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Abstract—Markov Logic Networks, a joint inference frame-
work that combines logical and probabilistic representations,
enable effective modeling of the dependencies that exist between
different instances of a data sample. While its ability to capture
relational dependencies makes it an ideal framework for predict-
ing the structures inherent in many natural language processing
(NLP) tasks, it is arguably underused in NLP, especially in
comparison to other joint inference frameworks such as integer
linear programming. In this paper, we present the first Markov
logic model for the NLP task of fine-grained opinion extraction
that exploits a factuality lexicon. When evaluated on a standard
evaluation corpus, our approach surpasses a state-of-the-art
approach in performance.

I. INTRODUCTION

Fine-grained opinion extraction is an opinion mining task

that involves (1) identifying text spans corresponding to opin-

ions and their arguments and (2) the relations between them.

Compared to document-level opinion mining (e.g., determin-

ing whether a customer review is positive, negative, or neutral),

fine-grained opinion extraction occurs at the sentence and

phrase levels and is comparatively less investigated.

This fine-grained opinion extraction task is typically decom-

posed into two subtasks. The first subtask, entity extraction,

involves identifying three types of opinionated entities, in-

cluding opinions (expressions that explicitly reveal an internal

state, such as judgment, emotion or an effective state [1]), as

well as those serving as their sources (the entities generating

the opinions) and targets (expressions of which the opinions

are about). The second subtask, relation extraction, involves

extracting Is from relations (i.e., linking a source to its opinion)

and Is about relations (i.e., linking a target to its opinion). To

understand the task, consider the following example:

[The agency]S0
consideredO0

that [the trade]T0,1
was

favorable, but [their partners]S1
are still not satisfiedO1

Subscripts O0 and O1 represent opinion spans, S0 and S1

indicate that the spans in brackets correspond to source entities

and T0,1 is a target. Moreover, there exists an Is from relation

between entity S0 and O0 (i.e., the opinion considered is

generated by source [The agency]), as well as between O1

and S1 (i.e., the opinion still not satisfied is generated by

source [their partners]). Additionally, T0,1 is a target entity

related to O0 and O1 by an Is about relation (i.e., the two

opinions, considered and still not satisfied, are both about

[the trade]). Note that both opinions share the same target. In

other words, it is possible to have multiple mappings between

opinions and their arguments. The task is further complicated

by the facts that (1) whether a word is an opinion is context-

dependent (i.e. the same word can sometimes be an opinion

and sometimes not); and (2) the same opinion word can be

associated with more than one source/target.

A straightforward way to address this task is to make

the entity extraction component first identify the entities,

and then the relation extraction component determines the

relation between each pair of extracted entities. However, this

so-called pipeline approach suffers from error propagation,

where errors made in the entity extraction component will be

propagated to the relation extraction component, thus harming

the performance of the latter. For example, in the example

sentence above, if the entity extraction component failed to

retrieve the span [the trade], it would not be possible for the

relation extraction component to extract the Is about relations

between this span and opinions O0 and O1.

To address this error propagation problem, Yang and Cardie

[2] (henceforth Y&C) employ Integer Linear Programming

(ILP) [3] to perform joint inference over the outputs of their

entity extraction classifiers and relation extraction classifiers.

Unlike in the pipeline approach, where entity extraction in-

fluences relation extraction (but not vice versa), in a joint

inference approach, both tasks can influence each other. For

instance, if the relation extraction component is highly con-

fident that an Is about relation exists between two candidate

entities, then these two entities will likely be extracted as an

opinion and a target even if the entity extraction component

fails to extract them. In other words, the final entity extraction

decisions and relation extraction decisions will be made jointly

by the two components by considering the confidence values

they individually assign to the extraction decisions.

While Y&C’s ILP approach has achieved the best results

to date on the MPQA 2.0 corpus [1], it was evaluated in a

substantially simplified setting: they removed all the sentences

that do not contain any opinionated entities from both the

training and test sets prior to evaluation. Hence, it is not clear

how well their approach performs in practice, where many

sentences do not contain any opinionated entities.

Our goal in this paper is to address fine-grained opin-

ion extraction in a realistic setting, where we evaluate our

approach without removing any sentence from the MPQA



corpus. Unlike Y&C, we propose to employ Markov Logic

Networks (MLNs) [4] for this task. MLNs are a statistical

relational models that enable us to model the dependencies

between different instances of a data sample. In the context

of fine-grained opinion extraction, MLNs can encode the

dependencies between entity extraction and relation extraction.

Hence, like ILP, MLNs perform joint inference over these two

subtasks.

Compared to ILP, however, MLNs are a lot less used

for modeling NLP tasks. Nevertheless, MLNs have several

key advantages over ILP. Not only can global constraints be

specified in MLN in a more intuitive and compact manner,

MLNs make it easy to specify soft constraints. Recall that

in most existing application of ILP to NLP tasks, including

Y&C’s, ILP is used to enforce hard constraints. For instance,

Y&C enforce the hard constraint that a source or target must

be linked to at least one opinion expression. Now, consider

the case in which the entity extractor correctly identifies a

source but the relation extractor fails to link it to the corre-

sponding opinion. Given the aforementioned hard constraint,

the correctly identified source will be forced to become a

non-opinionated expression. In other words, employing hard

constraints does not always yield improved results: for ILP

with hard constraints to improve performance, the implicit

assumption is that all the underlying classifiers involved in

the joint inference process are reasonably good. Unfortunately,

employing soft constraints in ILP is not trivial.

Our goal in this paper is to employ MLNs for fine-grained

opinion extraction, exploiting the ease of specifying soft

constraints in an MLN. To our knowledge, this is the first

MLN formulation for this task. In addition, we employ a new

knowledge source for the task, the factuality lexicon. As we

will see, this lexicon can potentially provide useful information

for identifying opinion expressions that is complementary to

that provided by sentiment lexicons (e.g., [5]).

Experiments on the MPQA corpus demonstrate that our

MLN handily surpasses the performance of both Y&C’s ILP

approach, as well as a strong baseline that does not involve

joint inference. Our results also suggest that fine-grained

opinion extraction on the original MPQA corpus (without

sentence removal) is substantially harder than the simplified

MPQA that Y&C evaluated on.

II. BACKGROUND

In this section, we describe related work on opinion extrac-

tion, provide details on the dataset used in our experiments

and provide a gentle introduction to ILP and Markov logic.

A. Related Work

There have been many attempts to extract opinion expres-

sions and related entities at the sentence and phrase levels.

Stoyanov and Cardie [6] studied the problem of extracting

entities as a summarization problem and as well as detecting

coreferent entities. Wiebe et al. [1] distinguished between

different types of opinion expressions, based the notion of

internal states and defined targets of such opinion expressions

considering their attitudes. Kim and Hovy [7] employed a

semantic role labeler to detect sources of opinions and used

the concept of topics as targets of opinion expressions. In a

pure data driven effort, Breck et al. [8] implemented different

CRFs using a variety of features with the purpose of improving

opinion extraction performance. Choi et al. [9] employed a

joint approach to combine the entity extraction task with

relation classification, by imposing consistency constraints in

the form of an ILP program. Their work inspired Y&C’s

ILP-based joint method, which is the state of the art in our

fine-grained opinion extraction task. Ruppenhofer et al. [10]

investigated the problem of extracting opinion expressions that

are not necessarily explicit in a sentence and outlined new

research problems in this field. Johansson and Moschitti [11]

cast the opinion and source extraction tasks as a re-ranking

problem. Employing a graphical method, Liu et el. [12] jointly

extracted opinion expressions and targets via graph co-ranking.

B. Corpus

For training and evaluation, we use the MPQA 2.0 corpus

([1], [13]). After discarding those ill-formatted documents

(lack of punctuation, paragraphs, etc.), we obtain 433 docu-

ments with 8, 377 sentences. These documents contain 4, 717
opinions, 4, 680 targets and 5, 505 sources. The number of

Is about relations is 13, 046, and the number of Is from is

9, 763. Unlike Y&C, we do not remove sentences containing

no opinionated entities.

C. Integer Linear Programming

At a high level, many NLP tasks are structured prediction

problems which can be naturally expressed as constrained opti-

mization problems, where the goal is to optimize an objective

function subject to a set of linear (equality and inequality)

constraints. In principle, a variety of methods can be used to

solve these problems. Among them, ILP methods are a popular

choice, primarily because of the following two reasons: (1)

several highly optimized open source and commercial software

for solving ILP problems are readily available, and therefore

the application designer can focus on modeling issues rather

than solving optimization problems, and (2) it is relatively

straight-forward, easy and natural to express constraints in

NLP as integer linear constraints. Formally, an ILP problem

is defined as follows:

Maximize: f(x1, x2, ..., xn)

Subject to: gj(x1, x2, ..., xn) ≥ bj (j = 1, 2, ...,m)

where xi are the variables that take finite integer val-

ues, f(x1, x2, ..., xn) is the objective function, and gj
(x1, x2, ..., xn), 1 ≤ j ≤ m, are the constraints (each

constraint is linear in x1, x2, ..., xn). Details of how ILP can

be applied to our fine-grained opinion extraction task will be

discussed in the next section.

D. Markov Logic Networks

ILP methods have a major limitation. They are propositional

in nature, and are unable to model relational structure –



properties and relationships that hold across multiple objects.

This makes the model specification quite cumbersome and

time consuming in practice.

Markov logic ([4], [14]), a popular statistical relational

learning (SRL) approach [15], remedies this problem by

combining graphical models with first-order logic. At a high

level, an MLN is a set of weighted first-order logic formulas

(fi, wi). Given a set of constants that model objects in the

domain, it defines a Markov network or a log-linear model

[16] in which we have one node per ground first-order atom

and a propositional feature corresponding to each grounding

of each first-order formula. The weight of the feature is the

weight of the corresponding first-order formula.

Formally, the probability of a world ω which represents

an assignment of values to all ground atoms in the Markov

network is given by:

Pr(ω) =
1

Z
exp

(

∑

i

wiN(fi, ω)

)

where N(fi, ω) is the number of groundings of fi which

evaluate to True in ω and Z is a normalization constant called

the partition function.

The key inference tasks over MLNs are computing the

partition function (Z) and the most-probable explanation given

evidence (the MAP task). Most queries can be reduced to these

inference tasks. Formally, the partition function and the MAP

tasks are given by:

Z =
∑

ω

exp

(

∑

i

wiN(fi, ω)

)

(1)

argmax
ω

P (ω) = argmax
ω

∑

i

wiN(fi, ω) (2)

Markov logic is a popular choice for joint inference in

NLP for pretty much the same reasons that ILP is popular:

(1) wide availability of software packages such as Alchemy

[17], Alchemy 2.0 [18], Markov the beast [19] and Tuffy

[20] for inference and learning; and (2) it is easy (easier

than propositional models such as ILP and graphical models

which require wrapper code to either create the graphical

model or the ILP problem) to compactly specify complex

constraints and factors in NLP tasks using the rich first-order

specification. In spite of their advantages, MLNs have been

relatively underused in NLP tasks compared to ILP.

III. BASELINE SYSTEMS

We employ two baseline systems.

A. Baseline 1

Our first baseline addresses the two subtasks using two

independently-trained models. To train the entity extraction

model, we follow Y&C, recasting the task as a sequence

labeling task. Each training/test instance corresponds to a

word token that is represented using the features employed by

Y&C’s entity extractor. These features can be broadly divided

into four categories: (1) lexical: the token itself, its part-of-

speech, and its lemma; (2) subjectivity lexicon: whether the

token is found in the subjectivity lexicon distributed together

with the MPQA corpus1; (3) WordNet [21]: the token’s first

hypernym, if any; and (4) semantic: the first FrameNet [22]

frame of the token if it is a verb; null otherwise. Token features

are considered in a [−4,+4] window, and the rest of the

features in a [−1,+1] window. We then train a L2-regularized2

CRF model on the training instances using CRF++3 to identify

text spans that correspond to each type of opinionated entities.

For relation extraction, we train using LIBLINEAR [23]

two L2-regularized binary SVM classifiers, one for extract-

ing Is from relations and the other for extracting Is about

relations.4 To create training/test instances, we (1) take the

30-best output from our entity extraction model5; (2) remove

all candidate entities that overlap with those belonging to the

1-best output; (3) remove the remaining candidates one by

one until there are no overlaps, giving preference to shorter

candidates; and then (4) pair each candidate opinion with

each candidate source/target. Each instance is represented

using features employed by Y&C’s relation classifiers. These

features can be broadly divided into two categories: (1) lexical:

pair of head words in the pair under consideration, pair of their

part-of-speech tags; and (2) dependency tree paths: tokens and

directions in the path between the heads of the pair of spans

when traversing the dependency tree, considering only the 50

most frequent paths and discarding the rest, the dependency

relations in that path using the same filtering criteria, the

number of nodes traversed to reach the head of the second

span, the number of candidate spans between the pair in

consideration and the length of the spans.

B. Baseline 2

As our second baseline, we employ Y&C’s ILP approach.

As mentioned before, ILP is a constrained optimization frame-

work, where the goal is to optimize an objective function

subject to a set of linear constraints. When applied to the

fine-grained opinion extraction task, Y&C combined all the

classification decisions made by three models (namely the

entity extraction model and the relation extraction classifier

described in Baseline 1, as well as an implicit relation extrac-

tion classifier for identifying opinions with implicit arguments

(i.e., opinions whose arguments are not explicitly stated in the

associated text)) or each sentence (as well as the corresponding

confidence values associated with the classification decisions)

1The subjectivity lexicon contains words that are manually identified as
subjective.

2Regularization constant c = 1000

3http://taku910.github.io/crfpp/. All CRF learning parameters are set to their
default values.

4All learning parameters are set to their default values except that we set
c = 1 and ǫ = 0.0001.

5CRF output on the training set is obtained via 10-fold cross validation on
the training set. CRF output on the test set is obtained using the CRF trained
on all training texts.



into the objective function.6 The goal of ILP, then, is to re-

classify the test instances associated with each sentence so that

the resulting set of classifications collectively/jointly optimizes

the objective function. This is a joint inference process in the

sense that when the objective function is optimized, the test

instances from both subtasks associated with each sentence are

being re-classified simultaneously, rather than independently as

in Baseline 1. It is this joint inference process that allows both

subtasks to influence each other.

To get a better idea of what the objective function looks

like, let us define the constrained optimization problem more

formally. As mentioned above, we create one objective func-

tion for each test sentence. Specifically, for each test sentence,

let O be the set of opinion candidates (obtained from the 30-

best CRF output as described in Baseline 1), Ak be the set

of argument candidates (also obtained from the 30-best CRF

output), where k denotes the relation type (Is about or Is from),

and S be the union of O and Ak.

Next, we introduce a set of binary indicator variables whose

values are to be determined by ILP during the re-classification

(i.e., joint inference) process. Specifically, xiz has the value 1

if and only if ILP believes that span i should have entity label

z; uij has the value 1 if and only if ILP believes that opinion

candidate i in O has a relation with argument candidate j in

Ak, and vik has the value 1 if and only if ILP believes that

opinion candidate is related to a “null” argument of type k.

Finally, we combine these binary variables (xiz , uij , and

vik) with the confidence values returned by the entity extrac-

tion model and the two relation classifiers into the objective

function, as shown below.

argmax
x,u,v

λ
∑

i∈S

∑

z

fizxiz+(1−λ)
∑

k

∑

i∈O





∑

j∈Ak

rijuij + ri∅vik





(3)

where the potential ri∅ = p(y = 1) − p(y = 0) is the

difference in the true and false probabilities given by the

implicit relation classifier regarding opinion candidate i, and

the potential rij = p(y = 1)−p(y = 0) is the difference in the

true and false probabilities given by the (non-implicit) relation

classifier over opinion candidate i and argument candidate j.

As we can see, the function is a linear combination of the

confidence values from the three predictors (fiz , rij , ri∅), and

λ is a parameter used to balance the contribution of the entity

extraction component and the relation extraction component.

The objective function will be optimized subject to a set

of constraints. These are constraints that we expect the re-

classifications produced by ILP to satisfy. Following Y&C, we

employ five constraints which can be summarized as follows:

(1) each entity candidate can only be assigned exactly one

6To train the implicit relation classifier, we follow Y&C, creating one
training instance from each opinion candidate extracted from the 30-best
output of the entity extraction model. Each instance is represented by a set of
lexico-syntactic features encoding the opinion candidate and its surrounding
context (see Y&C for details). The class value is 1 if the corresponding opinion
has implicit arguments and 0 otherwise. We then train a L2-regularized binary
LIBLINEAR classifier on these training instances.

of four types: opinion, target, source, or none (if it does not

belong to any of the other three types); (2) among every

pair of overlapping entity candidates, at most one should be

extracted as an entity; (3) if an opinion candidate is predicted

to be implicit, then it should not be involved in a relation

with any argument candidate; if it is not implicit, it can be

related to at most three sources and three targets; (4) if an

argument candidate is involved in a relation, then an opinion

candidate is associated with it; an argument candidate may not

be related to more than three opinion candidates; and (5) if an

opinion candidate is not implicit, then it must be associated

with an argument candidate.7 We solve the ILP programs using

Gurobi8. λ is tuned to maximize F-score on development data.

IV. FACTUALITY AS A NEW FEATURE

While opinion-extraction systems, including our baselines,

have extensively employed subjectivity lexicons, we propose

to additionally employ a factuality lexicon, which we believe

can provide complementary information, as described below.

Saurı́ [24] studied the phenomena of factuality. From her

factuality lexicon we extracted 49 categories for 479 predicates

(verbs, nouns, or adjectives) that support factual assessment

about its source or target. For example, consider the two

sentences “Mateo suspects that Luca left the country” and

“Mateo knows that Luca the country.” The two verbs, suspects

and knows, belong to the categories conjecture and disclose

respectively.9 Intuitively, predicates belonging to the disclose

category are likely to correspond to expressions involving

factual instead of subjective information. On the other hand,

predicates in the conjecture category are likely to correspond

to opinions. Hence, such category information could be useful

for identifying opinion expressions. To exploit such informa-

tion, we train the entity extraction model with an additional

factuality feature whose value is computed as follows. For

each training/test instance, we look up the corresponding

token’s stem in the factuality lexicon. If found, the value of its

factuality feature is the retrieved lexical category. Otherwise,

the value is NA.

Note that these category labels provide a level of abstraction

that enables the entity extractor to better generalize to unseen

words. At the same time, they are more fine-grained than

subjectivity labels and can therefore provide information not

present in subjectivity labels.

V. MARKOV LOGIC FOR OPINION EXTRACTION

Next, we encode our MLN for fine-grained opinion ex-

traction, OpinMLN, which is shown in Figure 1. OpinMLN

contains five predicates.

Query predicates are those whose assignments are not

given during inference and thus need to be predicted. We

define three query predicates. Chunk(i,l!) is true when

7When used in ILP, these constraints must be encoded as linear constraints.
Space limitations preclude showing these linear constraints. We refer the
reader to Y&C’s paper for details.

8http://www.gurobi.com/
9A predicate can be associated with multiple categories.



1) !Is_about(i,i).

2) !Is_from(i,i).

3) !Best(i,c) v Chunk(i,c).

4) w4 Is_from(i,j) ⇒ Chunk(j,S)

5) w5 Chunk(j,S) ⇒ Is_from(i,j)

6) w6 Is_about(i,j) ⇒ Chunk(j,T)

7) w7 Chunk(j,T) ⇒ Is_about(i,j)

8) w8 Overlap(i,j) ⇒ (Chunk(i,N) v

Chunk(j,N))

9) w9 Is_from(i,j) ⇒ Chunk(i,O)

10) w10 Is_about(i,j) ⇒ Chunk(i,O)

Fig. 1: The OpinMLN structure

the label assigned to text span i is l. The ! symbol asserts

that the labels assigned to a span are mutually exclusive.

Is_about(i,j) asserts that opinion i is related to source

j. Similarly, Is_from(i,j) asserts that opinion i is related

to target j.

Evidence predicates are those whose values are known

during inference. We define two evidence predicates.

Overlap(i,j) indicates that spans i and j overlap.

Best(i,l) is true if the label assigned to span i in the

1-best CRF output is l.

The ten MLN formulas shown in the figure express hard/soft

constraints that would be desirable to enforce for this task. The

first three formulas are hard formulas, meaning that they have

infinite weights. We encode the remaining formulas as soft for-

mulas. Intuitively, these are hard constraints, but as discussed

before, unless the baseline models perform “reasonably” well,

employing hard constraints could actually harm performance.

Formulas (1) and (2) assert that a span cannot be related

to itself. Formula (3) states that the labels assigned by the

1-best CRF should not be changed by the MLN. In other

words, it encodes that we are highly confident about the 1-

best CRF output. Formulas (5) and (7) encode the constraint

that a source/target entity must be related to an opinion.

Similarly, formulas (4) and (6) encode the constraint that a

related pair must consist of a source or a target, respectively.

Formula (8) encodes the knowledge that given two overlapping

spans, at least one is likely to be of type None (i.e., it is

not an opinionated entity). Formulas (9) and (10) encode

the constraint that the first entity in a related pair is an

opinion. Note that formulas (4) and (5) can be combined

into a bidirectional formula, and so are formulas (6) and (7).

We encode them as separate formulas in order to allow the

flexibility in assigning different weights to them.

Now that we have formulas that encode output constraints,

we can incorporate the baseline models’ output into the MLN.

We model the entity extractor and the relation extractor’s

outputs as soft evidence in the MLN, which can be thought

of as our prior belief that a given atom (i.e., a grounded

query predicate) is true. Specifically, we include as priors

the atoms Chunk(s,l 6= N) with weight we when p(s =
l) ≥ γ, where p(s = l) is the probability that the CRF

thinks span s has entity type l. We include another atom

Is from Is about

Experiment P R F1 P R F1

Baseline 1 68.3 11.6 19.8 54.9 14.3 22.7
Baseline 2 33.8 9.0 14.2 24.6 16.0 19.4
B1 + factuality 73.0 13.3 22.5 59.9 17.2 26.7
OpinMLN + factuality 60.0 13.0 21.4 45.9 25.0 32.4
OpinMLN 58.8 12.8 21.0 47.7 20.3 28.5

TABLE II: Relation extraction results w.r.t. the overlap

metric

Chunk(s,N) with weight wn. In addition, we include atom

Is_from(i,j) with weight wr when p(src(i, j)|x) ≥ ξ,

where p(src(i, j)) is the probability that the relation extractor

thinks opinion i and source j. In a similar fashion, we include

atom Is_about(i,j) with weight wr.

To ensure that the resulting weights are consistent with

our intuition, we enforce the following constraints over the

weight values: (1) the constraints we ≤wn, w4+we ≥wn and

w6+we ≥wn collectively ensure that an opinion/argument

candidate receives a non-none entity label only if both

the entity extractor and the (non-implicit) relation extrac-

tor say so; (2) the constraints w8+wn ≥we+w4+w5 and

w8+wn ≥we+w6+w7 collectively ensure that a span that

overlaps some other span should not receive a non-none

entity label; and (3) the constraints w9 ≤wn and w10 ≤wn

ensure that in the absence of other evidences, a candidate

should not receive a non-none entity label simply because the

(non-implicit) relation classifier suggests that it is an opinion.

Finally, wr is tuned as follows. We (1) select an arbitrary value

for wr, (2) find the remaining weights based on the previous

constraints, and (3) adjust its value to maximize F-score on

development data. To achieve computational tractability, we

choose a set of positive weights in the interval [0, 1] via greedy

search that satisfies the previous inequalities.10

A few points deserve mention. First, we include an atom

as a prior only if its probability exceeds a certain threshold

because low-confidence atoms could create noise for the

learning process, thus harming performance. Second, we ob-

tain p(src(i, j)) and p(tgt(i, j)) from the relation extractor’s

output directly, and compute p(s = l) from the CRF output

using a modified version of the forward-backward algorithm.

Finally, we solve our MLN using Tuffy [20].

VI. EVALUATION

For evaluation, we use the MPQA 2.0 corpus described in

Section 2. Unlike Y&C, we did not correct or modify the data

other than removing ill-formatted documents. This results in

433 documents, which we partition into a training set (397

documents) for model training and a test set (36 documents)

for evaluation. We employ the evaluation metrics introduced

by Choi et al. [9] and used by Y&C: precision, recall, and

F1-score for both overlap and exact matching mechanisms11.

10The resulting parameter and threshold values are: γ = 0.3, ξ = 0.2,
we=0.1, wn=0.2, wr=0.3, w4=0.4, w5=0.15, w6=0.4, w7=0.15, w8=0.5,
w9=0.3, w10=0.35.

11An overlap match occurs when a predicted entity span’s indices overlap
with those of a gold entity.



Overlap Exact

Opinion Target Source Opinion Target Source

Experiment P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Baseline 1 68.8 45.7 54.9 53.6 30.1 38.5 70.2 51.3 59.3 54.2 36.0 43.3 25.8 14.5 18.6 60.5 44.1 51.0
Baseline 2 50.5 72.2 59.4 44.9 36.2 40.1 67.3 37.4 48.1 39.2 56.1 46.2 15.1 12.2 13.5 57.7 32.0 41.2
B1 + factuality 71.2 47.7 57.1 56.8 28.0 37.5 74.0 53.2 61.9 57.1 38.2 45.8 26.1 12.8 17.2 62.9 45.2 52.6
OpinMLN +factuality 69.7 51.3 59.1 48.7 39.4 43.5 72.5 54.3 62.1 55.7 41.1 47.3 19.8 16.0 17.7 61.3 45.9 52.5
OpinMLN 75.6 45.5 56.8 55.0 34.7 42.6 77.1 49.6 60.4 59.2 35.6 44.5 25.3 16.0 19.6 67.7 43.6 53.0

TABLE I: Entity extraction results for the overlap and exact metric

Entity extraction results obtained using the overlap and

exact metrics are shown in Table I. Rows 1 and 2 show the

results of Baseline 1 (independently trained models for the two

subtasks) and Baseline 2 (Y&C’s ILP) respectively. Row 3

shows the results obtained by retraining Baseline 1 with the

factuality feature. Row 4 shows the results of OpinMLN with

the factuality feature incorporated and Row 5 shows OpinMLN

without the factuality feature. Overall, these results are lower

than those in Y&C, indicating that retaining sentences without

opinionated entities yields a harder task.12

W.r.t. the overlap metric, ILP outperforms Baseline 1

(row 1) on Opinion and Target extraction and underperforms

it on Source extraction. In other words, it is no longer the

case that the use of ILP always yields improved performance.

Though factuality aims to improve the extraction of Opinions,

its addition to Baseline 1 not only improves Opinion extraction

but also Source extraction. When used in combination with

factuality, OpinMLN produces results that are better than

Baseline 1 on all three types of entities, and considerably

outperforms ILP on both Source and Target extraction. Fi-

nally, we can see that without factuality, the performance of

OpinMLN deteriorates on all three types of entities, suggesting

that factuality plays an important role in OpinMLN. Similar

performance trends can be observed w.r.t. the exact metric.

Relation extraction results are shown in Table II. Following

Y&C, we only report results obtained w.r.t. the overlap metric.

The system configurations underlying the five rows in this

table are the same as those in Table I. As we can see,

Baseline 2 underperforms Baseline 1, suggesting that the use

of ILP hurts relation extraction performance. Adding factuality

to Baseline 1 improves the extraction of both types of rela-

tion (because factuality improves the extraction of candidate

entities). Finally, compared to Baseline 1 with factuality, Opin-

MLN + factuality does better on extracting Is about relations

but marginally worse on extracting Is from relations. Without

factuality, the performance of OpinMLN deteriorates on both

relation types. These results again suggest that factuality

contributes positively to OpinMLN’s performance.

VII. CONCLUSIONS

We proposed the first MLN formulation for the fine-grained

opinion extraction task. When used in combination with

factuality, our OpinMLN significantly outperforms Yang and

Cardie’s state-of-the-art approach on the MPQA corpus. In

12We caution that our train-test partition may not be the same as Y&C’s:
their partition is not available to us.

future work, we plan to improve OpinMLN by incorporating

additional semantic knowledge, such as semantic roles.
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