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Abstract

Weinvestigatesingle-view algorithmsasanal-
ternative to multi-view algorithmsfor weakly
supervisedlearning for natural languagepro-
cessingtaskswithout a naturalfeaturesplit. In
particular, we apply co-training,self-training,
andEM to onesuchtaskandfind thatbothself-
trainingandFS-EM,anew variationof EM that
incorporatesfeatureselection,outperformco-
trainingandarecomparatively lesssensitive to
parameterchanges.

1 Introduction

Multi-view weakly supervisedlearningparadigmssuch
as co-training (Blum and Mitchell, 1998) and co-EM
(NigamandGhani,2000)learna classificationtaskfrom
a small set of labeled data and a large pool of unla-
beleddata using separate,but redundant,views of the
data(i.e. using disjoint featuresubsetsto representthe
data). Multi-view learning has beensuccessfullyap-
plied to anumberof tasksin naturallanguageprocessing
(NLP), including text classification(Blum andMitchell,
1998;NigamandGhani,2000),namedentity classifica-
tion (Collins andSinger, 1999),basenounphrasebrack-
eting (Pierceand Cardie,2001), and statisticalparsing
(Sarkar, 2001;Steedmanet al., 2003).

Thetheoreticalperformanceguaranteesof multi-view
weakly supervisedalgorithms come with two fairly
strongassumptionson the views. First, eachview must
be sufficient for learningthegiven concept.Second,the
views must be conditionally independentof eachother
given the classlabel. When both conditionsare met,
Blum andMitchell prove thataninitial weaklearnercan
beboostedusingunlabeleddata.

Unfortunately, findinga setof views thatsatisfiesboth
of theseconditionsis by no meansan easyproblem. In
addition,recentempiricalresultsby Musleaetal. (2002)

andNigamandGhani(2000) haveshownthatmulti-view
algorithmsare quite sensitive to the two underlyingas-
sumptionson the views. Effective view factorizationin
multi-view learningparadigms,therefore,remainsanim-
portantissuefor their successfulapplication.In practice,
views aresuppliedby usersor domainexperts,who de-
terminea naturalfeaturesplit that is expectedto be re-
dundant(i.e. eachview is expectedto be sufficient for
learningthe target concept)and conditionally indepen-
dentgiventheclasslabel.1

We investigateherethe applicationof weakly super-
visedlearningalgorithmsto problemsfor which noobvi-
ous natural featuresplit exists and hypothesizethat, in
thesecases,single-view weakly supervisedalgorithms
will perform better than their multi-view counterparts.
Motivated,in part,by theresultsin Mueller etal. (2002),
we usethe task of noun phrasecoreferenceresolution
for illustration throughoutthe paper.2 In our experi-
ments,we comparethe performanceof the Blum and
Mitchell co-training algorithm with that of two com-
monlyusedsingle-view algorithms,namely, self-training
and Expectation-Maximization(EM). In comparisonto
co-training,self-trainingachieves substantiallysuperior
performanceandis lesssensitive to its input parameters.
EM, on the otherhand,fails to boostperformance,and
we attribute this phenomenonto the presenceof redun-
dant featuresin the underlyinggenerative model. Con-
sequently, we proposea wrapper-basedfeatureselection
method(Johnet al., 1994)for EM that resultsin perfor-
manceimprovementscomparableto that observed with
self-training.Overall,ourresultssuggestthatsingle-view

1Abney (2002) arguesthattheconditionalindependenceas-
sumptionis remarkablystrongandis rarelysatisfiedin realdata
sets,showing thata weakerindependenceassumptionsuffices.

2Mueller et al. (2002)explore a heuristicmethodfor view
factorizationfor therelatedproblemof anaphoraresolution,but
find that co-trainingshows no performanceimprovementsfor
any type of Germananaphorexceptpronounsover a baseline
classifiertrainedon a smallsetof labeleddata.



weakly supervisedlearningalgorithmsare a viable al-
ternative to multi-view algorithmsfor datasetswherea
naturalfeaturesplit into separate,redundantviews is not
available.

The remainderof the paperis organizedas follows.
Section2 presentsan overview of the threeweakly su-
pervisedlearningalgorithmsmentionedpreviously. In
section3, we introducenounphrasecoreferenceresolu-
tion anddescribethemachinelearningframework for the
problem.In section4, weevaluatetheweaklysupervised
learningalgorithmsonthetaskof coreferenceresolution.
Section5 introducesa methodfor improving theperfor-
manceof weakly supervisedEM via featureselection.
We concludewith futurework in section6.

2 Weakly Supervised Algorithms

In thissection,wegiveahigh-leveldescriptionof ourim-
plementationof the threeweakly supervisedalgorithms
thatwe usein our comparison,namely, co-training,self-
training,andEM.

2.1 Co-Training

Co-training(Blum and Mitchell, 1998) is a multi-view
weakly supervisedalgorithm that trains two classifiers
thatcanhelpaugmenteachother’slabeleddatausingtwo
separatebut redundantviews of thedata.Eachclassifier
is trainedusingoneview of thedataandpredictsthe la-
belsfor all instancesin thedata pool, which consistsof
a randomlychosensubsetof the unlabeleddata. Each
thenselectsits mostconfidentpredictionsfrom thepool
andaddsthecorrespondinginstanceswith theirpredicted
labelsto thelabeleddatawhile maintainingtheclassdis-
tribution in thelabeleddata.

The numberof instancesto be addedto the labeled
databy eachclassifierat eachiteration is limited by a
pre-specifiedgrowthsizeto ensurethatonly theinstances
thathave a highprobabilityof beingassignedthecorrect
labelareincorporated.The datapool is refilled with in-
stancesdrawn from theunlabeleddataandtheprocessis
repeatedfor several iterations.During testing,eachclas-
sifier makesan independentdecisionfor a test instance
andthedecisionassociatedwith thehigherconfidenceis
takento bethefinal predictionfor theinstance.

2.2 Self-Training

Self-training is a single-view weakly supervisedalgo-
rithm thathasappearedin variousformsin theliterature.
The versionof the algorithmthat we considerhereis a
variationof theonepresentedin BankoandBrill (2001).

Initially, we usebagging (Breiman,1996) to train a
committeeof classifiersusingthe labeleddata. Specifi-
cally, eachclassifieris trainedona bootstrapsamplecre-
atedby randomlysamplinginstanceswith replacement

from thelabeleddatauntil thesizeof thebootstrapsam-
pleis equalto thatof thelabeleddata.Theneachmember
of thecommittee(or bag)predictsthe labelsof all unla-
beleddata. The algorithmselectsan unlabeledinstance
for addingto thelabeleddataif andonly if all bagsagree
uponits label. This ensuresthat only the unlabeledin-
stancesthathave a highprobabilityof beingassignedthe
correctlabelwill beincorporatedinto thelabeledset.The
abovestepsarerepeateduntil all unlabeleddatais labeled
or a fixed point is reached.Following Breiman(1996),
we performsimplemajority voting usingthe committee
to predictthelabelof a testinstance.

2.3 EM

Theuseof EM asa single-view weaklysupervisedclas-
sificationalgorithmis introducedin Nigamet al. (2000).
Like the classicunsupervisedEM algorithm (Dempster
et al., 1977),weaklysupervisedEM assumesa paramet-
ric modelof datageneration.Thelabelsof theunlabeled
dataare treatedas missingdata. The goal is to find a
modelsuchthat the posteriorprobability of its parame-
tersis locally maximizedgivenboththelabeleddataand
theunlabeleddata.

Initially, the algorithm estimatesthe model parame-
ters by training a probabilisticclassifieron the labeled
instances.Then,in theE-step, all unlabeleddatais prob-
abilistically labeledby the classifier. In the M-step, the
parametersof the generative modelarere-estimatedus-
ing boththeinitially labeleddataandtheprobabilistically
labeleddatato obtainamaximuma posteriori(MAP) hy-
pothesis.TheE-stepandtheM-steparerepeatedfor sev-
eral iterations.Theresultingmodelis thenusedto make
predictionsfor thetestinstances.

3 The Machine Learning Framework for
Coreference Resolution

Nounphrasecoreferenceresolutionrefersto theproblem
of determiningwhich nounphrases(NPs) refer to each
real-worldentity mentionedin a document.In this sec-
tion, we give an overview of the coreferenceresolution
systemto which the weakly supervisedalgorithmsde-
scribedin theprevioussectionareapplied.

The framework underlying the systemis a standard
combinationof classificationand clustering employed
by supervisedlearningapproaches(e.g. Ng andCardie
(2002);Soonetal. (2001)).Specifically, coreferenceres-
olution is recastasa classificationtask, in which a pair
of NPsis classifiedasco-referringor not basedon con-
straintsthatarelearnedfrom anannotatedcorpus.Train-
ing instancesaregeneratedby pairingeachNPwith each
of its precedingNPsin thedocument.Theclassification
associatedwith a training instanceis oneof COREFER-
ENT or NOT COREFERENT dependingonwhethertheNPs



FeatureType Feature Description
Lexical PRO STR C if bothNPsarepronominalandarethesamestring;elseI.

PN STR C if bothNPsarepropernamesandarethesamestring;elseI.
SOON STR NONPRO C if bothNPsarenon-pronominalandthestringof NP��� matchesthatof NP��� ; elseI.

Grammatical PRONOUN 1 Y if NP��� is a pronoun;elseN.
PRONOUN 2 Y if NP��� is a pronoun;elseN.

DEMONSTRATIVE 2 Y if NP��� startswith a demonstrativesuchas“this,” “that,” “these,” or “those;” elseN.
BOTH PROPER NOUNS C if bothNPsarepropernames;NA if exactly oneNP is a propername;elseI.

NUMBER C if theNP pair agreein number;I if they disagree;NA if numberinformationfor one
or bothNPscannotbedetermined.

GENDER C if theNPpairagreein gender;I if they disagree;NA if genderinformationfor oneor
bothNPscannotbedetermined.

ANIMACY C if theNPsmatchin animacy; elseI.
APPOSITIVE C if theNPsarein anappositive relationship;elseI.
PREDNOM C if theNPsform a predicatenominalconstruction;elseI.
BINDING I if theNPsviolateconditionsB or C of theBinding Theory;elseC.

CONTRAINDICES I if theNPscannotbeco-indexedbasedon simpleheuristics;elseC. For instance,two
non-pronominalNPsseparatedby a prepositioncannotbeco-indexed.

SPAN I if oneNPspanstheother;elseC.
MAXIMALNP I if bothNPshave thesamemaximalNPprojection;elseC.

SYNTAX I if the NPs have incompatiblevaluesfor the BINDING, CONTRAINDICES, SPAN or
MAXIMALNPconstraints;elseC.

INDEFINITE I if NP��� is anindefiniteandnotappositive;elseC.
PRONOUN I if NP��� is a pronounandNP��� is not;elseC.

EMBEDDED 1 Y if NP��� is anembeddednoun;elseN.
TITLE I if oneor bothof theNPsis a title; elseC.

Semantic WNCLASS C if theNPshave thesameWordNetsemanticclass;I if they don’t; NA if thesemantic
classinformationfor oneor bothNPscannotbedetermined.

ALIAS C if oneNP is analiasof theother;elseI.
Positional SENTNUM DistancebetweentheNPsin termsof thenumberof sentences.

Others PRO RESOLVE C if NP��� is apronounandNP��� is its antecedentaccordingto anaivepronounresolution
algorithm;elseI.

Table1: Featuresetfor thecoreferencesystem.Thefeaturesetcontainsrelationalandnon-relationalfeaturesthatareusedto
generatean instancerepresentingtwo NPs,NP��� andNP��� , in document	 , whereNP��� precedesNP��� . Non-relationalfeaturestest
somepropertyPof oneof theNPsunderconsiderationandtakeonavalueof YES or NO dependingonwhetherPholds.Relational
featurestestwhethersomepropertyPholdsfor theNPpair underconsiderationandindicatewhethertheNPsareCOMPATIBLE or
INCOMPATIBLE w.r.t. P; a valueof NOT APPLICABLE is usedwhenpropertyPdoesnotapply.

co-referin thetext. A separateclusteringmechanismthen
coordinatesthe possiblycontradictorypairwiseclassifi-
cationsandconstructsa partitionon thesetof NPs.

We perform the experiments in this paper
using our coreference resolution system (see
Ng andCardie(2002)). For the sake of complete-
ness, we include the descriptionsof the 25 features
employedby the system in Table 1. Linguistically,
the featurescan be divided into five groups: lexical,
grammatical,semantic,positional,andothers.However,
we usenaiveBayesratherthandecisiontreeinductionas
the underlyinglearningalgorithmto train a coreference
classifier, simply because(1) it provides a generative
modelassumedby EM andhencefacilitatescomparison
betweendifferent approachesand (2) it is more robust
to the skewedclassdistributionsinherentin coreference
datasetsthandecisiontreelearners.Whenthe corefer-
encesystemis usedwithin theweaklysupervisedsetting,
a weakly supervisedalgorithm bootstrapsthe corefer-

enceclassifierfrom thegivenlabeledandunlabeleddata
ratherthanfrom a muchlargersetof labeledinstances.

We concludethis sectionby noting that view factor-
ization is a non-trivial task for coreferenceresolution.
For many lexical taggingproblemssuchaspart-of-speech
tagging,viewscanbedrawn naturallyfrom theleft-hand
andright-handcontext. For othertaskssuchasnameden-
tity classification,views canbederivedfrom featuresin-
sideandoutsidethephraseunderconsideration(Collins
and Singer, 1999). Unfortunately, neitherof theseop-
tions is possiblefor coreferenceresolution.We will ex-
ploreseveral heuristicmethodsfor view factorizationin
thenext section.

4 Evaluation

In this section,we empirically test our hypothesisthat
single-view weaklysupervisedalgorithmscanpotentially
outperformtheir multi-view counterpartsfor problems
withouta naturalfeaturesplit.



4.1 Experimental Setup

To ensurea fair comparisonof the weakly supervised
algorithms,the experimentsare designedto determine
the best parametersettingof eachalgorithm (in terms
of its effectivenessto improve performance)for thedata
setswe investigate. Specifically, we keepthe parame-
ters commonto all threeweakly supervisedalgorithms
(i.e. thelabeledandunlabeleddata)constantandvarythe
algorithm-specificparameters,asdescribedbelow.

Evaluation. We use the MUC-6 (1995) and MUC-7
(1998)coreferencedatasetsfor evaluation.Thetraining
setis composedof 30 “dry run” texts, 1 of which is se-
lectedto betheannotatedtext andtheremaining29 texts
areusedasunannotateddata.For MUC-6, 3486training
instancesaregeneratedfrom84NPsin theannotatedtext.
For MUC-7, 3741training instancesaregeneratedfrom
87 NPs. The unlabeleddatais composedof 488173in-
stancesand478384instancesfor theMUC-6 andMUC-7
datasets,respectively. Testingis performedby applying
thebootstrappedcoreferenceclassifierandtheclustering
algorithm describedin section3 on the 20–30“formal
evaluation”texts for eachof theMUC-6 andMUC-7 data
sets.

Co-training parameters. The co-training parameters
aresetasfollows.

Views. We testedthreepairs of views. Table 2 re-
producesthe 25 featuresof the coreferencesystemand
shows theviews we employ. Specifically, the threeview
pairsaregeneratedby thefollowing methods.


 Mueller et al.’s heuristicmethod.Startingfrom two
emptyviews,theiterativealgorithmselectsfor each
view thefeaturewhoseadditionmaximizestheper-
formanceof the respective view on thelabeleddata
at eachiteration. 3 This methodproducestheview
pair V1 andV2 in Table2 for theMUC-6 dataset.
A differentview pair is producedfor MUC-7.
 Randomsplitting of featuresinto views. Starting
from two empty views, an iterative algorithm that
randomlychoosesa featurefor eachview at each
stepis usedto split the featureset. The resulting
view pair V3 andV4 is usedfor both the MUC-6
andMUC-7 datasets.
 Splitting of features according to the feature
type. Specifically, oneview comprisesthe lexico-
syntacticfeaturesandtheotherthe remainingones.
This approachproducesthe view pair V5 andV6,
which is usedfor bothdatasets.

Pool size. We testedpool sizesof 500,1000,5000.
Growthsize. Wetestedvaluesof 10,50,100,200,250.

3Spacelimitation precludesa detaileddescriptionof this
method.SeeMueller etal. (2002) for details.

Feature V1 V2 V3 V4 V5 V6
PRO STR X X X
PN STR X X X

SOON STR NONPRO X X X
PRONOUN 1 X X X
PRONOUN 2 X X X

DEM ONSTRATIVE 2 X X X
BOTH PROPER NOUNS X X X

NUM BER X X X
GENDER X X X

ANIM ACY X X X
APPOSITIVE X X X
PREDNOM X X X
BINDING X X X

CONTRAINDICES X X X
SPAN X X X

M AXIM ALNP X X X
SYNTAX X X X

INDEFINITE X X X
PRONOUN X X X

EM BEDDED 1 X X X
TITLE X X X

WNCLASS X X X
ALIAS X X X

SENTNUM X X X
PRO RESOLVE X X X

Table2: Co-trainingview pairsemployedby thecorefer-
encesystem.Column1 lists the25 featuresshown in Table1.
Columns2-7 show threedifferentpairsof views that we have
attemptedfor co-trainingcoreferenceclassifiers.

Numberof co-training iterations. We monitoredper-
formanceon the test dataat every 10 iterationsof co-
training and ran the algorithm until performancestabi-
lized.

Self-training parameters. Giventhelabeledandunla-
beleddata,self-trainingrequiresonly thespecificationof
the numberof bags. We testedall odd numberof bags
between1 and25.

EM parameters. Giventhelabeledandunlabeleddata,
EM hasonly oneparameter— thenumberof iterations.
We ran EM to convergenceandkept track of its testset
performanceatevery iteration.

4.2 Results and Discussion

Resultsareshown in Table4.1,whereperformanceis re-
portedin termsof recall,precision,andF-measureusing
themodel-theoreticMUC scoringprogram(Vilain et al.,
1995).Thebaselinecoreferencesystem,which is trained
only onthelabeleddocumentusingnaiveBayes,achieves
anF-measureof 55.5and43.8ontheMUC-6 andMUC-
7 datasets,respectively.

Theresultsshown in row 2 of Table4.1correspondto
thebestF-measurescoresachievedby co-trainingacross
all of the parametercombinationsdescribedin the pre-
vioussubsection.Theparametersettingswith which the
bestresultsareobtainedarealsoshown in the table. To



Experiments MUC-6 MUC-7
BestParameterSetting R P F BestParameterSetting R P F

Baseline — 58.3 52.9 55.5 — 52.8 37.4 43.8
Co-Training v=V5/V6,g=50,p=5000,i=220 47.5 81.9 60.1 v=V5/V6,g=100,p=500,i=260 40.6 77.6 53.3
Self-Training b=7 54.1 78.6 64.1 b=9 54.6 62.6 58.3
EM i=20 64.8 51.8 57.6 i=2 54.1 40.7 46.4
FS-EM — 64.2 66.6 65.4 — 53.3 70.3 60.5

Table3: Comparative resultsof co-training,self-training,EM, andFS-EM (to be describedin section5). Recall,
Precision,andF-measureareprovided. For co-training,self-training,andEM, thebestresults(F-measure)achievedby thealgo-
rithms andthecorrespondingparametersettings(with views v, growth sizeg, pool sizep, numberof iterationsi, andnumberof
bagsb) areshown.
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Figure 1: Learning curve for co-training (pool size =
5000,growth size= 50) for theMUC-6 dataset.

get a better picture of the behavior of co-training, we
presentthe learning curve for the co-training run that
givesrise to the bestF-measurefor theMUC-6 dataset
in Figure1. Thehorizontal(dotted)line shows the per-
formanceof the baselinesystem,which achieves an F-
measureof 55.5,asdescribedabove. As co-trainingpro-
gresses,F-measurepeaksat iteration220andthengrad-
ually dropsbelow thatof thebaselineafteriteration570.

Although co-training producessubstantialimprove-
mentsover the baselineat its bestparametersettings,a
closerexaminationof our resultsreveals that they cor-
roboratepreviousfindings: thealgorithmis sensitive not
only to the numberof iterations,but to other input pa-
rameterssuchasthepoolsizeandthegrowth sizeaswell
(NigamandGhani,2000;PierceandCardie,2001).The
lackof aprincipledmethodfor determiningtheseparam-
etersin aweaklysupervisedsettingwherelabeleddatais
scarceremainsa seriousdisadvantagefor co-training.

Self-trainingresultsareshown in row 3 of Table4.1:
self-trainingperformssubstantiallybetterthan both the
baselineandco-trainingfor both datasets. In contrast
to co-training,however, self-trainingis relatively insensi-
tive to its inputparameter. Figure2 shows thefairly con-
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Figure 2: Effect of the numberof bagson the perfor-
manceof self-trainingfor theMUC-6 dataset.

sistentperformanceof self-trainingwith seven or more
bagsfor theMUC-6 dataset. We observe similar trends
for theMUC-7 dataset.Theseresultsareconsistentwith
empiricalstudiesof baggingacrossa varietyof classifi-
cationtaskswheresevento 25bagsaredeemedsufficient
(Breiman,1996).

To gain a deeperinsight into the behavior of self-
training,weplot thelearningcurve for self-trainingusing
7 bagsin Figure3,againfor theMUC-6 dataset.At itera-
tion 0 (i.e.beforeany unlabeleddatais incorporated),the
F-measurescoreachieved by self-trainingis higherthan
thatof thebaselinesystem(58.5vs. 55.5).Theobserved
differenceis dueto voting within the self-trainingalgo-
rithm. Voting hasprovedto beaneffective techniquefor
improving theaccuracy of a classifierwhentrainingdata
is scarceby reducingthevarianceof a particulartraining
corpus(Breiman,1996). After the first iteration, there
is a rapid increasein F-measure,which is accompanied
by large gainsin precisionand smallerdropsin recall.
Theseresultsareconsistentwith our intuition regarding
self-training:at eachiterationthealgorithmincorporates
only instanceswhoselabelit is mostconfidentaboutinto
the labeleddata,therebyensuringthatprecisionwill in-
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Figure3: Learningcurve for self-trainingusing7 bags
for theMUC-6 dataset.

crease.4

As wecanseefrom Table4.1,therecalllevel achieved
by co-trainingis much lower than that of self-training.
This is anindicationthateachco-trainingview is insuffi-
cientfor learningtheconcept:thefeaturesplit limits any
interactionof featuresin differentviews thatmight pro-
ducebetterrecall.Overall, theseresultsprovideevidence
that self-trainingis a betteralternative to co-trainingfor
weaklysupervisedlearningfor problemssuchascorefer-
enceresolutionwhereno naturalfeaturesplit exists.

On theotherhand,EM only givesrise to modestper-
formancegainsover the baselinesystem,aswe cansee
from row 4 of Table4.1. The performanceof EM de-
pendsin partonthecorrectnessof theunderlyinggenera-
tivemodel(Nigametal.,2000),whichin ourcaseis naive
Bayes.In this model,an instancewith � featurevalues���� , ����� , ���� andclass� is createdby first choosing
the classwith prior probability ������� and then generat-
ing eachavailable feature �� with probability ���  �"! ���
independently, undertheassumptionthatthefeatureval-
uesareconditionally independentgiven the class. As a
result,modelcorrectnessis adverselyaffectedby redun-
dantfeatures,which clearlyinvalidatetheconditionalin-
dependenceassumption.In fact,naiveBayesis known to
bebadathandlingredundantfeatures(Langley andSage,
1994).

We hypothesizethat the presenceof redundantfea-
turescausesthegenerative modelandhenceEM to per-

4When tackling the task of confusionset disambiguation,
BankoandBrill (2001) observe only modestgains from self-
training by bootstrappingfrom a seedcorpusof one million
words. We speculatethat a labeleddataset of this size can
possiblyenablethemto train a reasonablygoodclassifierwith
which self-trainingcanonly offer marginal benefits,but there-
lationshipbetweenthebehavior of self-trainingandthesizeof
theseed(labeled)corpusremainsto beshown.

form poorly. Althoughself-trainingdependson thesame
model,it only makesuseof thebinarydecisionsreturned
by the model and is thereforemore robust to the naive
Bayesassumptions,as reflectedin its fairly impressive
empiricalperformance.5 In contrast,thefact thatEM re-
lies on the probability estimatesof the model makesit
moresensitive to thecorrectnessof themodel.

5 Meta-Bootstrapping with Feature
Selection

If our hypothesisregarding the presenceof redundant
featureswere correct, then featureselectioncould re-
sult in an improved generative model, which could in
turn improve theperformanceof weaklysupervisedEM.
This sectiondiscussesa wrapper-basedfeatureselection
methodfor EM.

5.1 A Two-Tiered Bootstrapping Algorithm

We now describetheFS-EM algorithmfor boostingthe
performanceof weaklysupervisedalgorithmsvia feature
selection.AlthoughnamedafterEM, thealgorithmasde-
scribedis potentiallyapplicableto all single-view weakly
supervisedalgorithms. FS-EM takesas input a super-
visedlearner, a single-view weaklysupervisedlearner, a
labeleddataset # , andanunlabeleddataset $ . In addi-
tion, it assumesknowledgeof thepositiveclassprior (i.e.
thetruepercentageof positive instancesin thedata)like
co-trainingandrequiresadeviationthresholdthatwewill
explain shortly.

FS-EM,whichhasatwo-level bootstrappingstructure,
is reminiscentof themeta-bootstrappingalgorithmintro-
ducedin Riloff andJones(1999). The outer-level boot-
strappingtaskis featureselection,whereastheinner-level
taskis to learna bootstrappedclassifierfrom labeledand
unlabeleddataasdescribedin section4. At a high level,
FS-EMusesa forwardfeatureselectionalgorithmto im-
poseatotalorderingon thefeaturesbasedontheorderin
which thefeaturesareselected.Specifically, FS-EMper-
forms the threestepsbelow for eachfeature %'& that has
not beenselected. First, it usesthe weakly supervised
learnerto train a classifier ( from the labeledandunla-
beleddata( #�)�$ ) usingonly thefeature%'& aswell asthe
featuresselectedthusfar. Second,thealgorithmuses(
to classifyall of theinstancesin #*)+$ . Finally, FS-EM
trainsanew modelon just $ , which is now labeledby ( .
At theendof thethreesteps,exactly onemodelis trained
for eachfeaturethathasnot beenselected.The forward
selectionalgorithm then selectsthe featurewith which
the correspondingmodelachieves the bestperformance
on # (w.r.t. thetruelabelsof theinstancesin # ) for addi-

5It is possiblefor naive Bayesclassifiersto returnoptimal
classificationsevenif theconditionalindependenceassumption
is violated.SeeDomingosandPazzani(1997) for ananalysis.



tion to ,�-/.�0 (thesetof featuresselectedthusfar).6 The
processis repeateduntil all featureshave beenselected.

Unfortunately, since # canbe small, selectinga fea-
ture for incorporationinto ,�-1.20 by measuringthe per-
formanceof the correspondingmodelon # maynot ac-
curatelyreflect the actualmodelperformance.To han-
dle thisproblem,FS-EMhasapreferencefor addingfea-
tureswhoseinclusionresultsin a classificationin which
the positive classprior (i.e. the probability that an in-
stanceis labeledaspositive),3 & , doesnotdeviatefromthe
true positive classprior, 3 , by morethana pre-specified
thresholdvalue, 4 . A largedeviation from the trueprior
is anindicationthattheresultingclassificationof thedata
doesnot correspondclosely to the actualclassification.
Thisalgorithmicbiasis particularlyusefulfor weaklysu-
pervisedlearners(suchasEM) thatoptimizeanobjective
functionotherthanclassificationaccuracy andcanpoten-
tially producea classificationthat is substantiallydiffer-
ent from the actualone. Specifically, FS-EM attempts
to ensurethat the classificationproducedby the weakly
supervisedlearnerweaklyagreeswith the actualclassi-
fication,wheretheweakdisagreementratebetweentwo
classificationsis definedasthe differencebetweentheir
positiveclasspriors. Notethatweakagreementis a nec-
essarybut not sufficient conditionfor two classifications
to beidentical.7

Nevertheless,if the additionof any of the featuresto, -1.20 doesnotproduceaclassificationthatweaklyagrees
with thetrueone,FS-EMpicks thefeaturewhoseinclu-
sionresultsin a positiveclassprior thathastheleastde-
viation instead.This stepcanbe viewed as introducing
“pseudo-random”noiseinto thefeatureselectionprocess.
Thehopeis thatthedeviation of thehigh-scoring,“high-
deviation” featurescanbe loweredby first incorporating
thosewith “low deviation”, thuscontinuingto strive for
weak agreementwhile potentially achieving betterper-
formanceon # .

The final setof features,,�5 &�-16"7 , is composedof the
first 8 featureschosenby thefeatureselectionalgorithm,
where8 is thelargestnumberof featuresthatcanachieve
the bestperformanceon # subjectto the condition that
thecorrespondingclassificationproducedby theweakly
supervisedalgorithmweaklydisagreeswith the trueone
by at most 4 . The outputof FS-EM is a classifierthat
theweaklysupervisedlearnerlearnsfrom # and $ using
only the featuresin ,�5 &�-16"7 . Thepseudo-codedescribing
FS-EMis shown in Figure4.

6The reasonfor usingonly 9 (insteadof 9 and : ) in the
validationstepis primarily to precludethe possibility of get-
ting a poorestimationof modelperformanceasa resultof the
presenceof potentiallyinaccuratelylabeleddatafrom : .

7In otherwords,;=<>;/� doesnot imply thatthecorrespond-
ing classificationsareidentical.

Input: ? (asupervisedlearningalgorithm)@
(asingle-view weaklysupervisedlearningalgorithm)9 (labeleddata): (unlabeleddata)A

(original featureset); (truepositive classprior)B
(deviation threshold)

Initialize: CEDF<HG A G , AJILKNM DF<PO
for Q = 1, ..., C :

foreachR'� in
A

:
use

@
to learna classifierS from 9 and : usingonlyAJITKNM�U�V R'�XW with ? astheunderlyingsupervisedlearner

use S to classifyall instancesin 9 U :; � := probabilitythataninstancein 9 U : is labeled
aspositive by S

use ? to train a classifierSJY on : using
A ILKNM U�V R � W onlyZ � := classificationaccuracy of S Y on 9?\[^]�_"` Z DF< V Z �aGTG ;\�\bc;dGTe B W

if ?\[f]�_"` Zhg<iOj Y DF< argmax�k?\[^]�_"` Z
elsej YlDF< argmin� V G ;\�dbc;dGTWA Ynm Q1o�Dp<qR �sr? Ynm Q1o Dp< Z �srt Ynm Q1o�Dp<i; � rAJILKNM DF< AJILKNM�U�V R �ur WA Dp< AwvxV R �ur Wy DF< V z G m G t Ynm z o{b|;dG1e B o�W} Y DF< max

V } GT? Y m } o�~�? Y m z o�� zL� }J� y WA�� � IL�f� Dp< V A Y m } olG } e } YdW
use

@
to learna classifierS � � IL�f� from 9 and : usingonlyA�� � IT�f� with ? astheunderlyingsupervisedlearner

return S � � IT�2�

Figure4: TheFS-EMalgorithm.

5.2 Results and Discussion

WeinstantiateFS-EMwith naiveBayesasthesupervised
learnerandEM astheweaklysupervisedlearner, provid-
ing it with thesameamountof labeledandunlabeleddata
asin previous experimentsandsetting 4 to 0.01. EM is
runfor 7 iterationswheneverit is invoked.8 Resultsusing
FS-EM areshown in row 5 of Table4.1. In comparison
to EM, F-measureincreasesfrom 57.6to 65.4for MUC-
6, and from 46.4 to 60.5 for MUC-7, allowing FS-EM
to even surpassthe performanceof self-training. These
resultsareconsistentwith our hypothesisthattheperfor-
manceof EM canbeboostedby improving theunderly-
ing generative modelusingfeatureselection.

Finally, althoughFS-EM is only applicableto two-
classproblems,it canbegeneralizedfairly easilyto han-
dlemulti-classproblems,wherethetruelabeldistribution

8Seven is usedbecausewe follow the choiceof previous
work (Musleaet al., 2002; Nigam and Ghani, 2000). Addi-
tional experimentsin which EM is run for 5 and9 iterations
give similar results.



is assumedto be availableandthe weakagreementrate
canbe measuredbasedon thesimilarity of two distribu-
tions.

6 Conclusions and Future Work

We have investigated single-view algorithms (self-
training and EM) as an alternative to multi-view algo-
rithms (co-training) for weakly supervisedlearning for
problemsthatdonotappearto haveanaturalfeaturesplit.
Experimentalresultson two coreferencedatasetsindi-
catethatself-trainingoutperformsco-trainingundervari-
ousparametersettingsandis comparatively lesssensitive
to parameterchanges.While weakly supervisedEM is
not ableto outperformco-training,we introducea varia-
tion of EM, FS-EM,for boostingtheperformanceof EM
via featureselection. Like self-training,FS-EM easily
outperformsco-training.

Co-trainingalgorithmssuchasCoBoost(Collins and
Singer, 1999)andGreedyAgreement(Abney, 2002)that
explicitly trade classifieragreementon unlabeleddata
againsterror on labeleddatamay be morerobust to the
underlyingassumptionsof co-trainingandcanconceiv-
ablyperformbetterthantheBlum andMitchell algorithm
for problemswithout a naturalfeaturesplit.9 Other less
studiedsingle-view weakly supervisedalgorithmsin the
NLP communitysuchasco-trainingwith differentlearn-
ing algorithms(Goldmanand Zhou, 2000) and graph
mincuts(Blum andChawla, 2001)canbe similarly ap-
plied to theseproblemsto further test our original hy-
pothesis.We plan to explore thesepossibilitiesin future
research.
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