
Unsupervised Word Segmentation for Bangla

Sajib Dasgupta and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083, USA

{sajib,vince}@hlt.utdallas.edu

Abstract

Unsupervised word segmentation is the
task of segmenting words into prefixes,
suffixes and roots without prior knowl-
edge of language-specific morphotactics
and morpho-phonological rules. This pa-
per introduces a simple, yet highly effec-
tive algorithm for unsupervised word
segmentation for Bangla, an Indo-Aryan
language that is highly inflectional in na-
ture. When evaluated on a set of 2511
human-segmented Bangla words, our al-
gorithm achieves an F-score of 84%, sub-
stantially outperforming Linguistica, one
of the most widely-used unsupervised
morphological analyzers, by about 23%.

1 Introduction

Morphological segmentation is the task of seg-
menting a word into morphemes (i.e. prefixes,
suffixes and roots), the smallest meaning-bearing
elements of natural languages. Though very suc-
cessful, knowledge-based approaches to word
segmentation operate by relying on manually-
designed heuristics, which require a lot of lin-
guistic expertise and are also time-consuming to
construct. As a result, research in morphological
analysis has exhibited a shift from knowledge-
based approaches to unsupervised approaches.
Unsupervised word segmentation is typically
composed of two steps: (1) a morpheme induc-
tion step in which morphemes are automatically
induced from a vocabulary consisting of words
taken from a large, unannotated corpus, and (2) a
segmentation step in which a given word is
segmented based on these automatically induced
morphemes. Unsupervised word segmentation
has achieved considerable success (e.g., Gold-

smith (2001), Schone and Jurafsky (2001),
Freitag (2005)). For instance, Schone and Juraf-
sky report F-scores of 88%, 92%, and 86% on
English, German, and Dutch word segmentation,
respectively. The recent Pascal Challenge, Unsu-
pervised Segmentation of Words into Mor-
phemes1, has further intensified interest in this
task, selecting as target languages English as
well as two agglutinative languages 2 that have
presented a lot of challenges to word segmenta-
tion researchers: Finnish and Turkish. Not sur-
prisingly, the participants of the Challenge have
achieved a higher accuracy on English than on
the two agglutinative languages.
 Our goal in this paper is to address the prob-
lem of unsupervised word segmentation for
Bangla, an Indo-Aryan language spoken by more
than 200 million people in Bangladesh and the
Indian state of West Bengal. The problem of
Bangla word segmentation is not only theoreti-
cally interesting but also of practical signifi-
cance. From a research perspective, Bangla is
highly inflectional, so it can be expected to pose
similar challenges to researchers in word seg-
mentation just like Turkish and Finnish. From a
practical perspective, as Pushpak Bhattacharyya
argued in the COLING/ACL 2006 Asian Lan-
guage Processing panel discussion, the availabil-
ity of an accurate word segmentation algorithm
for morphologically rich languages could sub-
stantially reduce the amount of annotated data
needed to construct practical natural language
processing (NLP) tools such as part-of-speech
(POS) taggers and noun phrase chunkers for
these languages. Since the majority of Indian
languages are morphologically rich and yet re-
source-scarce, Bhattacharyya’s observation sug-

1 See http://www.cis.hut.fi/morphochallenge2005/.
2 Words in agglutinative languages are formed by concate-
nating morphemes.

gests that our progress in Bangla word segmenta-
tion can potentially accelerate the development
of accurate NLP tools for analyzing Indian lan-
guages in the absence of large annotated corpora.
Unfortunately, while unsupervised word segmen-
tation has been extensively investigated for many
European languages, the same is not true for
Bangla and other Indian languages. To our
knowledge, we are the first to tackle the task of
unsupervised word segmentation for Bangla.
 This paper presents an unsupervised word
segmentation algorithm for Bangla that extends
Keshava and Pitler’s (2006) work by (1) remov-
ing spuriously induced morphemes using a
threshold that depends on the length of a mor-
pheme (Section 4), (2) identifying and removing
composite suffixes from the induced list of mor-
phemes (Section 5), and (3) introducing a novel
use of frequency information for detecting inap-
propriate morpheme attachments (Section 6).

We train our unsupervised word segmentation
algorithm on a vocabulary consisting of words
(and their frequency of occurrences) collected
from a large corpus of Bangla news articles.
Unlike morphological analysis for many Euro-
pean languages, we do not perform the conven-
tional pre-processing step of removing proper
nouns from the vocabulary, primarily due to the
lack of a publicly available proper noun identi-
fier for Bangla. Nevertheless, our algorithm
achieves very promising results: when evaluated
on a set of 2511 human-segmented Bangla words,
our algorithm achieves an F-score of 84%, sub-
stantially outperforming Linguistica (Goldsmith,
2001), one of the most widely-used unsupervised
morphological analyzers, by about 23%

2 Related Work

There is considerable literature on the problem of
unsupervised and minimally supervised word
segmentation for English and other European
languages. For instance, Goldsmith (2001) de-
velops an unsupervised morphological analyzer
based on Minimum Description Length, where
the Expectation Maximization algorithm is used
in an iterative process to segment a list of words
taken from a given corpus using some predefined
heuristics until the length of the morphological
grammar converges to a minimum. He applies
his algorithm to English and French but not to
any agglutinative language. Motivated by Gold-
smith, Creutz and Lagus’s (2005) algorithm se-
lects the most probable candidate segmentation
that is computed via a maximum a posteriori

formulation. DéJean (1998) develops a strategy
for identifying the end of a stem by counting
whether the number of characters following the
stem exceeds some given threshold. By extend-
ing Dejean’s idea to include transitional prob-
abilities, Keshava and Pitler’s (2006) system
achieves the best result on the English dataset in
the aforementioned Pascal Challenge on Unsu-
pervised Word Segmentation.

Although all the systems described above are
reasonably successful in identifying morphemes,
they fail to identify inappropriate morpheme at-
tachments, thus incorrectly segmenting a word
like “ally” as “all+y”. Schone and Jurafsky
(2001) address this problem by introducing a
method that uses the semantic relatedness be-
tween word pairs to judge whether an attachment
is valid. When evaluated on an English dataset
derived from the CELEX lexical database, their
system achieves an F-score of 88.1%, which is
the best result reported to date on this dataset. In
contrast, we propose a different but novel idea of
using relative frequency distribution to solve the
attachment problem for Bangla. Whereas Schone
and Jurafsky’s method depends on complex co-
occurrence statistics collected from the corpus to
calculate the semantic relatedness, our system,
which just uses corpus frequency, is just as effec-
tive but arguably much simpler.

Finally, although there has been a considerable
amount of work on knowledge-based morpho-
logical analysis for Bangla (e.g. Chaudhuri et al.
(1997), Bhattacharya et al. (2005), Dasgupta and
Khan (2005), Dash et al. (2006)), none of these
knowledge-based analyzers have been empiri-
cally evaluated. As a result, we cannot compare
the performance of our unsupervised word seg-
mentation algorithm with them.

3 Morpheme Induction

As mentioned before, the first step of unsuper-
vised word segmentation aims to induce prefixes,
suffixes and roots from a vocabulary consisting
of words taken from a large, unannotated corpus.
We rely on a fairly simple idea for morpheme
induction. Assume that A and B are two charac-
ter sequences and AB is the concatenation of A
and B. If AB and A are both found in the vo-
cabulary, then we extract B as a candidate suffix.
Similarly, if AB and B are both found in the vo-
cabulary, then we extract A as a candidate prefix.
 Note, however, that this method will fail when
applied to irregular words (for example,

(sAngbAdIk)3 (sngbAd)
(Ik)), where roots exhibit orthographic changes
when they are attached to by morphemes (e.g.

 turns into). Fortunately, irregular
words only form a small percentage of the vo-
cabulary; hence we hypothesize that given a
large vocabulary, we can still induce a good list
of morphemes. The rest of this section describes
in more detail our morpheme induction process,
which is composed of three steps.

3.1 Representing the Lexicon Using Tries

Following previous work (Goldsmith, 2001;
Schone and Jurafsky, 2001), we represent the
lexicon using the Trie data structure to enable
efficient access of the vocabulary. Specifically,
we (1) insert all the words in the vocabulary into
a Forward Trie, and (2) reverse the characters
of each word in the vocabulary and insert each
reversed string into a Backward Trie. Figure 1
shows the Forward Trie created by inserting the
following words: “���” (jAT), “���” (jmI),
“���” (jAm), “����” (jATI), “������”
(jATiTE), “����” (jATE), “�����” (jATEr),�
“������” (jATEri),� “�����” (jATIIy),�
“�������” (jATIIyTA)� �“������” (jATVEd),
“�������” (jATVEdE). Here, the leftmost node
is the root of the Trie; each edge corresponds to a
character, and each black node indicates the end
of a word.

3.2 Extracting a List of Candidate Affixes

Next, we extract a list of candidate affixes from
the Forward Trie and the Backward Trie. Recall
from the above that (1) if AB and A are found in
the vocabulary, then B is a candidate suffix; and
(2) if AB and B are found in the vocabulary, then
A is a candidate prefix. Based on this idea, we
can extract candidate suffixes from the Forward
Trie and candidate prefixes from the Backward
Trie, as described below.

To extract candidate suffixes, we search in the
Forward Trie using Depth First Search (DFS)
and extract any character sequence that comes in
between black nodes as candidate suffixes. If
there are multiple black nodes after the first
black node, we include all the character sequence
combination after the first black node as candi-
date suffixes. To exemplify, consider the black

3 Throughout this paper we have used Romanized translit-
eration for Bangla which is almost phonetic. For example,
‘� ’ is ‘a’, ‘� ’ is ‘@’, ‘� ’ is ‘A’, ‘� ’ is ‘k’. We have used
‘~’ for Halant in Bangla.

nodes at [a], [b], [c] and [d] in the Trie shown in
Figure 1. At [b], the algorithm extracts “ ” (E) at
[c] it extracts both “ ”(r) and “ ”(Er), and at [d]
it extracts “ ”(i) “ ”(ri) and “ ” (Eri) as
candidate suffixes. We employ the same proce-
dure for extracting candidate prefixes from a
Backward Trie.

Figure 1. An Example Forward Trie

Note from the above that our procedure gener-

ates composite suffixes such as ‘Eri’. However,
it is undesirable to extract composite suffixes,
because they can introduce unwanted parses (see
Section 5 for details). One potential solution to
this problem is to extract as candidate suffixes
only those character sequences that come in be-
tween two adjacent black nodes (e.g. ‘E’, ‘r’ and
‘i’), thus excluding “Er”, “ri”, and “Eri”. How-
ever, we do want to keep suffixes (e.g. “Er”) that
simply subsume other suffixes (e.g. “Er” sub-
sumes ‘E’ and ‘r’) but are not composite suffixes
themselves. We will discuss in Section 5 how we
detect the composite suffixes from our induced
list of morphemes.

3.3 Ranking the Candidate Affixes

The above morpheme induction method can gen-
erate many spurious morphemes. To see the rea-
son, consider the following pair of words taken
from our vocabulary [“ ” (JAlEm),� “ ”
(JAl)]. From this word pair, our algorithm would
induce the candidate suffix “ ” (Em), which,
however, is an erroneous suffix. To address this
problem, we examine in the rest of this subsec-
tion two scoring metrics to score each mor-
pheme, with the goal of assigning low scores to
spurious morphemes and subsequently removing
them from our list of induced morphemes.

(1) Counting the number of distinct words to
which each induced morpheme attaches. In
this metric, we set the score of a morpheme to be

the number of distinct words to which it attaches
in the vocabulary. To understand the rationale
behind this metric, consider the two morphemes:
“ ” (Er) and “ ” (Em). “Er” attaches to 9817
distinct words in our corpus, whereas “Em” at-
taches to only 23. This is a good indication that
“Er” is a good morpheme and “Em” is not.

(2) Incorporating the generative strength. By
counting the number of distinct words to which a
morpheme attaches, the first scoring metric es-
sentially places the same weight on each word
when scoring a morpheme. However, we hy-
pothesize that some words are “better” than the
others for morpheme induction, and hence a
good word should be given a high weight. Spe-
cifically, we assign to each word a weight based
on its generative strength (i.e. how many dis-
tinct induced morphemes attach to the word). In
other words, if a word X attaches to 199 distinct
morphemes, its strength will be 199. Given this
notion of word strength, in this metric we set the
score of a morpheme to be the sum of the
strengths of the words to which it attaches.
 To see why it makes sense to assign weights
based on word strength, consider the following
words in English: scholarship, scholars, champi-
onship, champions. From these words, our algo-
rithm will infer that “hip” is a suffix. However, if
we examine the words to which “hip” attaches,
we can see that none of them (e.g. scholars and
champions) has generative strength (i.e. they do
not attach to any other suffixes). Hence, ‘hip’
should be given a low score, which is what we
desire. As another example, consider the Bangla
words: “ ” (klEj), “ ” (klE), “ ”
(lAgEj), “ ” (lAgE), “ ” (ajIj),
“ ”(ajI), “ ”(hAuj), “ ”(hAu). From
these words, our algorithm would induce ‘j’ as a
candidate suffix. However, since “klE”, “lAgE”,
“ajI”, and “hAu” lack generative strength, the
candidate suffix ‘j’ should be given a low score,
which is again what we desire.
 Neither of the above metrics takes into ac-
count an important factor when scoring an in-
duced affix: the length of the affix. As Goldsmith
(2001) points out, among the induced affixes, the
short ones (especially the single character af-
fixes) are more likely to be spurious than the
long ones. This is due to the fact that among dif-
ferent words it is easier to get one character dif-
ference at the word boundary than two or three
character difference. To address this problem,
Goldsmith suggests that a higher weight should

be placed on longer affixes. Hence, we modify
each of the scoring metrics above by multiplying
the score of an affix with the length of the affix.
In other words, for the first scoring metric, the
score of an affix m is now computed as:

score(m)=length(m) × (Number of different
words m attaches to)

and for the second scoring metric, the score of an
affix m is computed as
score(m)=length(m) × �

w

wstrength)(

where w is a word to which m attaches, and
strength(w) is the strength of w.
 Now, the question is: which of these two met-
rics should be used to score a morpheme? To
address this question, we employ them separately
to score the induced affixes. The two lists shown
on the left half of the table are obtained by scor-
ing each morpheme using metric 1, whereas the
two list shown in the right half of the table are
induced using the metric 2. Hence, by comparing
the two lists, we can examine whether generative
strength is indeed useful for scoring a morpheme.

As we can see from the table, after incorporat-
ing generative strength, the list does not change
much for suffixes, but all the top-scoring prefixes
are spurious. To investigate the reason, we exam-
ined the highest ranked prefix “ ”
(prIkl~pnA) and discovered that many of the
words that are attached to “prIkl~pnA” are actu-
ally suffixes like “ ” (gUlO), “ ” (kArII),
“ ” (mTO), “ ” (bID), “ ” (hIIN). The
problem here is that many suffixes in Bangla are
found in the corpus as a complete meaning bear-
ing entity, and so they work as a stem in a pre-
fixed word. As suffixes (working like roots) gen-
erally have a high generative strength, the overall
score increases manifold and so higher length
prefixes (most of them are roots themselves) ap-
pear high in the rank list. In view of this prob-
lem, we employ metric 1 to score each affix, and
retain an induced affix in our list if and only if its
score is greater than some pre-defined threshold.
Specifically, we employ a threshold of 60 and 40
for prefixes and suffixes, respectively.

3.4 Extracting a List of Candidate Roots

After filtering the spurious affixes as described
in the previous subsection, we can extract an ini-
tial list of candidate roots using the induced list
of affixes as follows. For each word, w, in the
vocabulary, we check whether w can be seg-
mented as “r+s” or “p+r”, where p is an induced

prefix, s is an induced suffix, and r is a word in
the vocabulary. If so, then w is not a root and so

we do not add it to the root list; otherwise we add

Top-scoring affixes according to metric 1 Top-scoring affixes according to metric 2

Prefix List Suffix List Prefix List Suffix List
Prefix Score Suffix Score Prefix Score Suffix Score
bI (� �) 1054 Er �� � � 19634 prIkl~pnA � ��� � ���
	 ���� � 23048 Er �� � � 121936
a �� � 770 kE �

� � � 13456 kOm~pAnI�
������	 ��� � � 20517 kE �

� � � 113584
p~rTI � � 	 ��� � � 664 r �� � 12747 p~rTIF~xAn � � 	 ��� � ��	 � � � 20240 Sh ���� � 73184
mhA �

� �� � 651 o (�) 8213 nIr~bAcn �� � � 	 �� ��� � 20139 gUlO (� � � �) 65200
p~r � � 	 � � 640 I �

�
� 7872 S~tEXIyAm�� 	 ! � " � # � � 20016 o (�) 56885

SU ��$� � 636 Sh �� � � 6502 p~rTIjOgITA

� � 	 ��� � %&� � � �' � 19700 I �
�
� 52290

@ �(� 626 E �� � 6218 p~rk~rIyA � � 	 � ��	 � � # � 19635 gUlOr

� � � �)� � � 52165

bIs~b �� � *+	 � � 580 dEr �,&� � � 5874 SEW~cUrI��)�
- 	 � �$� � � 19481 E �� � 49459
bA ��� � 544 TE ��'� . 4296 anUF~xAn ���� � ��	 / � � 18711 r �� � 48305
sIk~FA �

*&� ��	 � � 500 gUlO � � � �)� � 3440 Sid~DAn~T �� � , 	$0 � 	 � � 18613 tA �
! � 44430

gN � ��1 � 496 rA ��� � 3262 pAr~tnArsIp

� �� � 	 ! �� � *�� � � 18080 tI �
!��
� 44208

prI�� ��� � � 486 tA �
! � 2592 SmS~jA �� � � 	 % � 17700 dEr �,��$� � 43626

 Table 1. Top N induced morphemes ranked according to the proposed scoring metrics

w to the root list. However, since Bangla words
can contain multiple roots, it is possible that after
stripping off the induced affixes from a word, we
will end up with a string that is a concatenation
of several roots. Hence, we make another pass
over our initial list of roots to remove those
strings that contain multiple roots.
 So far we have described our basic morpheme
induction algorithm. In Sections 4-6, we will
propose three extensions to this basic algorithm.

4 Length-Dependent Threshold

As mentioned above, we retain an induced mor-
pheme in our list if and only if its score is greater
than some threshold. However, instead of having
the same threshold for all induced morphemes,
we employ a varying threshold that depends on
the length of a morpheme. In particular, we apply
larger thresholds for shorter morphemes. The
rationale is simple: since shorter morphemes are
more likely to be erroneous than their longer
counterparts, it makes more sense to employ lar-
ger thresholds to shorter morphemes. We set our
length-dependent threshold as follows:

Threshold of affix A = m * Uniform Threshold
Where Uniform Threshold is set to 40 for suf-
fixes and 60 for prefixes, and
 m = (4-length of A) if length < 4

 = 1 if length >= 4

We will empirically investigate in Section 7
whether employing this varying threshold would
yield better segmentation performance than em-
ploying a uniform threshold.

5 Composite Suffix Detection

A composite suffix is a suffix formed by combin-
ing multiple suffixes. For instance,
“ ”(TAkE)

is a composite suffix that comprises “ ” (TA)
and “ ” (kE). As mentioned above, we have to
detect and remove composite affixes from the
induced morpheme list because their presence
can produce incorrect segmentation of words.
For example, if “TAkE” is present in the suffix
list then “ ” (vd~rTAkE) will be errone-
ously segmented as “vd~r+TAkE” (note: the cor-
rect segmentation is “vd~r+TA+kE”).

Now the question is: how to detect a compos-
ite suffix? Simple concatenation of multiple suf-
fixes does not always produce a composite suf-
fix. For example, “Er”, “E” and “r” all are valid
suffixes but “Er” is not a composite suffix.
Hence, we need a more sophisticated method for
detecting composite suffixes. Specifically, our
method posits a suffix as a composite suffix if
both of the following criteria are satisfied.

Affix strength. This criterion is based on the
observation that, given a composite suffix a
formed by combining two suffixes a1 and a2, the
strength of a (i.e. the number of different words
to which a attaches) should be smaller than the
strength of a1 and the strength of a2. To see the
reason, consider the composite suffix “ments”
(“ment” + “s”) in English. The number of words
to which “ment” or “s” attaches is far greater

than the number of words to which “ments” at-
taches. As another example, consider the Bangla
suffix “ ” (Er). As shown in Table 2, “Er” at-
taches to 9817 distinct words, whereas its com-
ponent suffix “E” only attaches to 6218 words in
the corpus. Hence, employing affix strength en-
ables us to correctly determine that “Er” is not a
composite suffix.

Word-level similarity. This criterion is based on
the observation that, if a word is attached to a
composite suffix (AB), then it is highly likely
that it will also be attached to first component
suffix A. In other words, AB and A should be
similar in terms of words to which they are at-
tached. For example, if an English word (say
“sing”) is attached to “ers”, it should also be at-
tached to “er”. This property does not hold for
non-composite suffixes, however. For instance,
words that are attached to “ent” (say “absorb”)
are not attached to “en”. Given this observation,
we can detect composite suffixes by first com-
puting the similarity in between a suffix (AB)
and its first component suffix (A) as follows:

||
|'|)|(

W

W
ABAP =

 where |W�| is the number of words that
attach to both suffix AB and suffix A,

 and |W| is the number of words that
attach to suffix AB.

 If the above probability is greater than some
threshold (normally set as 0.6) and the first crite-
rion (i.e. affix strength) is satisfied, then we posit
AB as a composite suffix. One advantage of the
above probabilistic metric is that it helps select
the best one among multiple segmentation op-
tions. For example, “Eri” is a composite suffix
that can be segmented two ways: “E+ri” and
“Er+i”. The similarity between “Eri” and “Er” is
0.979, which is greater than the similarity be-
tween “Eri” and “E” (0.739). So, “Er+i” is se-
lected as a correct segmentation of composite
suffix “Eri”.

Most importantly, composite suffix detection
has enabled correct parsing of many Bangla
verbs, which arguably have a very complex mor-
phological structure. For example, the actual
segmentation of the verb “ ” (hAt-
CIlAm) is “hAt+CI+l+Am”, where “hAt” is the
root, “CI” is the tense (Continuous) marker, “l”
is the time (Past) marker, and “Am” is the person
(first person) marker. Encouragingly, our algo-
rithm produces exactly the same output. The

segmentation of “hAtCIlAm” is shown below
step by step:
hAtCIlAm = hAt + CIlAm
 = hAt + CI + lAm

[detection of composite suffix CIlAm]
 = hAt + CI + l + Am

[detection of composite suffix lAm]
Nevertheless, the algorithm fails to parse verbs

with perfect tense and future time marker. For
example, the word “ ” hAtbE is incorrectly
parsed as “hAt+bE” although the correct parse
should be “hAt+b+E” (‘b’ is a future marker in
Bangla).

Suffixes determined to be
composite

Suffixes determined to be
non-composite

Suf-
fix

Division Word
level
Simi-
larity

Suffix Division Word
level
Simi-
larity

AkE
(220)

A (1764) +
kE (6728)

0.954 AT
(83)

A (1764) +
T (340)

0.45

AnO
(98)

A (1764) +
nO (160)

0.70 Ar
(854)

A (1764) +
r (12747)

0.57

ErtA
(16)

Er (9817) +
tA (1296)

0.9375 IyE
(116)

I (1246) +
yE (325)

0.53

ITE
(214)

I (1246) +
TE (2148)

0.915 TA
(463)

T (340) +
A (1764)

0.038

TAo
(82)

TA (463) +
o (8213)

0.94 TE
(2148)

T (340) +
E (6218)

0.057

T~bEr
(45)

T~b (62) +
Er (9817)

0.91 Tm
(85)

T (1246) +
m (236)

0.023

dEri
(107)

dEr (1958) +
i (7872)

0.95 Tr (54) T (346) +
r (12747)

0.07

IIsh
(58)

II (684) +
sh (3251)

0.98 Er
(9817)

E (6218) +
r (12747)

0.43

krNE
(27)

krN (84) +
E (6218)

0.77 kE
(6728)

k (332) + E
(6218)

0.015

CEn
(259)

CE (335) +
n (1478)

0.83 nA
(188)

n (1478) + A
(1764)

0.4

ECI
(34)

E (6218) +
CI (144)

0.97 bA (64) b (156) +
A (1764)

0.2

bEn
(94)

bE (147) +
n (1478)

0.82 bE (55) b (156) + E
(6218)

0.47

lAm
(120)

l (616) +
Am (235)

0.85 bI (81) b (156) +
I (1246)

0.45

lEn
(233)

l (616) +
En (597)

0.86 c~CIl
(22)

c~CI (20) +
l (616)

0.45

Table 2. Examples of suffixes checked for com-
positeness. Individual suffix strengths are paren-
thesized.

The reason why the algorithm fails to detect

“bE” as a composite suffix is that there are not
enough words in the vocabulary that are attached
to suffix ‘b’ (first person future indefinite tense
form of a verb), and so the similarity value in
between “bE” and “b” is low. It is worth noticing

that our Bangla corpus is composed of news arti-
cles, which are normally written in “Third Per-
son” form. (Consider the following two sen-
tences extracted from the corpus: (1) “ �

� � � � � ” (“prad-
han mantri aaj jatir urdershe vhashan diben”),
and (2) “ � � � � ”,
(shoyeb aaj durdanta baling kreche) (s) where
“ ” (diben) and “ ” (kreche) are the
third person honorific and non-honorific repre-
sentation of the corresponding root verb). Unless
we have a text collection with different verb
forms (first, second and third person variations),
it would be very difficult to segment Bangla
verbs correctly.

6 Incorrect Attachment Detection

After inducing the prefixes, suffixes and roots,
the next challenge is to identify inappropriate
affix attachment. Consider the English word
“candidate”. The affix induction and parse strat-
egy described thus far incorrectly segment it into
“candid” and “ate” (where “candid” is a stem
found in the corpus and “ate” is a valid suffix).
 Consequently, we propose a simple yet novel
idea of using relative corpus frequency to decide
whether morpheme attachment to a particular
root word is plausible or not. Our idea is based
on the following hypothesis: if a word, A, is a
morphological inflection or derivation of a word,
B, then the corpus frequency of A is likely to be
less than that of B. In other words, we hypothe-
size that the inflectional or derivational form of a
root word occurs less frequently in the corpus
than the root word itself.

To obtain empirical support for our hypothe-
sis, we show in Table 3 some word-root fre-
quency ratios (WRFRs), each of which is ob-
tained by dividing the frequency of a Bangla
word by the frequency of its root. As we can see,
the corpus frequency (1670) of “ ” (nArII) is
far bigger than that of the constituent stem “nAr”
(3). Hence, our hypothesis correctly predicts that
the suffix “ ” (II) cannot attach to “nAr” to form
“nArII”. Note that, WRFR is less than 1 for all
the words in the left side of the table, whereas
it’s greater than 1 for all the words in the right
side of Table 3.

The question, then, is: to what extent does our
hypothesis hold true? To investigate this ques-
tion, we randomly selected 400 words from our
vocabulary and removed from them the follow-
ing words: (1) words that do not have morpho-

logical segmentation (e.g. “ ” mAnUsh);
(2) proper nouns (e.g. “ ” krIm); (3) words
whose constituent root word is absent in the vo-
cabulary (e.g. “ ” sb= “ s+b” but “ s”
is not found in the vocabulary); and (4) com-
pound words (i.e. words with multiple roots).
The final list contains 287 words. We then hand-
segmented each of these words into Prefix+Root
or Root+Suffix, and found that the WRFR is less
than 1 in 83.56% of the cases (see Table 4). This
provides reasonably strong evidence for our hy-
pothesis that during attachment, the frequency of
a word is less than that of its constituent root
word. Among the remaining 16.44% of the
words that violate our hypothesis, we found that
many of them that should be segmented as
“Root+Suffix” are verbal inflections. In Bangla,
inflected forms of the verb roots occur more of-
ten in the corpus than the roots (e.g. “ ” (kre)
occurs more often than “kr”). This can be attrib-
uted to the grammatical rule that says that the
main verb of a sentence has to be inflected ac-
cording to the subject in order to maintain sen-
tence order.

Correct Attachments Incorrect Attachments

Word

Root WRFR Word Root WRFR

@SrEr
(�����.

@Sr 34/200 =
0.17

nArII
(����.

nAr 1670/3 =
556

@bEgE
�
�����.

@bEg 28/71 =
0.39

JAbTIy
�
������.

JAbT 198/3 =
66

jIIbnKE
�
������.

jIIbn 63/908 =
0.0693

KOlA
�
����.

KOl 587/4 =
146.75

apb~jy
�
������.

b~jy 8/940 =
0.0085

jAmAyAT
�
�������.

jA-
mAy

996/5 =
199.2

upjATI
(������.

jATI 17/509 =
0.033

bAjAr
�
�����.

bAj� 1093/3 =
364.3

p~rTIdIn
� � 	 � ����
�.

dIn 728/6932
= 0.105

jbAb
�
����.

jbA 813/3 =
271

Table 3. Word/root frequency ratios

 Root+Suffix Prefix+Root Overall
Number of
Words

245 41 286

WRFR less
than 1

84.5% 78.05% 83.56%

Table 4. Hypothesis validation

Now, we can make use of the above hypothe-

sis, incorporating relative frequency information
to improve word segmentation as follows: if a
word is segmented as “Prefix+Root” or
“Root+Suffix”, we then check whether the corre-

sponding WRFR is greater than some predefined
threshold (>1). If so, we consider the attachment
erroneous and treat the whole word as a root. The
threshold is set differently for prefixes and suf-
fixes. Specifically, we set the threshold to be 2-4
for prefix attachment and 10-15 for suffix at-
tachment 4 . The threshold for suffixes is set
higher than the prefixes to account for the inflec-
tional words (mainly verbs) which normally
come more than their corresponding root forms.

7 Word Segmentation

In Sections 3-6, we described how we induce a
good list of morphemes. Once we induce the
morphemes, we can apply them to segment a
word in the test set.
 The segmentation process is fairly simple.
Given a word in the test set, we identify all pos-
sible segmentations of the word using only the
induced affixes and roots. Then, we filter those
candidate segmentations that violate any of the
simple linguistic constraints below:

• There has to be at least one root in the
segmentation.

• If a morpheme is a prefix, then the im-
mediately following morpheme should
be either a root or a prefix.

• If a morpheme is a suffix, then the im-
mediately preceding morpheme should
be either a root or a suffix.

If more than one candidate segmentation re-
mains after applying the above constraints, we
take the one that has minimum number of mor-
phemes to be the final segmentation of the word.
For example, if “ ” (bAlkgUlO) has
two candidate segmentations: “bAlk+gUlO” and
“bAl+k+gUl+O”, then our algorithm selects the
first one to be the segmentation of the word.

8 Evaluation

Now, let us evaluate our segmentation algorithm.

8.1 Experimental Setup

Vocabulary creation. The corpus from which
we extract our vocabulary contains one year of
news articles taken from the Bangla newspaper
"Prothom Alo". Specifically, we only use articles
that are sports news or editorials, as well as those
that appear in the first page or the last page of the
newspaper. We then pre-process each of these
articles by tokenizing it and removing punctua-

4 We found that the result does not change much when we
vary the threshold within these ranges.

tions and other unwanted character sequences
(such as “***”). The remaining words are then
used to create our vocabulary, which consists of
142955 distinct words. Unlike morphological
analysis for many European languages, however,
we do not take the conventional step of removing
proper nouns from our vocabulary, because we
do not have a name entity identifier for Bangla.
Test set preparation. To create our test set, we
randomly choose 3000 words from our vocabu-
lary that are at least 3-character long. We impose
this length restriction when selecting our test
cases simply because words of length one or two
do not have any morphological segmentation in
Bangla. We then manually remove the proper
nouns and words with spelling mistakes from the
test set before giving it to two of our linguists for
hand-segmentation. In the absence of a complete
knowledge-based morphological parsing tool and
a hand-tagged morphological database for
Bangla, our linguists had to depend on the
Bangla dictionary5 for annotating our test cases.
 There is one caveat in our manual annotation
procedure, however. Many Bangla words are
morphologically derived from Sanskrit roots.
These words are very difficult, if not impossible,
for any morphological analyzer to segment cor-
rectly, because the orthographic changes that
take place during the segmentation process are
highly non-linear and complex in nature. One
example of such word is “�������” (bIrUd~D),
whose actual segmentation is “�� ��� ��� � ”
(bI+rUd+k~T (T)) – which is tough to obtain. As
a result, we instruct our linguists to simplify the
segmentation of these words so that the ortho-
graphic changes are within tractable edit dis-
tance. Given this restriction, the Bangla word
shown above (i.e. “�������”) will simply be
segmented as “��+�����” (bI+rUd~D). How-
ever, if the meaning of a segmented word differs
from that of the original word, then we simply
treat the original word as a root (i.e. the word
should not be segmented at all). Words that fall
within this category include “������”, “�����”,
and “���������” etc. After all the words have
been manually segmented, we remove those for
which the two linguists produce inconsistent
segmentations. The resulting test set contains
2511 words.

5 The dictionaries we used are “������� �	�

�
���� ����� ” (Bangiya
Sabdakosh) by ����� ����� ������ �� ����� � �!� � �

�
 (Haricharan Ban-

dopaday) and “� �#"#$ � � % � � &('*) � ���� ����� � ��� � �� �*" $ � ��,+ �#� � � ”
(Bangla Academy Bebharic Bangla Avidan).

Evaluation metrics. We use two standard met-
rics --- exact accuracy and F-score --- to evalu-
ate the performance of our morphological ana-
lyzer on the test set. Exact accuracy is the per-
centage of the words whose proposed segmenta-
tion is identical to the correct segmentation. F-
score is simply the harmonic mean of recall and
precision, as computed using the formulas below.

Precision = (H) / (H+I)
Recall = (H) / (H+D)
F-score = (2H) / (2H+I+D)

where H represents the number of morpheme
boundaries correctly identified, and I and D rep-
resent the total number of Insertions and Dele-
tions that needs to be applied to the correct out-
put to make it identical to the proposed output.
For instance, comparing the incorrect segmenta-
tion “un+fri+endly” against the correct segmen-
tation “un+friend+ly” results in 1 Hit, 1 Insertion
and 1 Deletion.

System
Variations

Exact
Accu-
racy

Preci-
sion

Recall F-
score

Baseline
(Linguistica)

37.08

58.25 65.15 61.48

Basic
Induction

46.67

76.66 66.2 71.04

Composite Suffix
Detection

55.99 79.07 80.61 79.83

Length dependent
thresholds

58.38 81.97 79.75 80.85

Incorrect attach-
ment detection

65.83 89.1 80.22 84.43

Table 5. Results

8.2 Results

The baseline system. Following previous work
(Schone and Jurafsky, 2001), we use Gold-
smith’s (2001) Linguistica6 as our baseline sys-
tem for unsupervised morphological learning.
The first row of Table 5 shows the results of our
baseline system on the test set when it is trained
on the Bangla corpus described in Section 8.1
(with all the training parameters set to their de-
fault values). As we can see from Table 5, the
exact accuracy is about 37%, which is poor to
say the least. We presume the poor result is due
to the inability of Linguistica to handle Bangla
compound words and its complex verbal inflec-
tional system. Nevertheless, the baseline
achieves a decent F-measure of 61.48%.

6 Linguistica is publicly available at http://humanities.
uchicago.edu/faculty/goldsmith/Linguistica2000/

Our segmentation algorithm. Results of our
segmentation algorithm are shown in rows 2-5 of
Table 6. Specifically, row 2 shows the results of
our basic segmentation algorithm. Rows 3-5
show the results when composite suffix detection
(see Section 5), length-dependent thresholds (see
Section 4), and incorrect attachment detection
(see Section 6) are added to the basic system one
after the other. It is worth mentioning that (1) our
basic algorithm already outperforms the baseline
system by a wide margin in terms of both exact
accuracy and F-score; and (2) while each of our
additions to the basic algorithm boosts system
performance, composite suffix detection and in-
correct attachment detection contribute to per-
formance improvements particularly signifi-
cantly. As we can see, the best segmentation per-
formance is achieved when all of our three addi-
tions are applied to the basic algorithm. We also
perform 5-fold cross-validation on our test set
and found that the F-scores at each level are sta-
tistically significant at p=0.05.

8.3 Discussion and Error Analysis

 As part of the analysis of our word segmentation
algorithm, we are interested in examining
whether it can correctly segment complicated test
cases. Encouragingly, our system successfully
segments complex verbal inflections like
“���������” (dUlIyECIl) as “dUl+IyE+CI+l”,
as well as multi-root words like
“ ” (bInOdnkEndRgU-
lOo), whose correct segmentation is “bI-
nOd+n+kEndR+gUlO+o”. Even more interest-
ingly, it correctly parses English words, which
are widely used in the Sports section of the
newspaper. For example, words like “����”
(blIng) and “����������”(FAinAlIS~t) are cor-
rectly segmented into “bl+Ing” and
“FAinAl+IS~t”. It is worth mentioning that the
compounding nature of Bangla and the influence
of foreign languages have introduced into our
repository a lot of new words, whose presence
increases the difficulty of the segmentation task.
Nevertheless, our word segmentation system
manages to stem those words correctly.
 We also investigated the words that were in-
correctly segmented by our system. The errors
can be broadly divided into following categories:
(1) Verbal inflections. These constitute a large
portion of the words incorrectly segmented by
our algorithm. There are two reasons for such
errors. First, the root of an incorrectly segmented
verb is missing from the corpus. (Hence, “ ”

(uthA) is incorrectly segmented because its root
“ ” (uth) is not found in the corpus, for in-
stance.) Second, the first and second person
forms of verbs are often missing in the corpus, as
the newspaper articles from which our vocabu-
lary is induced contain mostly third person forms
of verbs.
(2) Irregular words. When root words exhibit
orthographic spelling changes during attachment,
our system fails to identify the roots. For exam-
ple, “ ” is not correctly segmented, be-
cause the root “ ” (@rhII) is changed into
“ ” (ArhII) during attachment.
(3) Incorrect attachments. Although we use
relative frequency to detect incorrect morpheme
attachments, many incorrect prefixations and
suffixations remain undetected (e.g. “ ”
(sIkl) is a root word but it is incorrectly parsed as
“sIk+l”). This suggests that we need a more so-
phisticated system for incorrect morpheme at-
tachment detection.
(4) Unseen roots. Many words remain un-
segmented because their constituent root words
are absent in the corpus. For example, the root
“ ” (nETR)� in “ ” (nETRT~b) is not
found in our corpus.

9 Conclusions and Future Work

We have presented a new unsupervised algo-
rithm for Bangla word segmentation that, when
evaluated on a set of 2511 human-segmented
Bangla words, substantially outperforms Gold-
smith’s Linguistica. Analysis reveals that our
novel use of relative frequency information, to-
gether with our proposed technique for compos-
ite suffix detection, have contributed to the supe-
rior performance of our algorithm.

In future work, we plan to investigate whether
our algorithm can be improved by incorporating
automatic irregular word form detection (cf.
Yarowsky and Wicentowski (2000)) and using
automatically acquired information about the
semantic relatedness between word pairs (cf.
Schone and Jurafsky (2001)). In addition, we
plan to build a POS tagger for Bangla that ex-
ploits the morphological information provided by
our algorithm. This contrasts with existing work
on POS tagging for Indian languages, where POS
taggers are commonly built by using information
provided by knowledge-based word segmenta-
tion algorithms (e.g. Singh et al. (2006)).

Acknowledgements

We would like to thank the three anonymous re-
viewers for their valuable comments. We would
also like to give special thanks to Dr. Mumit
Khan, Mr. Kamrul Haider and Mr. Naushad Uz-
zaman of Centre for Research on Bangla Lan-
guage Processing (CRBLP), BRAC University,
Bangladesh for allowing us to use the “Prothom
Alo” Corpus and other linguistic resources.

References

Samit Bhattacharya, Monojit Choudhury, Sudeshna
Sarkar, and Anupam Basu. 2005. Inflectional Mor-
phology Synthesis for Bangla Noun, Pronoun and
Verb Systems. In Proc. of the National Conference
on Computer Processing of Bangla (NCCPB 05),
pages 34 - 43.

Michael R. Brent. 1999. An efficient, probabilistically
sound algorithm for segmentation and word dis-
covery. In Machine Learning, 34, pages 71-106.

Bidyut Baran Chaudhuri, Niladri Sekhar Dash, and P.
K. Kundu. 1997. Computer Parsing of Bangla
Verbs. In Linguistics Today, Vol.1, No.1, pages
64-86.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
Morpheme Segmentation and Morphology Induc-
tion from Text Corpora Using Morfessor 1.0. Pub-
lications in Computer and Information Science,
Report A81, Helsinki University of Technology.

Niladri Sekhar Dash. 2006. The Morphodynamics of
Bengali Compounds decomposing them for lexical
processing. In Language in India
(www.languageageinindia.com), Vol 6:7.

Sajib Dasgupta and Mumit Khan. 2004. Feature Uni-
fication for Morphological Parsing in Bangla. In
Proceeding .of International Conference on Com-
puter and Information Technology.

H. DéJean. 1998. Morphemes as necessary concepts
for structures: Discovery from untagged corpora. In
Workshop on paradigms and Grounding in Natural
Language Learning, pages 295-299.

Dayne Freitag. 2005. Morphology Induction from
Term Clusters. In Proceedings of the Ninth Con-
ference on Computational Natural Language
Learning (CoNLL-2005), pages 128-135.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics 27(2), pages 153-198.

S. Keshava and E. Pitler. 2006. A simpler, intuitive
approach to morpheme induction. In Proc. of the
PASCAL Challenge Workshop on Unsupervised
Segmentation of Words into Morphemes.

Kimmo Koskenniemi. 1983. Two-level morphology:
a general computational model for word-form rec-
ognition and production. Publication No. 11. Hel-

sinki: University of Helsinki Department of Gen-
eral Linguistics.

Patrick Schone and Daniel Jurafsky. 2001. Knowl-
edge-free induction of inflectional morphologies.
In Proceedings of the Second Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Smriti Singh, Kuhoo Gupta, Manish Shrivastava, and
Pushpak Bhattacharyya. 2006. Morphological
Richness Offsets Resource Demand – Experiences
in Constructing a POS Tagger for Hindi. In Pro-
ceedings of the 44th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proceedings of the 38th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), pages 207-216.

