023), OR-
GANIZATION (Persing et al., 2010), THESIS CLAR-
ITY (Persing and Ng, 2013), PROMPT ADHER-
ENCE (Persing and Ng, 2014; Zhuang et al., 2024),
ARGUMENT PERSUASIVENESS (Persing and Ng,

3For a comprehensive overview of AES research, we refer
the reader to the books published by Shermis and Burstein
(2003), Shermis et al. (2010) and Beigman Klebanov and
Madnani (2021), as well as the surveys published by our group
(Ke and Ng, 2019; Li and Ng, 2024a,b).



2015; Carlile et al., 2018), STYLE (Mathias and
Bhattacharyya, 2018b), and THESIS STRENGTH

(Ke et al., 2019). Recent efforts have shifted to-
ward multi-task learning models that jointly predict
trait scores and holistic scores using multiple linear
heads on top of shared essay representations, which
are obtained automatically (Kumar et al., 2022; Shi-
bata and Uto, 2022; He et al., 2022; Do et al., 2023;
Chen and Li, 2024; Wang and Liu, 2025).

To account for inter-trait dependencies, some
multi-trait scoring models are designed to output
the trait scores in a pre-specified order (Do et al.,
2024a,b; Chu et al., 2025), but, as mentioned be-
fore, only the traits that are predicted later in the
output sequence can leverage information from ear-
lier predictions, while other models capture trait in-
teraction using a trait-attention mechanism (Ridley
et al., 2021; Do et al., 2023), which can only cap-
ture one-hop dependencies between traits. While
some improvements have been made to these multi-
trait scoring models that involve (1) enriching the
input to the model with LLM-generated rationales
for each trait that provide explanations of how es-
says align with specific trait rubrics (Chu et al.,
2025) and (2) using reinforcement learning to di-
rectly optimize for score-related metrics such as
Quadratic Weighted Kappa (QWK)4 (Do et al.,
2024b), these improvements have nothing to do
with improving the way inter-trait dependencies
are captured.

3 GAT for Multi-Trait Essay Scoring

In this section, we describe our GAT-AES frame-
work, which leverages a graph attention network
(GAT) (Veličković et al., 2018) to model the inter-
actions among traits, between traits and essays, and
between essays and hand-crafted features.

3.1 Graph Construction
GATs are typically employed for downstream tasks
with graph-structured inputs. Since essay scoring
lacks an inherent graph structure, the design of an
appropriate graph structure becomes crucial for the
successful application of GATs to AES. Figure 1
illustrates how we construct the graph from an input
essay. Details of this process are described below.

3.1.1 Node Construction
The graph consists of three types of nodes. Two
types of nodes correspond to the two types of in-

4QWK is the standard evaluation metric for AES. See
Section 4.1.2 for details.

LM

Preprocessing

Initial Node Representations

Essay

Figure 1: Constructing the graph from an input essay.

put features that are commonly used to represent
an essay, namely the essay text and the statistical
features computed from the essay. The remaining
type of nodes corresponds to the traits.
Text embedding nodes. We construct E text em-
bedding nodes to encode the semantic information
derived from the text of the input essay, where E
is a hyperparameter. Using multiple nodes allows
the model to encode semantic information from
different portions of the essay text. The representa-
tions for these nodes are obtained by first extracting
the essay embedding using a pre-trained language
model LM and then transforming it via a learnable
linear layer. Specifically, for each input essay i, its
embedding is obtained as follows:

−−−−−−−→
embeddingi = LM(essayi)

The initial representation h⃗0eix for an embedding
node x is computed using a learnable transforma-
tion:

h⃗0eix = Wex · −−−−−−−→embeddingi

Hand-crafted feature nodes. We construct F
hand-crafted feature nodes to encode prompt-
independent information for the input essay, where
F is a hyperparameter. Using multiple hand-crafted
feature nodes allows the model to focus on differ-
ent subsets of the input features. The representa-
tions for these nodes are obtained by transforming
hand-crafted features via a learnable linear layer.
Specifically, for each input essay i, the initial rep-
resentation h⃗0fiy for a hand-crafted feature node y
is obtained as follows:

h⃗0fiy = Wfy ·
−−−−−→
featuresi

where
−−−−→
featuresi denotes the subset of the 1535

hand-crafted features for essay i used by Li and Ng



(2024c) that survive a feature selection process.5

Essay trait nodes. We construct T essay trait
nodes that represent the essay traits to be predicted,
where T is the number of traits in the dataset.
While some researchers do not consider the OVER-
ALL (i.e., holistic) score a trait score, we follow
existing work on multi-trait scoring (e.g., Do et al.
(2024a,b)) and view the OVERALL score as one of
the trait scores in this paper. Note that while both
the embedding nodes and the hand-crafted feature
nodes correspond to inputs, the essay trait nodes
correspond to outputs. For each trait z, its corre-
sponding trait node is initialized using a standard
normal distribution as a trainable vector h⃗0tz and is
shared across all input essays.

3.1.2 Edge Construction
For each input essay i, we construct three types of
edges.

Embedding-Trait edges. These edges connect
each embedding node h⃗eix to each trait node h⃗tiz .
This enables the model to capture the interactions
between the traits and the input essay embedding.

Feature-Trait edges. These edges connect each
hand-crafted feature node h⃗fiy to each trait node
h⃗tiz . This enables the model to capture the in-
teractions between the traits and the hand-crafted
features.

Trait-Trait edges. These edges connect each
trait node h⃗tiz to each of the other trait nodes. This
enables the model to capture the inter-trait depen-
dencies.

3.2 Trait Scoring

Using the notation introduced in the previous sub-
section, we can denote the graph constructed by
the aforementioned graph construction process for
input essay i as {h⃗0eix , h⃗

0
fiy

, h⃗0tiz |1 ≤ x ≤ E, 1 ≤
y ≤ F, 1 ≤ z ≤ T}, where h⃗0 denotes the initial
node representations. This graph will pass through
L GAT layers, where L is a hyperparameter. At
GAT layer l (0 ≤ l ≤ L − 1), the convolutional
operator operates on the graph {h⃗leix , h⃗

l
fiy

, h⃗ltiz},
and computes the updated node representations
{h⃗l+1

eix , h⃗
l+1
fiy

, h⃗l+1
tiz

} by dynamically aggregating fea-
tures from neighboring nodes using multi-head self-
attention. Each node is also a neighbor of itself.
For a node u, GAT layer l aggregates messages

5Details about the features can be found in Appendix A.
The feature selection process is described in Section 4.1.4.

from its neighbors v ∈ N (u) regardless of their
types as follows:

h⃗l+1
u =

⊕K
k=1 σ

(∑
v∈N (u) α

k
uv ·Wkh⃗lv

)
where K is a hyperparameter for the number of
heads in l,

⊕
denotes concatenation across k at-

tention heads, σ is an activation function, Wk

is a learnable weight matrix that transforms the
node representations into higher-level node repre-
sentations, and αk

vu is the attention weight between
nodes v and u in head k:

αk
vu = softmax

(
LeakyReLU

(
ak

[
Wkh⃗lu∥Wkh⃗lv

]))
where ak is a shared attentional vector obtained
from a linear layer.

Since each node aggregates messages from its
neighbors, the three types of edges allow the model
to learn the inter-trait dependencies, the dependen-
cies between traits and embeddings, and the de-
pendencies between traits and features via the self-
attention mechanism and by dynamically adjusting
node representations.

After passing through L GAT layers, the result-
ing graph {h⃗Leix , h⃗

L
fiy

, h⃗Ltiz} will be used for trait
scoring of essay i. Specifically, for each trait node
z, a regression head (single fully connected layer)
maps the final node representation h⃗Ltiz to a scalar
ŷiz , which is the predicted score for trait z:

ŷiz = σ(Wtz · h⃗Ltiz)

where σ is the sigmoid activation function.

3.3 Training
The model is trained end-to-end using the mean
squared error (MSE) loss:

LMSE =
1

N

1

T

N∑
i=1

T∑
t=1

(yiz − ŷiz)
2

where N is the number of samples, T is the number
of traits, and yiz is the ground truth score scaled
to range [0, 1]. During the training process, the
transformations W, the node representations h⃗, the
attentional vectors a, and the parameters from the
pre-trained language model LM are optimized.

4 Evaluation

4.1 Experimental Setup
4.1.1 Datasets
For model training and evaluation, we employ the
ASAP6 corpus and its extension, ASAP++.

6https://www.kaggle.com/c/asap-aes

https://www.kaggle.com/c/asap-aes


Prompt # of Essays Traits
1 1783 Overall,Cont,WC,Org,SF,Conv
2 1800 Overall,Cont,WC,Org,SF,Conv
3 1726 Overall,Cont,PA,Nar,Lang
4 1772 Overall,Cont,PA,Nar,Lang
5 1805 Overall,Cont,PA,Nar,Lang
6 1800 Overall,Cont,PA,Nar,Lang
7 1569 Overall,Cont,Org,Conv,Style
8 723 Overall,Cont,WC,Org,SF,Conv,Voice

Table 2: Statistics on the combined ASAP and ASAP++
dataset. The trait names are abbreviated as follows:
Cont: CONTENT, Org: ORGANIZATION, WC: WORD
CHOICE, SF: SENTENCE FLUENCY, Conv: CONVEN-
TIONS, PA: PROMPT ADHERENCE, Lang: LANGUAGE,
Nar: NARRATIVITY.

ASAP (Automated Student Assessment Prize) is
composed of essays manually annotated with their
holistic scores. The essays are written for eight
prompts, including two for persuasive essays, two
for narrative essays, and four for source-dependent
essays. Since different rubrics are used for scoring
prompts, the score ranges for different prompts can
be different. The eight prompts and their statistics
can be found in Appendix B.

ASAP++ is an extension of ASAP where each es-
say is additionally scored along different traits. Ten
traits are scored, including CONTENT (how clear
and focused the writing is and how well-developed
the main ideas are), WORD CHOICE (how well the
words convey the intended message), ORGANIZA-
TION (how well-organized the essay is), PROMPT

ADHERENCE (how adherent the essay is to the
prompt), SENTENCE FLUENCY (whether the sen-
tences in the essay are of high quality), CONVEN-
TIONS (how well the essay demonstrates standard
writing conventions), NARRATIVITY (how coher-
ent and cohesive the response is), LANGUAGE (how
good grammar and spelling are), STYLE (how pro-
ficient and crisp the word choice is and how flu-
ent the sentences are), and VOICE (how well the
writer’s commitment, expressiveness, and sense of
audience enhance the writing’s engagement and au-
thenticity). Including the holistic score from ASAP,
which reflects the overall quality of an essay, a total
of eleven traits are manually annotated in the com-
bined ASAP/ASAP++ dataset. However, the set of
traits varies across prompts, as shown in Table 2.7

Since we perform within-prompt scoring, we
follow the five-fold cross-validation setup from

7This is because different prompts correspond to differ-
ent types of essays: prompts 1–2 correspond to persuasive
essays, prompts 3–6 correspond to source-dependent essays,
and prompts 7–8 correspond to narrative essays.

Taghipour and Ng (2016) with the same data parti-
tions, as it has become the standard setup for evalu-
ating multi-trait AES systems (Chu et al., 2025).

4.1.2 Evaluation Metric
We employ Quadratic Weighted Kappa8 (QWK),
which measures the agreement between model pre-
dictions and ground truth labels, as our evaluation
metric. Higher values indicate better performance.

4.1.3 Baseline Systems
We employ six systems as our baselines. The first
six systems are state-of-the-art within-prompt sys-
tems, namely HISK (Cozma et al., 2018), STL-
LSTM (Dong et al., 2017), MTL-BiLSTM (Kumar
et al., 2022), ArTS (Do et al., 2024a), SaMRL (Do
et al., 2024b), and RMTS (Chu et al., 2025). The
first two systems use separate models to score traits.
The latter four systems perform multi-trait scoring,
where the traits are scored using the same model.9

4.1.4 Implementation Details
Loss function. We employ the MSE loss. More
specifically, since not all traits are applicable to
all prompts, we use the masked MSE loss, where
predictions for inapplicable traits do not contribute
to the loss.
Feature selection. We employ feature selection
on the set of hand-crafted features before feeding
them into the feature nodes. For each feature f ,
we take the minimum of two correlation coeffi-
cients computed between f ’s values and the holistic
scores for each prompt in the training set, Pearson
and Spearman. We retain only those features whose
minimum coefficient is greater than or equal to 0.2
when macro-averaged over the eight prompts.
Score rescaling. Since traits may have differ-
ent score ranges across prompts, all trait scores
are scaled to [0, 1] using the ranges provided in
ASAP’s official grading rubrics during training and
re-scaled to their original ranges during evaluation.
Hyperparameters. GAT-AES is trained for 15
epochs using AdamW with β1 = 0.9 and β2 =
0.999 as the optimizer, and Devlin et al.’s (2019)
BERTLarge

10 as the language model for obtaining
embeddings and fine-tuning. The embedding of the

8See https://www.kaggle.com/competitions/
asap-aes/overview/evaluation for details.

9The results for the first four baselines are taken from Do
et al. (2024a). A detailed description of each of these systems
can be found in Appendix C.

10https://huggingface.co/google-bert/
bert-large-cased

https://www.kaggle.com/competitions/asap-aes/overview/evaluation
https://www.kaggle.com/competitions/asap-aes/overview/evaluation
https://huggingface.co/google-bert/bert-large-cased
https://huggingface.co/google-bert/bert-large-cased


Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 HISK .718 .679 .697 .605 .659 .610 .527 .579 .553 .609 .489 .611 (-)
2 STL-LSTM .750 .707 .731 .640 .699 .649 .605 .621 .612 .659 .544 .656 (-)
3 MTL-BiLSTM .764 .685 .701 .604 .668 .615 .560 .615 .598 .632 .582 .638 (-)
4 ArTS .754 .730 .751 .698 .725 .672 .668 .679 .678 .721 .570 .695 (±.018)
5 SaMRL .754 .735 .751 .703 .728 .682 .685 .688 .691 .710 .627 .705 (±.013)
6 RMTS .755 .737 .752 .713 .744 .682 .690 .705 .694 .702 .612 .708 (±.043)
7 RMTS (rerunning code) .729 .720 .739 .695 .730 .665 .656 .684 .672 .685 .609 .689 (±.018)
8 GAT-AES (w/ BERTLarge) .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)

Table 3: Trait scoring results of GAT-AES and the six baselines. The best result in each column is boldfaced.

[CLS] token is selected as the embedding of the
essay. We set K, the number of attention heads in
GAT, to 4; L, the number of GAT layers, to 2; the
random seed to 11; the batch size to 32; and the
dropout rate for both the LM and the GAT layers
to 0.1. We perform a grid search to determine the
remaining hyperparameters, including the learning
rate, the hidden dimension of the node represen-
tations, the number of text embedding nodes E,
and the number of feature nodes F . The model
that achieves the highest QWK on the development
data is selected for evaluation on the test set.11

4.2 Results and Discussion

4.2.1 Comparison with Baseline Systems

Results of trait scoring for each trait, when av-
eraged over five folds and eight prompts, along
with macro-averaged results over the traits and five-
fold standard deviations, are shown in Table 3.12

Rows 1–7 present the results of the six baselines.
Note that rows 6 and 7 show the RMTS results
obtained in two ways: in row 6 the results are taken
verbatim from Chu et al. (2025), while in row 7
the results are obtained by our re-running the code
provided by Chu et al., following their instructions.
Row 8 shows the GAT-AES results.

Several observations can be made. First, GAT-
AES achieves state-of-the-art performance for
OVERALL, CONTENT, ORGANIZATION, WORD

CHOICE, VOICE, and the AVG trait score. More-
over, GAT-AES is significantly better13 than

11Additional training details and the best-found hyperpa-
rameter values are reported in Appendix D.

12Prompt-wise results can be found in Appendix E.
13All statistical significance tests in this paper are one-tailed

paired t-tests, with p < 0.05. To determine if model B is
significantly better than model A on trait T, we collect the
average trait QWK scores of both models across random seeds
and all applicable prompts for T (e.g., for CONTENT, model
A’s population would consist of eight QWK scores, i.e., one
QWK score for each prompt). We then perform a one-tailed
paired t-test on the trait-wise results. Let D = QWKA −
QWKB . The null hypothesis is µD ≤ 0, and the alternative
hypothesis is µD > 0.

SaMRL and our re-run of RMTS.14

Second, GAT-AES consistently outperforms
MTL-BiLSTM across all traits. Notice that
ArTS, SaMRL, and RMTS are all generative mod-
els, whereas MTL-BiLSTM is the current best-
performing regression model. This suggests that
GAT-AES establishes a new performance baseline
for regression-based approaches.

Finally, GAT-AES achieves the lowest standard
deviation in average trait QWK scores across five
folds, indicating consistent and robust performance
across different folds.

4.2.2 Comparison with Other GNNs

As noted before, we are the first to propose a graph-
based approach to AES. Hence, none of our base-
lines is graph-based. To get a better sense of how
good GAT-AES is in comparison with other graph-
based approaches (developed for non-AES tasks),
we show in Table 4 the results of three alternative
approaches: (1) GCN (Kipf and Welling, 2017),
which serves as the foundational model in graph
neural networks and is widely popular among re-
searchers; (2) GraphSAGE (Hamilton et al., 2017),
which is widely used in industry for its scalabil-
ity and efficiency; and (3) GIN (Xu et al., 2019),
which has high expressive power and is known
for distinguishing non-isomorphic graphs, often
outperforming GCN and GraphSAGE on several
benchmarks. For comparison purposes, we include
in the last row of Table 4 the results of GAT-AES.

As can be seen, the results show that GAT per-
forms significantly better than the other GNNs,
while GraphSAGE is significantly worse than the
other GNNs. However, the results of GCN and
those of GIN are statistically indistinguishable. The
relative performances of these models should not

14In order to conduct statistical significance tests with state-
of-the-art models, we contacted the authors of SaMRL and
RMTS but obtained detailed results for only SaMRL. Our re-
run of the RMTS code only achieved a trait-wise average per-
formance of .689, which is considerably below their reported
score of .708 and significantly underperforms GAT-AES.



Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 GCN .767 .740 .754 .686 .720 .690 .671 .698 .685 .708 .628 .704 (±.010)
2 GraphSAGE .642 .573 .572 .538 .587 .492 .431 .485 .498 .401 .324 .504 (±.103)
3 GIN .762 .736 .748 .682 .722 .696 .668 .691 .687 .689 .628 .701 (±.008)
4 GAT-AES (Ours) .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)

Table 4: Trait-scoring results of GAT-AES and alternative GNNs.

Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 RMTS (rerunning code) .729 .720 .739 .695 .730 .665 .656 .684 .672 .685 .609 .689 (±.018)
2 T5Base .748 .718 .732 .673 .717 .674 .645 .675 .676 .707 .589 .687 (±.014)
3 BERTLarge .749 .731 .745 .673 .718 .676 .668 .692 .681 .680 .602 .692 (±.013)
4 T5Base w/ GAT .757 .729 .747 .691 .724 .683 .660 .687 .684 .698 .621 .698 (±.008)
5 BERTLarge w/ Trait Att. .766 .735 .751 .689 .718 .676 .676 .699 .684 .672 .630 .700 (±.010)
6 GAT-AES (Ours) .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)

Table 5: Trait-scoring results of GAT-AES and different backbones.

be surprising for the following reasons. First, while
GAT may not outperform GCN, GraphSAGE, or
GIN on benchmarks specifically designed for eval-
uating GNNs, it is particularly well-suited to our
task. Specifically, the attention mechanism in GAT
enables different trait nodes to prioritize informa-
tion from the most relevant neighboring trait nodes.
In contrast, although other GNNs may exhibit high
expressive power and perform better on inputs with
dynamic graph structures, this advantage does not
apply to our task, as the graph structure remains
fixed across all essays. Second, GCN treats all
edges equally, which is not ideal because one trait
might not depend on another (e.g., PROMPT AD-
HERENCE does not depend on LANGUAGE). Third,
GraphSAGE underperforms because it samples a
different subset of neighbors each time (e.g., cre-
ating an edge between PROMPT ADHERENCE and
LANGUAGE for one essay and between PROMPT

ADHERENCE and CONTENT for another). This is
problematic because inter-trait dependencies are
not random. Lastly, GIN uses a sum operation
to combine features from neighboring nodes with-
out assigning explicit weights to individual edges,
meaning it treats all edges equally, similar to GCN.

4.2.3 Comparison with Additional Models
To gain further insights into the effectiveness
of GAT-AES, we conduct experiments involving
T5Base and trait attention, as described below.

Recall that GAT-AES uses the word embed-
dings derived from BERTLarge, whereas RMTS uses
T5Base as its backbone. The question, then, is:
did GAT-AES outperform RMTS simply because
BERTLarge offers an advantage over T5Base?

To answer this question, we first conduct an ex-
periment in which we separately fine-tune T5Base
and BERTLarge using the same inputs as GAT-AES.

However, in neither case do we use the GAT net-
work to update node representations; rather, we use
a linear head on top of the essay representation and
features to score each trait. Doing so allows us to
make a head-to-head comparison between T5Base
and BERTLarge on our multi-trait scoring task. Re-
sults are shown in rows 2 and 3 of Table 5. It turns
out that the performance difference between the
two models is statistically indistinguishable from
each other, meaning that using BERTLarge does not
offer any advantage over using T5Base on our task.
Moreover, comparing the RMTS results we ob-
tained by re-running their code (row 1) and the
fine-tuned T5Base results (row 2), we see that their
performance difference is also statistically indistin-
guishable. In other words, the extensions to T5Base
made by RMTS do not yield better results accord-
ing to our experiments.

Next, we conduct an experiment to determine
whether GAT can improve T5Base on multi-trait
scoring by using T5Base in combination with GAT.
The results, which are shown in row 4 of Table 5,
are significantly better than the fine-tuned T5Base re-
sults in row 2, suggesting that GAT contributes sub-
stantial performance improvements over the T5Base
backbone. These results also show that GAT is
more effective than RMTS in improving T5Base.
Furthermore, GAT-AES (row 6), which combines
GAT with BERTLarge, yields significantly better re-
sults than using GAT with T5Base (row 4). These re-
sults suggest that GAT is more effective in improv-
ing BERTLarge than T5Base: as shown earlier, these
two models perform statistically indistinguishably
on our task without GAT.

Finally, we conduct an experiment to determine
whether the trait-attention mechanism introduced
by Ridley et al. (2021) can improve BERTLarge on



Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 GAT-AES (w/ BERTLarge) .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)
2 – w/ MXBAILarge .755 .730 .744 .673 .712 .680 .647 .681 .670 .696 .641 .694 (±.012)
3 – w/ UAELarge .738 .728 .751 .687 .718 .666 .637 .682 .664 .669 .624 .688 (±.011)
4 – w/ BGELarge .753 .722 .740 .669 .713 .661 .629 .676 .649 .691 .597 .682 (±.011)
5 – w/ E5Large .754 .731 .745 .667 .713 .668 .633 .667 .658 .686 .599 .684 (±.003)
6 – w/ BERTBase .746 .728 .746 .691 .716 .674 .655 .673 .671 .674 .619 .690 (±.009)

Table 6: Trait scoring results of GAT-AES when used in combination with embeddings provided by newer LMs.

Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 GAT-AES .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)
2 – w/o trait-trait edges .754 .739 .750 .690 .730 .680 .653 .697 .669 .698 .593 .696 (±.010)
3 – w/ ArTS-style edges .767 .734 .746 .692 .721 .688 .663 .699 .685 .704 .611 .701 (±.014)
4 – w/o embedding nodes .655 .609 .615 .564 .636 .568 .490 .584 .594 .635 .541 .590 (±.015)
5 – w/o feature nodes .763 .735 .745 .688 .720 .676 .661 .691 .692 .677 .617 .697 (±.011)
6 – w/ single embedding node and feature node .761 .737 .752 .694 .721 .684 .668 .686 .683 .674 .632 .699 (±.017)

Table 7: Trait scoring results of GAT-AES when certain nodes or edges are removed from the graph.

our task. The results, which are shown in row 5
of Table 5, are significantly better than those of
BERTLarge (row 3), suggesting that trait attention
can effectively improve multi-trait scoring results.
However, these results are significantly worse than
the GAT-AES results (row 6), meaning that GAT is
more effective in improving BERTLarge than Ridley
et al.’s trait-attention mechanism for our task.

4.3 Ablation Studies

4.3.1 Effect of Embedding Models
Since we use a relatively older model (BERTLarge)
as the LM for obtaining essay embeddings, a natu-
ral question is: can the overall multi-trait scoring
performance be improved by using a more recent
(and potentially stronger) LM? To investigate this
question, we select four top-performing pre-trained
LMs from the English Massive Multilingual Text
Embedding Benchmark leaderboard v215 that are
ranked 8th, 9th, 11th, and 24th among the 139 LMs
with fewer than 5B parameters16. These LMs are
Lee et al.’s (2024) MXBAILarge, Li and Li’s (2024)
UAELarge, Xiao et al.’s (2024) BGELarge, and Wang
et al.’s (2022a) E5Large. We also include BERTBase
to see whether there is a performance difference
between variants of BERT.

Trait-wise results are reported in Table 6. As
can be seen, GAT-AES w/ BERTLarge consistently
outperforms variants using other LMs in almost all
traits. Specifically, BERTLarge exhibits 3.1%-point
and 2.7%-point improvements in QWK for CON-
VENTIONS and WORD CHOICE, respectively, in

15https://huggingface.co/spaces/mteb/
leaderboard?benchmark_name=MTEB%28eng%2C+v2%29

16Given the computing resources available to us, we are
unable to employ models with more than 7B parameters, hence
this restriction in our selection of models.

comparison to the second best-performing LM. Not
surprisingly, BERTBase underperforms BERTLarge on
almost every trait. However, it outperforms all
the newer LMs w.r.t. LANGUAGE, CONVENTIONS,
and SENTENCE FLUENCY.

4.3.2 Effect of Edges and Nodes
Since message aggregation between nodes via
edges is a core component of GAT, the configu-
ration of edges and nodes may significantly impact
performance. Below we present results for differ-
ent edge and node configurations.
Effect of edge configuration. We experiment
with two alternative edge configurations: (1) re-
moving all trait-trait edges, and (2) an ArTS-style
configuration that mimics ArTS’s trait prediction
order.17 To implement the ArTS-style configura-
tion, we connect each trait to all traits predicted ear-
lier in the sequence. Results are shown in rows 2
and 3 of Table 7. Both configurations perform
significantly worse than the fully connected con-
figuration (row 1) in terms of trait-wise results,
indicating that reducing the number of trait-trait
edges significantly degrades performance. How-
ever, GAT-SAT with ArTS-style edges outperforms
the variant without any trait-trait edges for most
traits. This suggests that, although capturing the de-
pendencies between only half of the pairs of traits
is not optimal, it is still better than not modeling
inter-trait dependencies at all.18

Effect of node configuration. We experiment
with three alternative node configurations: (1) re-

17ArTS predicts traits in the following sequence: VOICE
→ STYLE → SENTENCE FLUENCY → WORD CHOICE →
CONVENTIONS → ORGANIZATION → NARRATIVITY →
LANGUAGE → CONTENT → OVERALL.

18Additional analyses on how GAT-AES captures inter-trait
dependencies can be found in Appendix F.

https://huggingface.co/spaces/mteb/leaderboard?benchmark_name=MTEB%28eng%2C+v2%29
https://huggingface.co/spaces/mteb/leaderboard?benchmark_name=MTEB%28eng%2C+v2%29


< -2 = -2 = -1 = 0 = 1 = 2 > 2
Trait Diff Diff Diff Diff Diff Diff Diff

Overall .04 .03 .15 .55 .18 .03 .03
Content .00 .02 .18 .55 .23 .02 .00

PA .00 .01 .16 .60 .22 .01 .00
Lang .00 .01 .17 .59 .23 .01 .00

Nar .00 .01 .17 .60 .22 .01 .00
Org .00 .03 .20 .49 .24 .03 .00

Conv .00 .02 .20 .51 .23 .03 .00
WC .00 .02 .18 .53 .25 .02 .00
SF .00 .01 .17 .53 .25 .03 .00

Style .00 .03 .24 .52 .19 .01 .00
Voice .01 .02 .19 .46 .27 .05 .00

Table 8: Characterization of the seriousness of the errors
made by GAT-AES w.r.t. each trait. Each column shows
the percentage of essays for which the predicted score
and the gold score differ by a specific amount.

moving all embedding nodes (setting E = 0), (2)
removing all feature nodes (setting F = 0), and (3)
retaining only one embedding node and one feature
node (setting E = F = 1). The first configura-
tion forces GAT-SAT to rely solely on hand-crafted
features, the second configuration forces it to rely
exclusively on essay embeddings, and the third con-
figuration reduces the expressiveness of GAT-SAT
by reducing the amount of information captured
from features and embeddings. Trait-wise results
are shown in rows 4–6 of Table 7. As can be seen,
all three configurations perform significantly worse
with 1.1–12.0%-point drops in trait-wise average
QWK scores. This suggests that reducing the num-
ber of nodes considerably degrades trait scoring
performance for almost all traits, with embedding
nodes being particularly important.19

4.4 Error Analysis

Next, we analyze the errors made by GAT-AES.20

To begin with, we show in the columns of Ta-
ble 8 how different the scores predicted by GAT-
AES are from the gold scores for each trait. As an
example, consider PROMPT ADHERENCE (row 3):
the predicted and gold scores are the same (i.e.,
the difference is 0) in 60% of the essays, and the
predicted score is lower than the gold score by one
point (i.e., a difference of -1) in 16% of the essays.
As can be seen, across all traits, 46−60% of the
essays are perfectly scored, and in 92−98% of the
essays the predicted and gold scores differ by at
most one point. Hence, most errors are near misses.

The question, then, is: how much difference is
there between two consecutive scores (e.g., 3 and

19Additional ablation results as well as an augmentation
experiment can be found in Appendix G.

20A detailed error analysis can be found in Appendix H.

Description
6 The writing has an effective flow and rhythm. Sen-

tences show a high degree of craftsmanship, with con-
sistently strong and varied structure that makes expres-
sive oral reading easy and enjoyable.

5 The writing has an easy flow and rhythm. Sentences
are carefully crafted, with strong and varied structure
that makes expressive oral reading easy and enjoyable.

Table 9: Partial rubric for SENTENCE FLUENCY. The
colors highlight the three key differences between the
descriptions for these two scores.

4) semantically? A closer look at the rubrics associ-
ated with the traits in ASAP++ reveals that in many
cases the distinction is rather subtle. To exemplify,
consider Table 9, which shows the (partial) rubric
for scoring SENTENCE FLUENCY.

As can be seen, there is a subtle distinction be-
tween essays with a SENTENCE FLUENCY score
of 5 and those with a score of 6. Keep in mind
that while the gold scores are produced by human
raters according to a rubric like this, GAT-AES
does not have access to any of the rubrics: it has
to infer these rubrics, or more precisely, identify
the often subtle distinction between two score cate-
gories purely from the training data. How easy it
would be to capture such fine-grained distinction is
often affected by a number of factors, such as the
presence/absence of features that can effectively
encode this distinction (note that the features used
by GAT-AES are far from being able to do so) and,
more often, the score distribution in the training
data (if a score category is under-represented, it
would difficult to capture such fine distinctions).

Given this analysis, future work should explore
incorporating information about the rubrics into
scoring models, by designing rubric-aware features
or encoding the score definitions in the input.

5 Conclusion

We presented GAT-AES, a novel graph-based ap-
proach for multi-trait essay scoring. By model-
ing input essays as graphs, GAT-AES provided a
principled way of capturing the dependencies be-
tween essay traits. Extensive experiments demon-
strated its effectiveness in modeling inter-trait de-
pendencies, which has in turn enabled it to achieve
state-of-the-art trait scoring performance on the
ASAP++ dataset and establish a strong baseline for
regression-based essay scorers. In future work, we
plan to further explore the potential of graph-based
essay representations by using them for other AES
tasks, such as cross-prompt scoring.



Limitations

We believe our work has several limitations. First,
although we experimented with top-performing lan-
guage models with fewer than 5B parameters, we
did not explore larger models (e.g., Zhang et al.’s
(2025b) Qwen3-Embedding-8B with 8B parame-
ters) due to computational constraints. Second, we
did not incorporate any information from the scor-
ing rubrics into the models, but our error analysis
revealed that such information may be useful.
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A Hand-Crafted Features

Table 10 enumerates the 1535 features used in our
models alongside their detailed descriptions and
the categories to which they belong. Specifically,
features marked with superscript 1 are features de-
rived using the textstat package21. Features marked
with superscript 2 are computed using a readability
package22. Those marked with superscript 3 are
NLTK package-derived features23. Finally, those
marked with superscript 4 are features obtained via
the spaCy package24. The features can be catego-
rized into nine groups:

1. readability features, which are derived from
readability indices, such as the Coleman–Liau
index;

2. text complexity features, which measure syn-
tactic complexity, including metrics like the
number of clauses per sentence;

3. text variation features, which capture the di-
versity of word and part-of-speech usage, such
as the count of unique words;

4. length-based features, which include counts
like the total number of words;

5. sentiment-based features, which assess senti-
ment at both the document and sentence levels,
such as the proportion of positive sentences;

21https://github.com/textstat/textstat
22https://github.com/andreasvc/readability
23https://www.nltk.org/
24https://spacy.io/
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6. part-of-speech bigram features, which en-
codes the count of a POS bigram that appears
in the training data;

7. pronoun-related features, which consist of
218 word-based features designed to capture
pronoun usage patterns; specifically, they in-
clude (i) the count of each pronoun (e.g., “I”),
(ii) the count of pronouns belonging to each
pre-defined group (e.g., first person pronouns),
(iii) the number of sentences containing each
pronoun, (iv) the number of sentences con-
taining pronouns from each group, (v) the per-
centage of sentences containing each pronoun,
and (vi) the percentage of sentences contain-
ing pronouns from each group;

8. prompt adherence features, which encode
whether an essay is adherent to the prompt
for which it is written;

9. top-N words features, which consist of 300
word-based features derived from the N most
frequent words in the training data (with N =
100 in our experiments), where for each word
w we compute (i) its count in an essay, (ii)
the number of sentences in the essay contain-
ing w, and (iii) the percentage of sentences
containing w.

The category names in Table 10 are marked with
superscripts for source identification. Specifically,
categories marked with superscript R are proposed
by Ridley et al. (2020), categories marked with
superscript U are proposed by Uto et al. (2020),
and categories not marked with a superscript are
proposed by Li and Ng (2024c).

The feature values are normalized as follows.
Following Ridley et al. (2020), we apply min-max
normalization to their features within each prompt,
scaling them to the [0, 1] range. Following Uto et al.
(2020) and Li and Ng (2024c), we standardize their
features within each prompt to achieve a mean of 0
and a standard deviation of 1.



Feature Group Feature Name Description
Ridley et al.’s (2020) Features (86 features)

LBR

word_count The total number of words in the essay.
mean_word The average number of characters in each word.
ess_char_len The number of characters in the essay.
mean_sent3 The average number of words in each sentence.
characters_per_word2 The average number of characters in each word.
avg_word_len The average number of characters in each word.
avg_words_per_sentence The average number of words in each sentence.
characters2 The number of characters in the essay.
syllables2 The number of syllables in the essay.
words2 The number of words in the essay.
words_per_sentence2 The average number of words in each sentence.
sentences_per_paragraph2 The average number of sentences in each paragraph.
.3 The number of periods in the essay.
,3 The number of commas in the essay.
syll_per_word2 The average number of syllables in each word.

RBR

automated_readability1 A readability metric that measures the readability of
a text based on characters per word and words per
sentence.

linsear_write1 A readability metric developed for the U.S. Air
Force to help them calculate the understandability of
technical manuals, factoring in sentence length and
words that are considered difficult.

Kincaid2 A readability metric which estimate the readability
of English texts based on sentence length and word
length.

ARI2 A readability metric that measures the readability of
a text based on characters per word and words per
sentence.

Coleman-Liau2 A readability assessment that estimates the U.S.
grade level required to understand a piece of text
based on characters, words, and sentences.

FleschReadingEase2 A readability metric that measures the readability of
text based on syllables, words, and sentences. The
scores are on a scale from 0 to 100, with higher
scores indicating easier-to-read text.

GunningFogIndex2 A readability metric that estimates the years of for-
mal education a person needs to understand the text
on the first reading.

LIX2 A readability metric that considers sentence length
and the percentage of long words (words with more
than six characters) in a text.

SMOGIndex2 A readability formula that estimates the education
level needed to understand a piece of text by analyz-
ing the number of polysyllabic words (words with
three or more syllables) within the text.

RIX2 A variant of the LIX readability index that only takes
into account the average number of long words per
sentence.

DaleChallIndex2 A readability formula that uses word difficulty based
on a list of familiar words, along with sentence
length, to estimate the grade level required to un-
derstand a text.

sentences2 The total number of sentences present in the essay.
paragraphs2 The total number of paragraphs present in the essay.
long_words2 The number of words that have 7 or more characters.
complex_words2 The number of words that have 3 or more syllables.
complex_words_dc2 The total number of words that are not in the Dale-

Chall word list of 3000 words recognized by 80% of
fifth graders.

TCR

clause_per_s4 The average number of clauses per sentence.
sent_ave_depth4 The average parse tree depth per sentence in each

essay,
ave_leaf_depth4 The average parse depth of each leaf node in the

parse tree.
Continued on next page



Feature Group Feature Name Description
max_clause_in_s4 The maximum number of clauses in the sentences

of the essay.
mean_clause_l4 The average number of words in each clause.

SBR
overall_positivity_score3 Overall, how positive the essay is.
overall_negativity_score3 Overall, how negative the essay is.
positive_sentence_prop3 The percentage of positive sentences in the essay.
neutral_sentence_prop3 The percentage of neutral sentences in the essay.
negative_sentence_prop3 The percentage of negative sentences in the essay.

TVR

sent_var3 The variance of the length of sentences in the essay.
word_var3 The variance of the length of words in the essay.
stop_prop The percentage of stopwords in the essay.
unique_word The total number of unique words in the essay.
type_token_ratio2 The number of unique words divided by the number

of words.
wordtypes2 The total number of unique words present in the

essay.
tobeverb2 The number of “to be” verbs in the essay.
auxverb2 The number of auxilllary verbs in the essay.
conjunction2 The number of conjunctions in the essay.
pronoun2 The number of pronouns in the essay
preposition2 The number of prepositions in the essay
nominalization2 The number of nominalizations in the essay
begin_w_pronoun2 The number of sentences in the essay that begin with

a pronoun.
begin_w_interrogative2 The number of sentences in the essay that begin with

an interrogative.
begin_w_article2 The number of sentences in the essay that begin with

an article.
begin_w_subordination2 The number of sentences in the essay that begin with

a subordination.
begin_w_conjunction2 The number of sentences in the essay that begin with

a conjunction.
begin_w_preposition2 The number of sentences in the essay that begin with

a preposition.
spelling_err3 The number of words that are not in The Brown

corpus of the NLTK package.
prep_comma3 The number of preprositions and commas in the

essay.
MD3 The number of tokens having a POS tag of MD in

the text.
DT3 The number of tokens having a POS tag of DT in

the text.
TO3 The number of tokens having a POS tag of TO in the

text.
PRP$3 The number of tokens having a POS tag of PRP$ in

the text.
JJR3 The number of tokens having a POS tag of JJR in

the text.
WDT3 The number of tokens having a POS tag of WDT in

the text.
VBD3 The number of tokens having a POS tag of VBD in

the text.
WP3 The number of tokens having a POS tag of WP in

the text.
VBG3 The number of tokens having a POS tag of VBG in

the text.
RBR3 The number of tokens having a POS tag of RBR in

the text.
CC3 The number of tokens having a POS tag of CC in

the text.
VBP3 The number of tokens having a POS tag of VBP in

the text.
JJS3 The number of tokens having a POS tag of JJS in

the text.
VBN3 The number of tokens having a POS tag of VBN in

the text.
Continued on next page



Feature Group Feature Name Description
POS3 The number of tokens having a POS tag of POS in

the text.
NNS3 The number of tokens having a POS tag of NNS in

the text.
WRB3 The number of tokens having a POS tag of WRB in

the text.
JJ3 The number of tokens having a POS tag of JJ in the

text.
CD3 The number of tokens having a POS tag of CD in

the text.
NNP3 The number of tokens having a POS tag of NNP in

the text.
RP3 The number of tokens having a POS tag of RP in the

text.
RB3 The number of tokens having a POS tag of RB in

the text.
IN3 The number of tokens having a POS tag of IN in the

text.
VB3 The number of tokens having a POS tag of VB in

the text.
VBZ3 The number of tokens having a POS tag of VBZ in

the text.
NN3 The number of tokens having a POS tag of NN in

the text.
PRP3 The number of tokens having a POS tag of PRP in

the text.
Uto et al.’s (2020) Features (25 features)

LBU

syllable_count The number of syllables in the essay.
num_words The number of words in the essay.
num_sentences The number of sentences in the essay.
lemma_count The number of lemmas in the essay.
, The number of commas in the essay.
! The number of exclamation marks in the essay.
? The number of question marks in the essay.

TVU

noun_count The number of nouns in the essay.
verb_count The number of verbs in the essay.
adverb_count The number of adverbs in the essay.
adjective_count The number of adjectives in the essay.
conjunction_count The number of conjunctions in the essay.
spelling_error_count The number of spelling errors in the essay.
stopwords_count The number of stop words in the essay.

RBU

ARI A readability metric that measures the readability of
a text based on characters per word and words per
sentence.

coleman_liau A readability assessment that estimates the U.S.
grade level required to understand a piece of text
based on characters, words, and sentences.

dale_chall A readability formula that uses word difficulty based
on a list of familiar words, along with sentence
length, to estimate the grade level required to un-
derstand a text.

difficult_words The total number of words that are not in the Dale-
Chall word list of 3000 words recognized by 80% of
fifth graders.

flesch_reading_ease A readability metric that measures the readability of
text based on syllables, words, and sentences. The
scores are on a scale from 0 to 100, with higher
scores indicating easier-to-read text.

flesch_kincaid_grade A readability metric which estimate the readability
of English texts based on sentence length and word
length.

gunning_fog A readability metric that estimates the years of for-
mal education a person needs to understand the text
on the first reading.

Continued on next page



Feature Group Feature Name Description
linsear_write A readability metric developed for the U.S. Air

Force to help them calculate the understandability of
technical manuals, factoring in sentence length and
words that are considered difficult.

smog_index A readability formula that estimates the education
level needed to understand a piece of text by analyz-
ing the number of polysyllabic words (words with
three or more syllables) within the text.

Part-of-speech Bigram Features (902 features)

POSB (DT, NN) The number of appearance of the bigram (DT, NN)
...

Pronoun Features (218 features)

PRO-Pronoun Count pronoun_cnt_I The number of pronoun “I” in the essay.
...

PRO-Pronoun Group Count first_person_pronoun_cnt The number of first person pronouns in the essay.
...

PRO-Sent Pronoun sent_cnt_I The number of sentences that contain “I”
...

PRO-Sent Pronoun Group sent_first_person_pronoun The number of sentences that contain first person
pronouns.

...

PRO-Sent Pronoun Portion percentage_sent_I The percentage of sentences that contain pronoun
“I”.

...

PRO-Sent Pronoun Group Portion percentage_sent_first_person The percentage of sentences that contain first person
pronouns.

...
Prompt Adherence Features (4 features)

PA

max_sentence_dot_score Dot score between the embeddings of an essay and
its prompt.

mean_sentence_dot_score The maximum dot score between the embeddings of
sentences of an essay and its prompt.

min_sentence_dot_score The average dot score between the embeddings of
sentences of an essay and its prompt.

dot_score The minimum dot score between the embeddings of
sentences of an essay and its prompt.

Top-N Words Features (300 features)

TNW-Word Count top_n_word_count_the The count of “the” in the essay.
...

TNW-Sent Count top_n_num_sent_have_the The number of sentences in an essay that contains
“the”.

...

TNW-Sent Portion top_n_percentage_sent_have_the The percentage of sentences in an essay that contains
“the”.

...

Table 10: Description of the features along with their group information. Features marked with the superscript R
are Ridley et al.’s (2020) features. Features marked with the superscript U are Uto et al.’s (2020) features. Group
LB is composed of length-based features. Group RB is composed of readability-based features. Group TC is
composed of text complexity features. Group TV is composed of text variation features. Group SB is composed of
sentiment-based features. Group POSB is composed of the part-of-speech bigram features. Group PRO is composed
of the pronoun-related features. Group PA is composed of the prompt adherence features. Group TNW is composed
of the top-N words features.



Prompt Avg. # Words # Essays Score Range(s)

1 Write a letter to the editor of a newspaper about how computers affect
society today.

365.4 1783 OVERALL: [2,12]
Other: [1,6]

2 Write a letter to the editor of a newspaper about censorship in libraries 380.7 1800 OVERALL: [0,6]
Other: [1,6]

3 Write a review about an article called Rough Rough Road by Joe Kur-
maskie. The article will be provided.

108.5 1726 [0,3]

4 Explain why the author concludes the story the way the author did. The
short story will be provided.

94.3 1772 [0,3]

5 Describe the mood created by the author in the memoir. Support your
answer with relevant and specific information from the memoir

122.1 1805 [0,3]

6 Describe the difficulties that builders of the Empire State Building faced
because of allowing dirigibles to dock there.

153.2 1800 [0,3]

7 Write a story about a time when you were patient OR write a story about
a time when someone you know was patient OR write a story in your
own way about patience.

167.6 1569 OVERALL: [0,30]
Other: [0,6]

8 We all understand the benefits of laughter. For example, someone once
said, “Laughter is the shortest distance between two people.” Many other
people believe that laughter is an important part of any relationship. Tell
a true story in which laughter was one element or part.

604.7 723 OVERALL: [0,60]
Other: [1,12]

Overall 222.5 12978

Table 11: The eight writing prompts in ASAP.

B Statistics on ASAP

Table 11 enumerates the eight essay prompts in
ASAP. For each prompt, we additionally show the
average word count, the number of essays, and the
corresponding score range(s).

C Baseline Models

In this section, we provide a brief description of
the baseline models used in our experiments.

HISK (Cozma et al., 2018) is a string kernel-
based support vector regression model. It utilizes
the histogram intersection string kernel (Ionescu
et al., 2014) on character n-grams and bag-of-super-
word embeddings (Butnaru and Ionescu, 2017) to
obtain essay representations. These representations
are then fed into ν-Support Vector Regression to
predict trait scores. Each trait is predicted individu-
ally.

STL-LSTM (Dong et al., 2017) uses a CNN
to generate sentence embeddings, followed by a
LSTM that processes the sentence embeddings to
produce essay-level embeddings. These embed-
dings are passed through a regression head with a
sigmoid activation function to obtain the predicted
trait scores. Like HISK, trait scores are predicted
individually.

MTL-BiLSTM (Kumar et al., 2022) builds on
the approach of STL-LSTM but employs a BiL-
STM instead of a LSTM. It uses multiple regres-
sion heads (one for each trait, excluding OVERALL)
to produce the predicted trait scores. The predicted
trait scores, along with the essay embeddings, are

then fed into a final regression head to obtain the
predicted OVERALL scores. Unlike HISK and STL-
LSTM, MTL-BiLSTM predicts all traits jointly.

ArTS (Do et al., 2024a) is an autoregressive
sequence-to-sequence model for joint multi-trait
scoring, using T5 as its backbone model. The input
sequence to their model consists of a short prefix
followed by an essay, while the output sequence
includes multiple trait scores that are ordered by
the number of prompts in which the traits appear.
This ordering allows the traits predicted later in
the sequence to leverage information from earlier
predictions.

SaMRL (Do et al., 2024b) builds on ArTS. In-
stead of using supervised fine-tuning, SaMRL em-
ploys policy gradient reinforcement learning to fine-
tune the T5 model with a multi-reward function
that optimizes both MSE and QWK, resulting in
improved trait-scoring performance.

RMTS (Chu et al., 2025) is the current state-of-
the-art model for multi-trait scoring. It also builds
on ArTS and employs supervised fine-tuning. How-
ever, RMTS incorporates LLM-generated ratio-
nales for each trait into the input sequence. These
rationales provide explanations of how essays align
with specific trait rubrics, enabling the model to
achieve state-of-the-art results on ASAP/ASAP++.

D Training Details and Best-found
Hyperparameters

In this section, we list the search range of each of
the hyperparameters. The learning rate is searched
out of the set {1× 10−5, 2× 10−5, 3× 10−5, 5×



Model 1 2 3 4 5 6 7 8 AVG (SD)
1 HISK .674 .586 .651 .681 .693 .709 .641 .516 .644 (-)
2 STL-LSTM .690 .622 .663 .729 .719 .753 .704 .592 .684 (-)
3 MTL-BiLSTM .670 .611 .647 .708 .704 .712 .684 .581 .665 (-)
4 ArTS .708 .706 .704 .767 .723 .776 .749 .603 .717 (±.025)
5 SaMRL .702 .711 .708 .766 .722 .773 .743 .649 .722 (±.012)
6 RMTS .716 .704 .723 .772 .737 .769 .736 .651 .726 (±.042)
7 GAT-AES (Ours) .722 .698 .707 .771 .720 .767 .744 .680 .726 (±.009)

Table 12: Trait scoring results for each prompt.

10−5}. The hidden dimension of all node represen-
tations is searched out of the set {256, 512}. The
number of text embedding nodes E is searched out
of the set {1, 2, 4}. Finally, the number of hand-
crafted nodes F is searched out of the set {1, 2, 4}.
For both node types, we searched up to four nodes
only. The reason is that we want the model to focus
on learning the interdependencies among the trait
nodes, and having too many embedding or feature
nodes might cause the model to overly emphasize
embeddings and features. Below we list the best-
found hyperparameters for GAT-AES:

• learning rate lr = 3× 10−5

• hidden dimension of all node representations
hid_dim = 256

• number of text embedding nodes E = 1

• number of hand-crafted feature nodes F = 2

It takes less than 300 hours to complete training
for all experiments on a total of eight GPUs (two
NVIDIA RTX A6000 48GB GPUs, two NVIDIA
RTX 3090 24GB GPUs, and four NVIDIA RTX
6000 24GB GPUs).

E Trait Scoring Results for Each Prompt
We report results of trait scoring for each prompt
that are averaged over five folds and applicable
traits in Table 12. Several observations can be
made.

First, RMTS and GAT-AES achieve the same
state-of-the-art average prompt performance (0.726
QWK). However, GAT-AES shows a much lower
standard deviation across folds (0.009 vs. 0.042).
A similar comparison can be made using the stan-
dard deviations in Table 3, which indicate that GAT-
AES is considerably more consistent and robust
than RMTS.

Second, GAT-AES shows a 2.9%-point improve-
ment in QWK over the second-best model on
prompt 8. This improvement may be attributed
to GAT-AES’s more accurate scoring for VOICE,

which is only evaluated in prompt 8. As a result, the
performance gain for VOICE directly contributes
to the overall performance gain for prompt 8.

Third, GAT-AES does not offer the strongest
results for prompts 3–6, which consist of source-
dependent essays. This underperformance appears
to be due to lower scores for LANGUAGE and NAR-
RATIVITY, as only prompts 3–6 evaluate these
traits.

F Analysis of How GAT-AES Captures
Inter-Trait Dependencies

To show how GAT-AES captures inter-trait depen-
dencies, we conduct a case study of how GAT-AES
scores some traits.

The gold scores for SENTENCE FLUENCY,
WORD CHOICE, and CONVENTIONS for the exam-
ple essay in Table 13 are all 8, indicating perfect
correlations. GAT-AES scored this essay with trait
scores of all 9s. While it overestimates the gold
scores by 1 point, it still reflects perfect correlations.
This case study suggests that GAT-AES is able to
capture the strong correlations among SENTENCE

FLUENCY, WORD CHOICE, and CONVENTIONS,
and to make consistent score predictions for this
example.

G Additional Experimental Results

In this section, we present additional experiments,
including both ablation and augmentation studies.

G.1 Leave-one-trait-out Experiments
To shed some light into how GAT-AES captures
inter-trait dependencies, we conduct a leave-one-
out type of experiment, whereby different individ-
ual traits are removed during training. Results are
shown in Table 14. A few observations can be
made.

First, in most cases, removing any trait nega-
tively affects the scoring of all remaining traits.
The only exceptions are: (1) when removing NAR-
RATIVITY in row 5, where the scoring results for
PROMPT ADHERENCE and STYLE increased by



I believe that laughter and joy are key elements that bring families and friends together. Being able to be in the company
of those who make you laugh, is a greatly valued thing. Sometimes just sitting around and telling old stories, or playing
board games can leave you with a sore gut because you have been laughing so hard. Many people these days have become so
caught up in their lives and sometimes forget to take a moment and just laugh. I feel sorry for these people because they
are missing out on the joy and enlightenment they could be sharing with the people around them. Family vacations are
always chaotic, at least in my family, but they always turn out to be a memorable experience one way or another. Every
winter our family gets together and goes to @ORGANIZATION1 to stay in our cabin there. A long weekend full of good
food, trips to the mountain, snowball fights and family games, is a great environment to spark some laughter. Every year we
bring big family games such as @LOCATION2, @CAPS1 and @LOCATION1. My family members and I tend to be very
competitive people and the volume of the room in which the game is being played, tends to escalate almost through the roof.
The whole house is filled with laughter and funny arguments over things like “how in the world is that a picture of a sock!”
or “That’s not fair, you know the actual definition!” I enjoy these times because they are memories that you can hold onto
forever. Laughter is a part of happiness, and happiness needs to be a part of life. Spending time with those who make you
laugh, are those that are worthy of your time. Wiser people than myself say that “life is short.” I’m starting to realize that this
statement is true. If life is short, then that time should be spent in the best way it can be; moments filled with laughter.

Table 13: A sample essay whose scores for SENTENCE FLUENCY, WORD CHOICE and CONVENTIONS are all 8.

Model Overall Content PA Lang Nar Org Conv WC SF Style Voice
1 GAT–AES .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649
2 w/o Overall – .728 .738 .683 .711 .687 .653 .695 .671 .683 .626
3 w/o Content .759 – .741 .680 .717 .678 .656 .692 .683 .707 .628
4 w/o PA .759 .731 – .682 .721 .685 .676 .692 .691 .688 .620
5 w/o Lang .758 .739 .748 – .719 .682 .662 .693 .689 .672 .636
6 w/o Nar .762 .739 .752 .676 – .689 .663 .705 .684 .700 .636
7 w/o Org .749 .736 .749 .682 .723 – .657 .698 .687 .692 .619
8 w/o Conv .758 .732 .743 .681 .712 .683 – .694 .680 .699 .617
9 w/o WC .754 .736 .742 .683 .717 .685 .669 – .687 .695 .625
10 w/o SF .757 .734 .748 .686 .726 .682 .665 .685 – .693 .593
11 w/o Style .741 .708 .721 .653 .695 .661 .627 .674 .667 – .597
12 w/o Voice .738 .713 .728 .674 .704 .656 .630 .675 .673 .671 –

Table 14: Results of leave-one-trait-out experiments.

.003 and .001 points in QWK, respectively; and (2)
when CONTENT is ablated (row 2, +.008 QWK)
and when CONVENTIONS is ablated (row 7, +.001
QWK), both of which lead to an increase in the
STYLE scores. Second, while in two cases the trait
scoring results appear to be identical to those of
GAT-AES due to rounding (specifically, PROMPT

ADHERENCE in row 6 and NARRATIVITY in row
9), both are in fact slightly worse than GAT-AES.
Third, the removal of any trait seems to have a con-
siderable negative impact on VOICE. Fourth, in
row 2, when removing OVERALL, all trait scoring
results are negatively impacted. The top three im-
pacted traits are CONVENTIONS (-.033 points in
QWK), VOICE (-.024 points in QWK) and SEN-
TENCE FLUENCY (-.021 points in QWK). In ad-
dition, in row 3, when removing PROMPT AD-
HERENCE, all trait scoring results are negatively
impacted. The top three impacted traits are VOICE

(-.029 points in QWK), WORD CHOICE (-.017
points in QWK), and OVERALL (-.012 points in
QWK). Moreover, in row 8, when removing WORD

CHOICE, all trait scoring results are negatively im-
pacted. The top three impacted traits are VOICE (-

.024 points in QWK), CONVENTIONS (-.017 points
in QWK) and OVERALL (-.017 points in QWK).

These observations suggest that: Since VOICE

appears only in prompt 8, which has fewer than
800 essays, we speculate that GAT-AES may have
overfitted VOICE by relying on (potentially multi-
hop) dependencies with other traits, rather than
learning from the essay embeddings or the hand-
crafted features. This may explain why VOICE is
the most impacted trait when any trait is removed.
Ridley et al. (2021) observed that the prediction of
the OVERALL score is highly influenced by WORD

CHOICE, PROMPT ADHERENCE, and NARRATIV-
ITY. Our results corroborate their finding in that
removing WORD CHOICE and PROMPT ADHER-
ENCE from GAT-AES caused a significant drop in
the QWK score of OVERALL.

G.2 Additional Results on Nodes and Edges

Next we conduct an additional ablation experiment
as well as an augmentation experiment.

Correlation-based edges. Since we employ an
all-pair configuration for trait nodes in GAT-AES,
it is worth investigating whether alternative edge



Model Overall Content PA Lang Nar Org Conv WC SF Style Voice AVG (SD)
1 GAT-AES .771 .742 .749 .687 .726 .694 .686 .709 .692 .699 .649 .710 (±.011)
2 – w/o trait-trait edges .754 .739 .750 .690 .730 .680 .653 .697 .669 .698 .593 .696 (±.010)
3 – w/ ArTS-style edges .767 .734 .746 .692 .721 .688 .663 .699 .685 .704 .611 .701 (±.014)
4 – w/ correlation-based edges .765 .741 .752 .680 .715 .696 .678 .702 .690 .707 .637 .706 (±.009)
5 – Adding prompt nodes .764 .742 .754 .689 .723 .680 .660 .699 .683 .698 .613 .701 (±.012)

Table 15: Trait scoring results of additional ablation and augmentation experiments.

configurations for trait nodes are effective. In ad-
dition to the ArTS-style edges, another intuitive
configuration is to connect only those trait nodes
that exhibit a sufficiently high Pearson Correlation
Coefficient. Specifically, we compute the Pear-
son Correlation Coefficient on the training set for
each fold, and use the development set to select
a threshold value to connect the trait nodes with
the top-X correlation values, where X can be a
value in {10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%}. The results are presented in row 4 of
Table 15. As can be seen, while this approach per-
forms significantly better than using no trait-trait
edges and using ArTS-style edges, it still does not
match the performance of GAT-AES. We speculate
that this is because GAT-AES can leverage certain
trait pairs that do not exhibit a sufficiently high
Pearson Correlation Coefficient.

Adding prompt nodes. In GAT-AES, we fol-
low prior work on multi-trait scoring (Do et al.,
2024a,b) and do not include the writing prompt as
input. The scoring of PROMPT ADHERENCE may
have predominantly relied on hand-crafted features
and/or patterns present in the essays themselves.
Thus, it is worth investigating whether incorporat-
ing writing prompts into GAT-AES provides any
benefit. We construct prompt embedding nodes us-
ing the same procedure applied to text embedding
nodes, and connect each prompt embedding node
to every trait node. The number of prompt embed-
ding nodes is selected based on development set
performance, using a range of {1, 2, 4} nodes. Re-
sults of this configuration are presented in row 5 of
Table 15. As shown, while there is a minor 0.005%-
point increase in the QWK score for PROMPT AD-
HERENCE, the average trait scoring performance
decreases by 0.009% points. We speculate that
adding prompt embeddings to the model may have
helped the scoring of PROMPT ADHERENCE, but
at the same time it introduced noise that negatively
affected the scoring of other traits. More effective
approaches may be needed to incorporate prompt
information without compromising overall perfor-
mance.

The features of setting affect the cyclist. The harsh turane
proved a challenge when his water supply was low and all
towns had been abandoned leaving him no refill. The heat
was also a factor quickly creating him weary and tired. On
the bike ride he had a glimmer of hope at an old water pump
but quickly disappointed when the hot liquid tasted of battery
acid. The setting set the conflict and helped achive the tone
the author was looking for to affect the cyclist.

Table 16: A sample essay where GAT-AES overesti-
mates for LANGUAGE.

H Trait-Specific Error Analysis

In this section, we conduct an error analysis of
GAT-AES on different traits.

H.1 LANGUAGE

LANGUAGE is a trait scored only in source-
dependent essays (prompts 3–6). The most fre-
quent failure case is our model assigning a score
that is one point higher than the gold label, ac-
counting for 65.33% of mispredictions. Table 16
provides a representative example. The essay con-
tains numerous spelling and grammatical errors,
such as “turane” (for “terrain”), “creating him
weary” (instead of “making him weary”), “achive”
(for “achieve”), and “quickly disappointed” (which
should be “was quickly disappointed”). It also
lacks varied grammatical structures (e.g., clauses).
The gold score for LANGUAGE is 1 (“Grammar
and spelling show many errors. Vocabulary is lim-
ited and not very varied. Some words may be used
in inappropriate places.”), whereas the model pre-
dicted a 2 (“Grammar and spelling are good, with
only some minor errors. Different kinds of gram-
matical structures may be used. The writing shows
evidence of an adequate range of vocabulary.”).
We suspect the model overweights isolated strong
vocabulary (e.g., “conflict”, “tone”, “glimmer of
hope”) while underestimating the cumulative im-
pact of grammatical and spelling errors.

H.2 STYLE

STYLE is only scored in narrative essays (prompt
7). The model overestimates and underestimates



A time when I was patient was when I counted. I didn?t just count to ten, I counted a boatload of coins consisting of pennies,
nickles, dimes, quarters, and more. It took me two hours to finish counting my money, it felt like an eternity. Counting bunch
of coins won?t change the world, but it takes a lot of patience to accomplish. I still remeber the moment when I finished
counting the money. I was proud of myself and l couldn?t think l could make it because l admit to be a very impatient person.
Patience is important because nothing would ever be finished without it. I don?t think that I?ll be able to count my coins
again, but like they say, ?Patience is a virtue.?

Table 17: A sample essay where GAT-AES overestimates for STYLE.

[Prompt]
Read the last paragraph of the story. “When they come back, Saeng vowed silently to herself, in the spring, when the snows
melt and the geese return and this hibiscus is budding, then I will take that test again.” Write a response that explains why the
author concludes the story with this paragraph. In your response, include details and examples from the story that support
your ideas.
[Rubric for Narrativity]
Score 2: The response is somewhat interesting. Transitional and linking words are used in some places, but not everywhere.
Score 1: The response is very uninteresting and disjointed and is unable to deliver the content at all.
Score 0: The response is irrelevant / incorrect / incomplete.
[Example Essay #1]
The author concludes the story with this paragraph I think because since the girl failed her test the bud reminds her of her
grandmothers long grey hair and I guess that gives her good luck so when the winter passes by and the spring time hits thats
buds start to come back out and thats when she will take her test again. Thats why the author made this statement the last
sentence of the story.
[Example Essay #2]
The author concludes the story w/this paragraph because she really isnt worried about when they take the test again, she?s
only concerned w/the plants she picked out. Also, she knows that it will be a really long time before she takes the test again
so that gives her more time to study and get more prepared and focused. The author also ends this article w/this paragraph
because she wants to let the readers know that since she failed the @NUM1 time she will be back again to take it over and
nothing will stop the author from failing.

Table 18: Examples for the error analysis of GAT-AES on NARRATIVITY.

scores at similar rates (53% and 47% of failure
cases, respectively). In 93% of these cases, its pre-
dictions differ from the gold labels by 1 point; in
the remaining 7%, they differ by 2 points. Con-
sider the example in Table 17: the gold label is 4
(sum of two annotators’ scores) while the model
predicts a 5. This implies that the model expects
one annotator to assign a 2 (“Adequate command
of language, including effective word choice and
clear sentences, supports the writer’s purpose and
audience”) and the other a 3 (“Command of lan-
guage, including effective and compelling word
choice and varied sentence structure, clearly sup-
ports the writer’s purpose and audience.”). We sus-
pect the model struggles to distinguish fine-grained
differences between rubric levels. While the essay
effectively supports its purpose, its largely simple
and direct sentence structure may have led human
raters to assign a slightly lower score.

H.3 NARRATIVITY

NARRATIVITY is a trait that is present only in the
(source-dependent) essays written for prompts 3, 4,
5, and 6. The most common failure case for NAR-
RATIVITY is related to our model’s lack of ability to
verify factual or irrelevant information. In Table 18,

we show a writing prompt, the rubric for NARRA-
TIVITY, and two example essays. The model pre-
dicts a 2 for the example essays while their gold
labels are 0. These responses are incorrect because
the purpose of the last paragraph is to show that
the author uses Saeng’s vow to take the driver’s
test again as a symbol of personal growth and re-
silience, and they should be assigned a score of 0
rather than a 2. However, since there is some basic
transitional language (e.g., “That’s why”, “Also”)
in these responses, the model might be tricked into
believing that they should be assigned a 2.

H.4 WORD CHOICE, SENTENCE FLUENCY,
and CONVENTIONS

The traits WORD CHOICE, SENTENCE FLUENCY

and CONVENTIONS appear in prompts 1–2 (per-
suasive essays) and 8 (narrative essays). The most
common failure case for WORD CHOICE lies in our
model’s lack of sensitivity to word appropriateness
and precision. Consider the writing prompt, rubrics
and example essay in Table 19. The gold WORD

CHOICE score is 3 while our model predicts a 5. In
the essay, it seems like it uses many great words
(e.g., “unwind”, “extrodinary”). However, some-
times these usages are not precise. For example,



[Prompt]
Censorship in the Libraries “All of us can think of a book that we hope none of our children or any other children have taken
off the shelf. But if I have the right to remove that book from the shelf – that work I abhor – then you also have exactly
the same right and so does everyone else. And then we have no books left on the shelf for any of us.” –Katherine Paterson,
Author Write a persuasive essay to a newspaper reflecting your views on censorship in libraries. Do you believe that certain
materials, such as books, music, movies, magazines, etc., should be removed from the shelves if they are found offensive?
Support your position with convincing arguments from your own experience, observations, and/or reading.
[Rubric for Word Choice]
Score 5: Words convey the intended message in an interesting, precise, and natural way appropriate to audience and purpose.
The writer employs a broad range of words which have been carefully chosen and thoughtfully placed for impact. The
writing is characterized by • accurate, specific words; word choices energize the writing. • fresh, vivid expression; slang, if
used, seems purposeful and is effective. • vocabulary that may be striking and varied, but that is natural and not overdone. •
ordinary words used in an unusual way. • words that evoke clear images; figurative language may be used.
Score 3: Language lacks precision and variety, or may be inappropriate to audience and purpose in places. The writer does
not employ a variety of words, producing a sort of “generic” paper filled with familiar words and phrases. The writing
is characterized by • words that work, but that rarely capture the reader’s interest. • expression that seems mundane and
general; slang, if used, does not seem purposeful and is not effective. • attempts at colorful language that seem overdone or
forced. • words that are accurate for the most part, although misused words may occasionally appear; technical language or
jargon may be overused or inappropriately used. • reliance on clichés and overused expressions. • text that is too short to
demonstrate variety.
[Rubric for Sentence Fluency]
Score 5: The writing has an easy flow and rhythm. Sentences are carefully crafted, with strong and varied structure that
makes expressive oral reading easy and enjoyable. The writing is characterized by • a natural, fluent sound; it glides along
with one sentence flowing into the next. • variation in sentence structure, length, and beginnings that add interest to the text.
• sentence structure that enhances meaning. • control over sentence structure; fragments, if used at all, work well. • stylistic
control; dialogue, if used, sounds natural.
Score 3: The writing tends to be mechanical rather than fluid. Occasional awkward constructions may force the reader to
slow down or reread. The writing is characterized by • some passages that invite fluid oral reading; however, others do not. •
some variety in sentence structure, length, and beginnings, although the writer falls into repetitive sentence patterns. • good
control over simple sentence structures, but little control over more complex sentences; fragments, if present, may not be
effective. • sentences which, although functional, lack energy. • lapses in stylistic control; dialogue, if used, may sound
stilted or unnatural. • text that is too short to demonstrate variety and control.
[Rubric for Conventions]
Score 5: The writing demonstrates strong control of standard writing conventions (e.g., punctuation, spelling, capitalization,
grammar and usage) and uses them effectively to enhance communication. Errors are few and minor. Conventions support
readability. The writing is characterized by • strong control of conventions. • effective use of punctuation that guides the
reader through the text. • correct spelling, even of more difficult words. • correct capitalization; errors, if any, are minor. •
correct grammar and usage that contribute to clarity and style. • skill in using a wide range of conventions in a sufficiently
long and complex piece. • little need for editing.
Score 3: The writing demonstrates limited control of standard writing conventions (e.g., punctuation, spelling, capitalization,
grammar and usage). Errors begin to impede readability. The writing is characterized by • some control over basic
conventions; the text may be too simple or too short to reveal mastery. • end-of-sentence punctuation that is usually correct;
however, internal punctuation contains frequent errors. • spelling errors that distract the reader; misspelling of common
words occurs. • capitalization errors. • errors in grammar and usage that do not block meaning but do distract the reader. •
significant need for editing.
[Example Essay]
Dear @PERSON1 editor, I think that the computers have both positive and negative effects, but more positive. For example,
when people get home from work or school, they immedlatly go on the computer, to check email, do work, or to play games.
I think that it’s good to connect with friends and learn about the far away nature and people that we cant see, but too much
of it will be bad. I know it will be bad because it can cause a lack of exercise and the computer can cut you off from your
family and friends if you’re on it too much, I think it’s good to go on the computer for a limited amount of time each day, but
also spend time outside with family and friends. The computer is good because of all the extrodinary things it offers and the
things you can learn. I myself like to play video games on it like bubble spinner but at the same time I’ll be on facebook,
facebook lets me connect with friends and family while bubble spinner helps with hand-eye coordination, when projects
came along I usually do all my research there, picking up information on each site. I also do all the writing on it too so it
wont look messy but instead, clean and neat. The computer also offers video of pretty much anything on t.v. and otherwise,
like youtube or google videos. The computer lets me see nature, talk to friends and family, and lets me see things, like videos,
that twill never ever see in books. These show that the computer has a bigger positive impact than negative and we should
take advantage of the new technology that we have and not let it go to waste. The computer is a nice outlit to come home and
let yourself unwind to. People say that you don’t get enough exercise but we have gym and recess at school and we become
exhausted at work, which is enough exercise for the day. Computers are a nice device to have and are by far, used daily by
almost everyone. So it can’t be all that bad by depriving you from nature and family because it lets you see it anyway. The
effects it has on people are good because of the knowledge and communication it brings. I hope you see my point of view.

Table 19: Example essay for the error analysis of GAT-AES on WORD CHOICE, SENTENCE FLUENCY and
CONVENTIONS.



[Prompt]
Read the last paragraph of the story. “When they come back, Saeng vowed silently to herself, in the spring, when the snows
melt and the geese return and this hibiscus is budding, then I will take that test again.” Write a response that explains why the
author concludes the story with this paragraph. In your response, include details and examples from the story that support
your ideas.
[Rubric for Content]
Score 3 : The response answers the question asked of it. Sufficient evidence from the story is used to support the points that
the writer makes.
Score 2 : The response addresses some of the points. Evidence from the story supporting those points are present.
Score 1 : The response may lack information / evidence showing a lack of understanding of the text.
Score 0 : The response is irrelevant / incorrect / incomplete.
[Rubric for Prompt Adherence]
Score 3 : The response shows an excellent understanding of the meaning of the text and question, and stays on topic.
Score 2 : The response shows a good understanding of the meaning of the text and question, and occasionally wanders off
topic.
Score 1 : The response shows a misreading of the text or question, or consistently wanders off topic.
Score 0 : The response is irrelevant / incorrect / incomplete.
[Example Essay]
The reason the author of the story ?Winter hibiscus? ends it the way she does is so that we know we can never give up. She
fails her driving test the first time and me being less than a year from taking the test myself and no matter how many time
I fail the test I will never give up. We need to preserve through every problem we go through in life. If we don?t and we
just give up we will never get anything done in life. She vows in the spring and when the hibiscus is budding she will take
the test again. I hope I pass my driving test the first time just like I did the learner?s permit test. Also you can?t give up on
anything at all even something small like working if you stop working you will loose your job. Never give up.

Table 20: Example essay for the error analysis of GAT-AES on CONTENT and PROMPT ADHERENCE.

in the sentence “The computer is a nice outlit to
come home and let yourself unwind to”, “Outlit” is
likely a misspelling of “outlet”, but even so, “outlet
to unwind to” is not idiomatic. Thus, our model
may be overly rewarding the presence of seman-
tically rich words without penalizing incorrect or
awkward usage. Due to our model’s strong ability
in capturing inter-trait dependencies as well as the
strong correlations between WORD CHOICE, SEN-
TENCE FLUENCY and CONVENTIONS, our model
assigns a 5 to all these traits while the gold scores
are all 3.

H.5 CONTENT and PROMPT ADHERENCE

CONTENT and PROMPT ADHERENCE are the only
two traits in the ASAP++ dataset that are related
to the content of essays. One failure case of our
model is shown in Table 20, where the gold scores
for CONTENT and PROMPT ADHERENCE are both
0, but our model predicts scores of 3 and 2, re-
spectively. We speculate that this discrepancy can
be attributed to the fact that the model does not
have access to the source document or the writing
prompt. As a result, it is misled by the seemingly
on-topic essay and fails to accurately assess CON-
TENT and PROMPT ADHERENCE.

H.6 ORGANIZATION

The trait ORGANIZATION appears in prompts 1, 2,
7, and 8. Interestingly, our model has more overes-

timations for ORGANIZATION in prompts 1, 2 and
8, but has more underestimations in prompt 7. Con-
sider the writing prompt, rubric and example given
in Table 21. The gold score is 2 (two annotators
gave a score of 1) while the prediction is 5. The
example essay is an attempt to narrate events in
sequence (trip, babysitting, fights, walk), but tran-
sitions are choppy and connections between ideas
are weak. The essay contains run-on sentences and
grammar issues that obscure logical flow (e.g., “I
didn?t complain til I got home til my mom”). While
some organization exists, it is insufficient to meet
even the rubric’s Score 2 standard. GAT-AES likely
overestimates because it detects a narrative thread
and some chronological as evidence of logical se-
quencing and organization. However, the rubric
emphasizes clear and strong connections between
ideas, which this essay lack due to weak transitions
and grammar issues.

H.7 VOICE

The trait VOICE, which appears in prompt 8 only,
evaluates how clearly the writer’s personality, tone,
and point of view come through in the writing. It re-
flects whether the writer sounds genuinely engaged
with the topic and how well they connect with the
intended audience. GAT-AES has a tendency to
overestimate an essay’s VOICE score. Consider
the writing prompt, rubric, and example essay in
Table 22. The gold score is 6 (two annotators gave



[Prompt]
Write about patience. Being patient means that you are understanding and tolerant. A patient person experience difficulties
without complaining. Do only one of the following: write a story about a time when you were patient OR write a story about
a time when someone you know was patient OR write a story in your own way about patience.
[Rubric for Organization]
Score 3: Organization and connections between ideas and/or events are clear and logically sequenced.
Score 2: Organization and connections between ideas and/or events are logically sequenced.
Score 1: Organization and connections between ideas and/or events are weak.
Score 0: No organization evident.
[Example Essay]
One time I was pacient was when I went to @LOCATION1 with my @CAPS1 + cousin. I had to baby sit my cousin
@CAPS2 while his room pack up cause they were making back to @LOCATION2. My cousin can be a handful sometimes
and always gets his way. But I was pacient and waited til the trip was away. I didn?t complain til I got home til my mom.
Me and my cousin got in lots of fights on that vacation. But I still love him . I had to be very pacient with my cousin and
even maybe do what he wanted but I knew his mom was very proud of me. I remember when we went for a walk to a pond
to find alligators. But then @CAPS2 wanted to go to the pack.I knew I had to give in ( considering that hes @NUM1 and
immature). But I just went with the flow and we went to the pack. That was a time that I had to be pacient.

Table 21: Example essay for the error analysis of GAT-AES on ORGANIZATION.

3 points) while the predicted score is 9. Our model
likely overestimated the score because it was influ-
enced by the liveliness and energy in the narrative,
such as the playful scenes (“WACK! The bunney
conected...”) and moments of humor (“@CAPS66
from planet meanie are we?”). These features
mimic the surface characteristics of a high-scoring
voice, but upon a closer examination, the voice
is inconsistent and often mechanical, as described
under the Score 3 criteria. The narrative lacks a
sustained and appropriate voice, frequently becom-
ing overly casual or erratic, and failing to maintain
a clear sense of audience awareness, which are key
traits expected at Score 5 or 6. Thus, while the es-
say is energetic, the commitment and consistency
needed for a higher score are not sufficiently de-
veloped. We speculate that the overestimation of
our model on VOICE is due to it capturing only
surface-level features for VOICE.



[Prompt]
We all understand the benefits of laughter. For example, someone once said, “Laughter is the shortest distance between two
people.” Many other people believe that laughter is an important part of any relationship. Tell a true story in which laughter
was one element or part.
[Rubric for Voice]
Score 5: The writer has chosen a voice appropriate for the topic, purpose, and audience. The writer demonstrates commitment
to the topic, and there is a sense of “writing to be read.” The writing is expressive, engaging, or sincere. The writing is
characterized by an appropriate level of closeness to or distance from the audience (e.g., a narrative should have a strong
personal voice, while an expository piece may require extensive use of outside resources and a more academic voice;
nevertheless, both should be engaging, lively, or interesting. Technical writing may require greater distance.). • a strong
sense of audience; the writer seems to be aware of the reader and of how to communicate the message most effectively. The
reader may discern the writer behind the words and feel a sense of interaction. • a sense that the topic has come to life; when
appropriate, the writing may show originality, liveliness, honesty, conviction, excitement, humor, or suspense.
Score 4: A voice is present. The writer seems committed to the topic, and there may be a sense of “writing to be read.”
In places, the writing is expressive, engaging, or sincere. The writing is characterized by • a suitable level of closeness to
or distance from the audience. • a sense of audience; the writer seems to be aware of the reader but has not consistently
employed an appropriate voice. The reader may glimpse the writer behind the words and feel a sense of interaction in places.
• liveliness, sincerity, or humor when appropriate; however, at times the writing may be either inappropriately casual or
personal, or inappropriately formal and stiff.
Score 3: The writer’s commitment to the topic seems inconsistent. A sense of the writer may emerge at times; however, the
voice is either inappropriately personal or inappropriately impersonal. The writing is characterized by • a limited sense of
audience; the writer’s awareness of the reader is unclear. • an occasional sense of the writer behind the words; however, the
voice may shift or disappear a line or two later and the writing become somewhat mechanical. • a limited ability to shift to a
more objective voice when necessary. • text that is too short to demonstrate a consistent and appropriate voice.
[Example Essay]
I could just laugh to death. someone said. I sacned the area. “@CAPS37?” I said. “@CAPS1 here son.” I looked @CAPS1
the stairs leading to @CAPS2 avenue. There was the sorce of the voice i had herd. @CAPS35 was only an old man
probualy homeless by the looks of him. He had worn shoes, dirty blue jeans, a riped shirt under a worn jacket. “@CAPS3,
@CAPS31 @CAPS33 a little lost”The old man said. “@CAPS4, I’m @CAPS73 lost” said @PERSON1. His pocket started
to vibrate. @PERSON1 reached into his pocket an pulled out his cell. He fliped @CAPS35 open and read: @CAPS31
going to be here soon? Tommey typed: ya bro just going onto @CAPS2 ave now. Message sent. @PERSON1 started to
climb the steps. “@CAPS5 @CAPS31 later old man” said @PERSON1 as he dashed of to meet his friends. @PERSON1
saw his friends in site @CAPS62 were all standing outside of the @CAPS6 @CAPS7 bakery. “@CAPS3,guys @CAPS33
@CAPS35’s @PERSON1!” @CAPS34 @PERSON2. @PERSON2 ran at @LOCATION1. @PERSON1 scuped her
@CAPS1 and spun her around one before puting her @CAPS66 @CAPS19. @CAPS62 proceeded to walk over to the
group. “@CAPS37 took @CAPS31 so long dude” said @CAPS9 @CAPS10. “@CAPS11, @CAPS63 the short cut i took
turned out to be, @CAPS73 to short” @PERSON1 repiled. “@CAPS12 don’t mind him he’s just in a bad mood” said
@CAPS13. “@CAPS14” replied @CAPS9 @CAPS10. “@CAPS3, guys can we go into the @CAPS18 @CAPS19’s toy
store!!” inqured @PERSON2. “@CAPS20 that’s fine” replied @CAPS13 @CAPS22. The group proceeded @CAPS19
@CAPS2 avenue @CAPS24 turned right onto @ORGANIZATION1 street, @CAPS24 another right onto @CAPS25 avenue.
The store was located halfway @CAPS19 in the middle of other boutiques. “@CAPS26 were here” said @PERSON2 as
she spun around around from excitement. “@CAPS24 let’s go in” said @CAPS9 @CAPS10. “@CAPS30 old greblin!”
said @PERSON2. “shh mu ha ha ha” @CAPS31 got told said @CAPS13. “@CAPS32” he grumbled. Once inside the
store @CAPS35 was like somone turned @CAPS9 the lights @CAPS9 bright. @CAPS73 only that but the store was filled
from top to bottom with @CAPS38 but toys. The toys ranged from small to large to huge. There were all sorts of diffrent
types. “@CAPS33” @CAPS34 @PERSON2. “@CAPS35’s a @CAPS43 bunny!”“@CAPS35’ll smother @CAPS31 in
your sleep twerp” “@CAPS37’s eating @CAPS31?” said @PERSON1. “@CAPS38” grumbbled @CAPS9 @CAPS10.
WACK! The bunney conected with @CAPS9 @CAPS10’s face. “@CAPS43 meenie”“@CAPS44, that does @CAPS35”
he took a lion off the shelf and tossed @CAPS35 at @LOCATION2. “@CAPS3, don’t be mean to her!” said @CAPS13
as she picted @CAPS1 a monester an flung @CAPS35 at @CAPS9 @CAPS10. @CAPS35 missed and hit @PERSON1.
@PERSON1 flung @CAPS35 @CAPS66 at @CAPS9 @CAPS10. “That’s @CAPS35” I @CAPS9 @CAPS10 challege
@CAPS31. SMAK. “@CAPS52” @CAPS53 this. @CAPS53 that. @CAPS54 @CAPS54 @CAPS31 scum. @CAPS31
can’t get me. WAM! Ha ha i’m ausome. TWACK! “@CAPS55” @CAPS34 some one. @CAPS62 @CAPS56.“@CAPS31
kids are in @CAPS43 trouble!” the owner was yelling. “@CAPS31 better put all these toys @CAPS66 where @CAPS62
were” he warned.“@CAPS59! I think we got a little caried away” said @CAPS13. “A little!! My toy store is a mess!now
get cleaning” “@CAPS61” @CAPS62 all sighed. “@CAPS63 that was cool” siad @CAPS9 @CAPS10. “@CAPS66
from planet meanie are we?” teased @PERSON1. “@CAPS67 i @CAPS20 am” replied @CAPS9 @CAPS10. “ya,
that was fun” said @CAPS13. “@CAPS71 @CAPS35 was!!” replied @PERSON2. “We all looked pretty stupid hu”
said @CAPS13 blushing. “ @CAPS67, but how many people can say @CAPS62 had a toy fight in a toy store” replied
@PERSON1. “@CAPS73 many i guess!”“@CAPS74 talking more cleaning, clean, clean!” @CAPS34 the store owner.“yes,
sir” @PERSON2 soluted the owner.“@CAPS76 @CAPS31...”“@CAPS77” The group of kids laughed.

Table 22: Example essay for the error analysis of GAT-AES on VOICE.
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