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Abstract—Markov Logic Networks, a joint inference frame-
work that combines logical and probabilistic representations,
enable effective modeling of the dependencies that exist between
different instances of a data sample. While its ability to capture
relational dependencies makes it an ideal framework for predict-
ing the structures inherent in many natural language processing
(NLP) tasks, it is arguably underused in NLP, especially in
comparison to other joint inference frameworks such as integer
linear programming. In this paper, we present the first Markov
logic model for the NLP task of fine-grained opinion extraction
that exploits a factuality lexicon. When evaluated on a standard
evaluation corpus, our approach surpasses a state-of-the-art
approach in performance.

I. INTRODUCTION

Fine-grained opinion extraction is an opinion mining task
that involves (1) identifying text spans corresponding to opin-
ions and their arguments and (2) the relations between them.
Compared to document-level opinion mining (e.g., determin-
ing whether a customer review is positive, negative, or neutral),
fine-grained opinion extraction occurs at the sentence and
phrase levels and is comparatively less investigated.

This fine-grained opinion extraction task is typically decom-
posed into two subtasks. The first subtask, entity extraction,
involves identifying three types of opinionated entities, in-
cluding opinions (expressions that explicitly reveal an internal
state, such as judgment, emotion or an effective state [1]), as
well as those serving as their sources (the entities generating
the opinions) and targets (expressions of which the opinions
are about). The second subtask, relation extraction, involves
extracting Is from relations (i.e., linking a source to its opinion)
and Is about relations (i.e., linking a target to its opinion). To
understand the task, consider the following example:

[The agency]s, consideredo, that [the trade]r,, was

favorable, but [their partners]s, are still not satisfiedo,
Subscripts Op and O; represent opinion spans, Sy and S;
indicate that the spans in brackets correspond to source entities
and Ty ; is a target. Moreover, there exists an Is from relation
between entity Sy and Ogy (i.e., the opinion considered is
generated by source [The agency]), as well as between O
and S (i.e., the opinion still not satisfied is generated by
source [their partners]). Additionally, Ty ; is a target entity
related to Op and O; by an Is about relation (i.e., the two
opinions, considered and still not satisfied, are both about
[the trade]). Note that both opinions share the same target. In

other words, it is possible to have multiple mappings between
opinions and their arguments. The task is further complicated
by the facts that (1) whether a word is an opinion is context-
dependent (i.e. the same word can sometimes be an opinion
and sometimes not); and (2) the same opinion word can be
associated with more than one source/target.

A straightforward way to address this task is to make
the entity extraction component first identify the entities,
and then the relation extraction component determines the
relation between each pair of extracted entities. However, this
so-called pipeline approach suffers from error propagation,
where errors made in the entity extraction component will be
propagated to the relation extraction component, thus harming
the performance of the latter. For example, in the example
sentence above, if the entity extraction component failed to
retrieve the span [the trade], it would not be possible for the
relation extraction component to extract the Is about relations
between this span and opinions Oy and O;.

To address this error propagation problem, Yang and Cardie
[2] (henceforth Y&C) employ Integer Linear Programming
(ILP) [3] to perform joint inference over the outputs of their
entity extraction classifiers and relation extraction classifiers.
Unlike in the pipeline approach, where entity extraction in-
fluences relation extraction (but not vice versa), in a joint
inference approach, both tasks can influence each other. For
instance, if the relation extraction component is highly con-
fident that an Is about relation exists between two candidate
entities, then these two entities will likely be extracted as an
opinion and a target even if the entity extraction component
fails to extract them. In other words, the final entity extraction
decisions and relation extraction decisions will be made jointly
by the two components by considering the confidence values
they individually assign to the extraction decisions.

While Y&C’s ILP approach has achieved the best results
to date on the MPQA 2.0 corpus [1], it was evaluated in a
substantially simplified setting: they removed all the sentences
that do not contain any opinionated entities from both the
training and test sets prior to evaluation. Hence, it is not clear
how well their approach performs in practice, where many
sentences do not contain any opinionated entities.

Our goal in this paper is to address fine-grained opin-
ion extraction in a realistic setting, where we evaluate our
approach without removing any sentence from the MPQA



corpus. Unlike Y&C, we propose to employ Markov Logic
Networks (MLNs) [4] for this task. MLNs are a statistical
relational models that enable us to model the dependencies
between different instances of a data sample. In the context
of fine-grained opinion extraction, MLNs can encode the
dependencies between entity extraction and relation extraction.
Hence, like ILP, MLNs perform joint inference over these two
subtasks.

Compared to ILP, however, MLNs are a lot less used
for modeling NLP tasks. Nevertheless, MLNs have several
key advantages over ILP. Not only can global constraints be
specified in MLN in a more intuitive and compact manner,
MLNs make it easy to specify soft constraints. Recall that
in most existing application of ILP to NLP tasks, including
Y&C’s, ILP is used to enforce hard constraints. For instance,
Y &C enforce the hard constraint that a source or target must
be linked to at least one opinion expression. Now, consider
the case in which the entity extractor correctly identifies a
source but the relation extractor fails to link it to the corre-
sponding opinion. Given the aforementioned hard constraint,
the correctly identified source will be forced to become a
non-opinionated expression. In other words, employing hard
constraints does not always yield improved results: for ILP
with hard constraints to improve performance, the implicit
assumption is that all the underlying classifiers involved in
the joint inference process are reasonably good. Unfortunately,
employing soft constraints in ILP is not trivial.

Our goal in this paper is to employ MLNs for fine-grained
opinion extraction, exploiting the ease of specifying soft
constraints in an MLN. To our knowledge, this is the first
MLN formulation for this task. In addition, we employ a new
knowledge source for the task, the factuality lexicon. As we
will see, this lexicon can potentially provide useful information
for identifying opinion expressions that is complementary to
that provided by sentiment lexicons (e.g., [5]).

Experiments on the MPQA corpus demonstrate that our
MLN handily surpasses the performance of both Y&C’s ILP
approach, as well as a strong baseline that does not involve
joint inference. Our results also suggest that fine-grained
opinion extraction on the original MPQA corpus (without
sentence removal) is substantially harder than the simplified
MPQA that Y&C evaluated on.

II. BACKGROUND

In this section, we describe related work on opinion extrac-
tion, provide details on the dataset used in our experiments
and provide a gentle introduction to ILP and Markov logic.

A. Related Work

There have been many attempts to extract opinion expres-
sions and related entities at the sentence and phrase levels.
Stoyanov and Cardie [6] studied the problem of extracting
entities as a summarization problem and as well as detecting
coreferent entities. Wiebe et al. [1] distinguished between
different types of opinion expressions, based the notion of
internal states and defined targets of such opinion expressions

considering their attitudes. Kim and Hovy [7] employed a
semantic role labeler to detect sources of opinions and used
the concept of topics as targets of opinion expressions. In a
pure data driven effort, Breck et al. [8] implemented different
CRFs using a variety of features with the purpose of improving
opinion extraction performance. Choi et al. [9] employed a
joint approach to combine the entity extraction task with
relation classification, by imposing consistency constraints in
the form of an ILP program. Their work inspired Y&C’s
ILP-based joint method, which is the state of the art in our
fine-grained opinion extraction task. Ruppenhofer et al. [10]
investigated the problem of extracting opinion expressions that
are not necessarily explicit in a sentence and outlined new
research problems in this field. Johansson and Moschitti [11]
cast the opinion and source extraction tasks as a re-ranking
problem. Employing a graphical method, Liu et el. [12] jointly
extracted opinion expressions and targets via graph co-ranking.

B. Corpus

For training and evaluation, we use the MPQA 2.0 corpus
([11, [13]). After discarding those ill-formatted documents
(lack of punctuation, paragraphs, etc.), we obtain 433 docu-
ments with 8, 377 sentences. These documents contain 4, 717
opinions, 4,680 targets and 5,505 sources. The number of
Is about relations is 13,046, and the number of Is from is
9,763. Unlike Y&C, we do not remove sentences containing
no opinionated entities.

C. Integer Linear Programming

At a high level, many NLP tasks are structured prediction
problems which can be naturally expressed as constrained opti-
mization problems, where the goal is to optimize an objective
function subject to a set of linear (equality and inequality)
constraints. In principle, a variety of methods can be used to
solve these problems. Among them, ILP methods are a popular
choice, primarily because of the following two reasons: (1)
several highly optimized open source and commercial software
for solving ILP problems are readily available, and therefore
the application designer can focus on modeling issues rather
than solving optimization problems, and (2) it is relatively
straight-forward, easy and natural to express constraints in
NLP as integer linear constraints. Formally, an ILP problem
is defined as follows:

Maximize: flxr, @, .y xy)

Subject to:  g;(z1,x2,....,xn) > b; (1 =1,2,...,m)

where x; are the variables that take finite integer val-
ues, f(z1,%2,...,x,) is the objective function, and g,
(1,22, ..., Zn), 1 < j < m, are the constraints (each
constraint is linear in x1, 22, ..., £, ). Details of how ILP can
be applied to our fine-grained opinion extraction task will be
discussed in the next section.

D. Markov Logic Networks

ILP methods have a major limitation. They are propositional
in nature, and are unable to model relational structure —



properties and relationships that hold across multiple objects.
This makes the model specification quite cumbersome and
time consuming in practice.

Markov logic ([4], [14]), a popular statistical relational
learning (SRL) approach [15], remedies this problem by
combining graphical models with first-order logic. At a high
level, an MLN is a set of weighted first-order logic formulas
(fi,w;). Given a set of constants that model objects in the
domain, it defines a Markov network or a log-linear model
[16] in which we have one node per ground first-order atom
and a propositional feature corresponding to each grounding
of each first-order formula. The weight of the feature is the
weight of the corresponding first-order formula.

Formally, the probability of a world w which represents
an assignment of values to all ground atoms in the Markov
network is given by:

Pr(w) ——exp<Zwl (fi,w )

where N(f;,w) is the number of groundings of f; which
evaluate to True in w and Z is a normalization constant called
the partition function.

The key inference tasks over MLNs are computing the
partition function (Z) and the most-probable explanation given
evidence (the MAP task). Most queries can be reduced to these
inference tasks. Formally, the partition function and the MAP
tasks are given by:

7 = Zexp(sz (fi,w ) (D

arg max P(w) = arg maxz w; N (fi,w 2)
Markov logic is a popular choice for joint inference in
NLP for pretty much the same reasons that ILP is popular:
(1) wide availability of software packages such as Alchemy
[17], Alchemy 2.0 [18], Markov the beast [19] and Tuffy
[20] for inference and learning; and (2) it is easy (easier
than propositional models such as ILP and graphical models
which require wrapper code to either create the graphical
model or the ILP problem) to compactly specify complex
constraints and factors in NLP tasks using the rich first-order
specification. In spite of their advantages, MLNs have been
relatively underused in NLP tasks compared to ILP.

III. BASELINE SYSTEMS

We employ two baseline systems.

A. Baseline 1

Our first baseline addresses the two subtasks using two
independently-trained models. To train the entity extraction
model, we follow Y&C, recasting the task as a sequence
labeling task. Each training/test instance corresponds to a
word token that is represented using the features employed by
Y&C'’s entity extractor. These features can be broadly divided

into four categories: (1) lexical: the token itself, its part-of-
speech, and its lemma; (2) subjectivity lexicon: whether the
token is found in the subjectivity lexicon distributed together
with the MPQA corpus!; (3) WordNet [21]: the token’s first
hypernym, if any; and (4) semantic: the first FrameNet [22]
frame of the token if it is a verb; null otherwise. Token features
are considered in a [—4,+4] window, and the rest of the
features in a [—1,+1] window. We then train a L2-regularized2
CRF model on the training instances using CRF++ to identify
text spans that correspond to each type of opinionated entities.

For relation extraction, we train using LIBLINEAR [23]
two L2-regularized binary SVM classifiers, one for extract-
ing Is from relations and the other for extracting Is about
relations.* To create training/test instances, we (1) take the
30-best output from our entity extraction model’; (2) remove
all candidate entities that overlap with those belonging to the
1-best output; (3) remove the remaining candidates one by
one until there are no overlaps, giving preference to shorter
candidates; and then (4) pair each candidate opinion with
each candidate source/target. Each instance is represented
using features employed by Y&C’s relation classifiers. These
features can be broadly divided into two categories: (1) lexical:
pair of head words in the pair under consideration, pair of their
part-of-speech tags; and (2) dependency tree paths: tokens and
directions in the path between the heads of the pair of spans
when traversing the dependency tree, considering only the 50
most frequent paths and discarding the rest, the dependency
relations in that path using the same filtering criteria, the
number of nodes traversed to reach the head of the second
span, the number of candidate spans between the pair in
consideration and the length of the spans.

B. Baseline 2

As our second baseline, we employ Y&C’s ILP approach.
As mentioned before, ILP is a constrained optimization frame-
work, where the goal is to optimize an objective function
subject to a set of linear constraints. When applied to the
fine-grained opinion extraction task, Y&C combined all the
classification decisions made by three models (namely the
entity extraction model and the relation extraction classifier
described in Baseline 1, as well as an implicit relation extrac-
tion classifier for identifying opinions with implicit arguments
(i.e., opinions whose arguments are not explicitly stated in the
associated text)) or each sentence (as well as the corresponding
confidence values associated with the classification decisions)

The subjectivity lexicon contains words that are manually identified as
subjective.

2Regularization constant ¢ = 1000

3http://taku910.github.io/crfpp/. All CRF learning parameters are set to their
default values.

4All learning parameters are set to their default values except that we set
c =1 and e = 0.0001.

SCRF output on the training set is obtained via 10-fold cross validation on
the training set. CRF output on the test set is obtained using the CRF trained
on all training texts.



into the objective function.® The goal of ILP, then, is to re-
classify the test instances associated with each sentence so that
the resulting set of classifications collectively/jointly optimizes
the objective function. This is a joint inference process in the
sense that when the objective function is optimized, the test
instances from both subtasks associated with each sentence are
being re-classified simultaneously, rather than independently as
in Baseline 1. It is this joint inference process that allows both
subtasks to influence each other.

To get a better idea of what the objective function looks
like, let us define the constrained optimization problem more
formally. As mentioned above, we create one objective func-
tion for each test sentence. Specifically, for each test sentence,
let O be the set of opinion candidates (obtained from the 30-
best CRF output as described in Baseline 1), Ay be the set
of argument candidates (also obtained from the 30-best CRF
output), where k denotes the relation type (Is about or Is from),
and S be the union of O and Aj.

Next, we introduce a set of binary indicator variables whose
values are to be determined by ILP during the re-classification
(i.e., joint inference) process. Specifically, x;. has the value 1
if and only if ILP believes that span ¢ should have entity label
z; ui; has the value 1 if and only if ILP believes that opinion
candidate ¢ in O has a relation with argument candidate j in
Ay, and v, has the value 1 if and only if ILP believes that
opinion candidate is related to a “null” argument of type k.

Finally, we combine these binary variables (z;., u;;, and
v;) with the confidence values returned by the entity extrac-
tion model and the two relation classifiers into the objective
function, as shown below.

argmax/\z Z fizTiz+(1=X) Z Z Z TijWij + TipVik

T, u,v

i€S z k i€0 \jEAL
3
where the potential 7,9 = p(y = 1) — p(y = 0) is the
difference in the true and false probabilities given by the
implicit relation classifier regarding opinion candidate ¢, and
the potential r;; = p(y = 1) —p(y = 0) is the difference in the
true and false probabilities given by the (non-implicit) relation
classifier over opinion candidate ¢ and argument candidate j.
As we can see, the function is a linear combination of the
confidence values from the three predictors (f;., 745, 7p), and
A is a parameter used to balance the contribution of the entity
extraction component and the relation extraction component.
The objective function will be optimized subject to a set
of constraints. These are constraints that we expect the re-
classifications produced by ILP to satisfy. Following Y&C, we
employ five constraints which can be summarized as follows:

(1) each entity candidate can only be assigned exactly one

%To train the implicit relation classifier, we follow Y&C, creating one
training instance from each opinion candidate extracted from the 30-best
output of the entity extraction model. Each instance is represented by a set of
lexico-syntactic features encoding the opinion candidate and its surrounding
context (see Y&C for details). The class value is 1 if the corresponding opinion
has implicit arguments and 0 otherwise. We then train a L2-regularized binary
LIBLINEAR classifier on these training instances.

of four types: opinion, target, source, or none (if it does not
belong to any of the other three types); (2) among every
pair of overlapping entity candidates, at most one should be
extracted as an entity; (3) if an opinion candidate is predicted
to be implicit, then it should not be involved in a relation
with any argument candidate; if it is not implicit, it can be
related to at most three sources and three targets; (4) if an
argument candidate is involved in a relation, then an opinion
candidate is associated with it; an argument candidate may not
be related to more than three opinion candidates; and (5) if an
opinion candidate is not implicit, then it must be associated
with an argument candidate.” We solve the ILP programs using
Gurobi®. ) is tuned to maximize F-score on development data.

IV. FACTUALITY AS A NEW FEATURE

While opinion-extraction systems, including our baselines,
have extensively employed subjectivity lexicons, we propose
to additionally employ a factuality lexicon, which we believe
can provide complementary information, as described below.

Saur{ [24] studied the phenomena of factuality. From her
factuality lexicon we extracted 49 categories for 479 predicates
(verbs, nouns, or adjectives) that support factual assessment
about its source or target. For example, consider the two
sentences ‘“Mateo suspects that Luca left the country” and
“Mateo knows that Luca the country.” The two verbs, suspects
and knows, belong to the categories conjecture and disclose
respectively.” Intuitively, predicates belonging to the disclose
category are likely to correspond to expressions involving
factual instead of subjective information. On the other hand,
predicates in the conjecture category are likely to correspond
to opinions. Hence, such category information could be useful

or identifying opinion expressions. To exploit such informa-
ion, we train the entity extraction model with an additional
'factuality feature whose value is computed as follows. For
each training/test instance, we look up the corresponding
token’s stem in the factuality lexicon. If found, the value of its
factuality feature is the retrieved lexical category. Otherwise,
the value is NA.

Note that these category labels provide a level of abstraction
that enables the entity extractor to better generalize to unseen
words. At the same time, they are more fine-grained than
subjectivity labels and can therefore provide information not
present in subjectivity labels.

V. MARKOV LOGIC FOR OPINION EXTRACTION

Next, we encode our MLN for fine-grained opinion ex-
traction, OpinMLN, which is shown in Figure 1. OpinMLN
contains five predicates.

Query predicates are those whose assignments are not
given during inference and thus need to be predicted. We
define three query predicates. Chunk (i, 1!) is true when

7When used in ILP, these constraints must be encoded as linear constraints.
Space limitations preclude showing these linear constraints. We refer the
reader to Y&C'’s paper for details.

8http://www.gurobi.com/

A predicate can be associated with multiple categories.



1) 'Is_about (i,1).

2) !Is_from(i,1i).

3) !Best (i,c) v Chunk(i,c).

4) wy Is_from(i,j) = Chunk(j,S)

5) ws Chunk (3j,S) = Is_from(i, Jj)

6) wg Is_about (i, j) = Chunk (J,T)

7) wy Chunk (j,T) = Is_about (i, j)

8) wg Overlap (i, j) = (Chunk(i,N) v
Chunk (3, N))

9) wg Is_from(i, j) = Chunk (i, 0)

10) wip Is_about (i, j) = Chunk (i, 0)

Fig. 1: The OpinMLN structure

the label assigned to text span i is 1. The ! symbol asserts
that the labels assigned to a span are mutually exclusive.
Is_about (i, j) asserts that opinion i is related to source
j. Similarly, Is_from (i, j) asserts that opinion i is related
to target j.

Evidence predicates are those whose values are known
during inference. We define two evidence predicates.
Overlap (i, j) indicates that spans i and j overlap.
Best (i, 1) is true if the label assigned to span i in the
1-best CRF output is 1.

The ten MLN formulas shown in the figure express hard/soft
constraints that would be desirable to enforce for this task. The
first three formulas are hard formulas, meaning that they have
infinite weights. We encode the remaining formulas as soft for-
mulas. Intuitively, these are hard constraints, but as discussed
before, unless the baseline models perform “reasonably” well,
employing hard constraints could actually harm performance.

Formulas (1) and (2) assert that a span cannot be related
to itself. Formula (3) states that the labels assigned by the
1-best CRF should not be changed by the MLN. In other
words, it encodes that we are highly confident about the 1-
best CRF output. Formulas (5) and (7) encode the constraint
that a source/target entity must be related to an opinion.
Similarly, formulas (4) and (6) encode the constraint that a
related pair must consist of a source or a target, respectively.
Formula (8) encodes the knowledge that given two overlapping
spans, at least one is likely to be of type None (i.e., it is
not an opinionated entity). Formulas (9) and (10) encode
the constraint that the first entity in a related pair is an
opinion. Note that formulas (4) and (5) can be combined
into a bidirectional formula, and so are formulas (6) and (7).
We encode them as separate formulas in order to allow the
flexibility in assigning different weights to them.

Now that we have formulas that encode output constraints,
we can incorporate the baseline models’ output into the MLN.
We model the entity extractor and the relation extractor’s
outputs as soft evidence in the MLN, which can be thought
of as our prior belief that a given atom (i.e., a grounded
query predicate) is true. Specifically, we include as priors
the atoms Chunk (s, 1 # N) with weight w, when p(s =
1) > ~, where p(s = 1) is the probability that the CRF
thinks span s has entity type [. We include another atom

Is from Is about
Experiment P R Fl1 P R Fl1
Baseline 1 68.3 11.6 19.8| 549 143 227
Baseline 2 338 9.0 142 24.6 16.0 194
B1 + factuality 73.0 13.3 22.5| 599 17.2 26.7
OpinMLN + factuality | 60.0 13.0 21.4| 459 25.0 32.4
OpinMLN 58.8 12.8 21.0| 47.7 203 28.5

TABLE II: Relation extraction results w.r.t. the overlap
metric

Chunk (s, N) with weight w,. In addition, we include atom
Is_from(i,j) with weight w, when p(src(i,j)|lz) > &,
where p(src(i, 7)) is the probability that the relation extractor
thinks opinion ¢ and source j. In a similar fashion, we include
atom Is_about (i, ) with weight w,.

To ensure that the resulting weights are consistent with
our intuition, we enforce the following constraints over the
weight values: (1) the constraints w, <w,, wg+w. >w, and
wg+we >w, collectively ensure that an opinion/argument
candidate receives a non-none entity label only if both
the entity extractor and the (non-implicit) relation extrac-
tor say so; (2) the constraints wg+w, >w.+ws+ws and
wg+w, >we+wg+wr collectively ensure that a span that
overlaps some other span should not receive a non-none
entity label; and (3) the constraints wg <w, and wig <wy,
ensure that in the absence of other evidences, a candidate
should not receive a non-none entity label simply because the
(non-implicit) relation classifier suggests that it is an opinion.
Finally, w, is tuned as follows. We (1) select an arbitrary value
for w,, (2) find the remaining weights based on the previous
constraints, and (3) adjust its value to maximize F-score on
development data. To achieve computational tractability, we
choose a set of positive weights in the interval [0, 1] via greedy
search that satisfies the previous inequalities.'?

A few points deserve mention. First, we include an atom
as a prior only if its probability exceeds a certain threshold
because low-confidence atoms could create noise for the
learning process, thus harming performance. Second, we ob-
tain p(sre(i,j)) and p(tgt(i,j)) from the relation extractor’s
output directly, and compute p(s = ) from the CRF output
using a modified version of the forward-backward algorithm.
Finally, we solve our MLN using Tuffy [20].

VI. EVALUATION

For evaluation, we use the MPQA 2.0 corpus described in
Section 2. Unlike Y&C, we did not correct or modify the data
other than removing ill-formatted documents. This results in
433 documents, which we partition into a training set (397
documents) for model training and a test set (36 documents)
for evaluation. We employ the evaluation metrics introduced
by Choi et al. [9] and used by Y&C: precision, recall, and

Fl-score for both overlap and exact matching mechanisms!!.

10The resulting parameter and threshold values are: v = 0.3, { = 0.2,
we=0.1, wp=0.2, w,=0.3, wg=0.4, w5=0.15, wg=0.4, w7y=0.15, wg=0.5,
wo=0.3, w10=0.35.

1 An overlap match occurs when a predicted entity span’s indices overlap
with those of a gold entity.



Overlap Exact
Opinion Target Source Opinion Target Source
Experiment P R Fl p R Fl p R FI P R Fl [P R Fl P R Fl
Baseline 1 68.8 45.7 54.9| 53.6 30.1 38.5| 70.2 51.3 59.3| 542 36.0 43.3| 25.8 14.5 18.6| 60.5 44.1 51.0
Baseline 2 505 722 59.4| 449 36.2 40.1| 67.3 37.4 48.1| 39.2 56.1 46.2| 15.1 12.2 13.5| 57.7 32.0 41.2
B1 + factuality 71.2 47.7 57.1| 56.8 28.0 37.5| 74.0 532 61.9| 57.1 382 458| 26.1 12.8 17.2| 62.9 452 52.6
OpinMLN +factuality | 69.7 51.3 59.1| 48.7 39.4 43.5| 72.5 54.3 62.1| 55.7 41.1 47.3| 19.8 16.0 17.7| 61.3 459 525
OpinMLN 75.6 455 56.8| 55.0 34.7 42.6| 77.1 49.6 60.4| 59.2 35.6 44.5| 253 16.0 19.6 | 67.7 43.6 53.0

TABLE I: Entity extraction results for the overlap and exact metric

Entity extraction results obtained using the overlap and
exact metrics are shown in Table I. Rows 1 and 2 show the
results of Baseline 1 (independently trained models for the two
subtasks) and Baseline 2 (Y&C’s ILP) respectively. Row 3
shows the results obtained by retraining Baseline 1 with the
factuality feature. Row 4 shows the results of OpinMLN with
the factuality feature incorporated and Row 5 shows OpinMLN
without the factuality feature. Overall, these results are lower
than those in Y&C, indicating that retaining sentences without
opinionated entities yields a harder task.'?

W.rt. the overlap metric, ILP outperforms Baseline 1
(row 1) on Opinion and Target extraction and underperforms
it on Source extraction. In other words, it is no longer the
case that the use of ILP always yields improved performance.
Though factuality aims to improve the extraction of Opinions,
its addition to Baseline 1 not only improves Opinion extraction
but also Source extraction. When used in combination with
factuality, OpinMLN produces results that are better than
Baseline 1 on all three types of entities, and considerably
outperforms ILP on both Source and Target extraction. Fi-
nally, we can see that without factuality, the performance of
OpinMLN deteriorates on all three types of entities, suggesting
that factuality plays an important role in OpinMLN. Similar
performance trends can be observed w.r.t. the exact metric.

Relation extraction results are shown in Table II. Following
Y&C, we only report results obtained w.r.t. the overlap metric.
The system configurations underlying the five rows in this
table are the same as those in Table I. As we can see,
Baseline 2 underperforms Baseline 1, suggesting that the use
of ILP hurts relation extraction performance. Adding factuality
to Baseline 1 improves the extraction of both types of rela-
tion (because factuality improves the extraction of candidate
entities). Finally, compared to Baseline 1 with factuality, Opin-
MLN + factuality does better on extracting Is about relations
but marginally worse on extracting Is from relations. Without
factuality, the performance of OpinMLN deteriorates on both
relation types. These results again suggest that factuality
contributes positively to OpinMLN’s performance.

VII. CONCLUSIONS

We proposed the first MLN formulation for the fine-grained
opinion extraction task. When used in combination with
factuality, our OpinMLN significantly outperforms Yang and
Cardie’s state-of-the-art approach on the MPQA corpus. In

12We caution that our train-test partition may not be the same as Y&C’s:
their partition is not available to us.

future work, we plan to improve OpinMLN by incorporating
additional semantic knowledge, such as semantic roles.
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