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Abstract 

Unsupervised word segmentation is the 
task of segmenting words into prefixes, 
suffixes and roots without prior knowl-
edge of language-specific morphotactics 
and morpho-phonological rules. This pa-
per introduces a simple, yet highly effec-
tive algorithm for unsupervised word 
segmentation for Bangla, an Indo-Aryan 
language that is highly inflectional in na-
ture. When evaluated on a set of 2511 
human-segmented Bangla words, our al-
gorithm achieves an F-score of 84%, sub-
stantially outperforming Linguistica, one 
of the most widely-used unsupervised 
morphological analyzers, by about 23%. 

1 Introduction 

Morphological segmentation is the task of seg-
menting a word into morphemes (i.e. prefixes, 
suffixes and roots), the smallest meaning-bearing 
elements of natural languages.  Though very suc-
cessful, knowledge-based approaches to word 
segmentation operate by relying on manually-
designed heuristics, which require a lot of lin-
guistic expertise and are also time-consuming to 
construct. As a result, research in morphological 
analysis has exhibited a shift from knowledge-
based approaches to unsupervised approaches. 
Unsupervised word segmentation is typically 
composed of two steps: (1) a morpheme induc-
tion step in which morphemes are automatically 
induced from a vocabulary consisting of words 
taken from a large, unannotated corpus, and (2) a 
segmentation step in which a given word is 
segmented based on these automatically induced 
morphemes. Unsupervised word segmentation 
has achieved considerable success (e.g., Gold-

smith (2001), Schone and Jurafsky (2001), 
Freitag (2005)). For instance, Schone and Juraf-
sky report F-scores of 88%, 92%, and 86% on 
English, German, and Dutch word segmentation, 
respectively. The recent Pascal Challenge, Unsu-
pervised Segmentation of Words into Mor-
phemes1, has further intensified interest in this 
task, selecting as target languages English as 
well as two agglutinative languages 2  that have 
presented a lot of challenges to word segmenta-
tion researchers: Finnish and Turkish. Not sur-
prisingly, the participants of the Challenge have 
achieved a higher accuracy on English than on 
the two agglutinative languages. 
     Our goal in this paper is to address the prob-
lem of unsupervised word segmentation for 
Bangla, an Indo-Aryan language spoken by more 
than 200 million people in Bangladesh and the 
Indian state of West Bengal. The problem of 
Bangla word segmentation is not only theoreti-
cally interesting but also of practical signifi-
cance. From a research perspective, Bangla is 
highly inflectional, so it can be expected to pose 
similar challenges to researchers in word seg-
mentation just like Turkish and Finnish. From a 
practical perspective, as Pushpak Bhattacharyya 
argued in the COLING/ACL 2006 Asian Lan-
guage Processing panel discussion, the availabil-
ity of an accurate word segmentation algorithm 
for morphologically rich languages could sub-
stantially reduce the amount of annotated data 
needed to construct practical natural language 
processing (NLP) tools such as part-of-speech 
(POS) taggers and noun phrase chunkers for 
these languages. Since the majority of Indian 
languages are morphologically rich and yet re-
source-scarce, Bhattacharyya’s observation sug-

                                                
1 See http://www.cis.hut.fi/morphochallenge2005/. 
2 Words in agglutinative languages are formed by concate-
nating morphemes. 



gests that our progress in Bangla word segmenta-
tion can potentially accelerate the development 
of accurate NLP tools for analyzing Indian lan-
guages in the absence of large annotated corpora. 
Unfortunately, while unsupervised word segmen-
tation has been extensively investigated for many 
European languages, the same is not true for 
Bangla and other Indian languages. To our 
knowledge, we are the first to tackle the task of 
unsupervised word segmentation for Bangla. 
     This paper presents an unsupervised word 
segmentation algorithm for Bangla that extends 
Keshava and Pitler’s (2006) work by (1) remov-
ing spuriously induced morphemes using a 
threshold that depends on the length of a mor-
pheme (Section 4), (2) identifying and removing 
composite suffixes from the induced list of mor-
phemes (Section 5), and (3) introducing a novel 
use of frequency information for detecting inap-
propriate morpheme attachments (Section 6). 

We train our unsupervised word segmentation 
algorithm on a vocabulary consisting of words 
(and their frequency of occurrences) collected 
from a large corpus of Bangla news articles. 
Unlike morphological analysis for many Euro-
pean languages, we do not perform the conven-
tional pre-processing step of removing proper 
nouns from the vocabulary, primarily due to the 
lack of a publicly available proper noun identi-
fier for Bangla. Nevertheless, our algorithm 
achieves very promising results: when evaluated 
on a set of 2511 human-segmented Bangla words, 
our algorithm achieves an F-score of 84%, sub-
stantially outperforming Linguistica (Goldsmith, 
2001), one of the most widely-used unsupervised 
morphological analyzers, by about 23% 

2 Related Work 

There is considerable literature on the problem of 
unsupervised and minimally supervised word 
segmentation for English and other European 
languages. For instance, Goldsmith (2001) de-
velops an unsupervised morphological analyzer 
based on Minimum Description Length, where 
the Expectation Maximization algorithm is used 
in an iterative process to segment a list of words 
taken from a given corpus using some predefined 
heuristics until the length of the morphological 
grammar converges to a minimum. He applies 
his algorithm to English and French but not to 
any agglutinative language. Motivated by Gold-
smith, Creutz and Lagus’s (2005) algorithm se-
lects the most probable candidate segmentation 
that is computed via a maximum a posteriori 

formulation. DéJean (1998) develops a strategy 
for identifying the end of a stem by counting 
whether the number of characters following the 
stem exceeds some given threshold. By extend-
ing Dejean’s idea to include transitional prob-
abilities, Keshava and Pitler’s (2006) system 
achieves the best result on the English dataset in 
the aforementioned Pascal Challenge on Unsu-
pervised Word Segmentation.   

Although all the systems described above are 
reasonably successful in identifying morphemes, 
they fail to identify inappropriate morpheme at-
tachments, thus incorrectly segmenting a word 
like “ally” as “all+y”. Schone and Jurafsky 
(2001) address this problem by introducing a 
method that uses the semantic relatedness be-
tween word pairs to judge whether an attachment 
is valid. When evaluated on an English dataset 
derived from the CELEX lexical database, their 
system achieves an F-score of 88.1%, which is 
the best result reported to date on this dataset. In 
contrast, we propose a different but novel idea of 
using relative frequency distribution to solve the 
attachment problem for Bangla. Whereas Schone 
and Jurafsky’s method depends on complex co-
occurrence statistics collected from the corpus to 
calculate the semantic relatedness, our system, 
which just uses corpus frequency, is just as effec-
tive but arguably much simpler. 

Finally, although there has been a considerable 
amount of work on knowledge-based morpho-
logical analysis for Bangla (e.g. Chaudhuri et al. 
(1997), Bhattacharya et al. (2005), Dasgupta and 
Khan (2005), Dash et al. (2006)),  none of these 
knowledge-based analyzers have been empiri-
cally evaluated. As a result, we cannot compare 
the performance of our unsupervised word seg-
mentation algorithm with them. 

3 Morpheme Induction 

As mentioned before, the first step of unsuper-
vised word segmentation aims to induce prefixes, 
suffixes and roots from a vocabulary consisting 
of words taken from a large, unannotated corpus. 
We rely on a fairly simple idea for morpheme 
induction. Assume that A and B are two charac-
ter sequences and AB is the concatenation of A 
and B. If AB and A are both found in the vo-
cabulary, then we extract B as a candidate suffix. 
Similarly, if AB and B are both found in the vo-
cabulary, then we extract A as a candidate prefix.  
    Note, however, that this method will fail when 
applied to irregular words (for example, 



(sAngbAdIk)3 (sngbAd)
(Ik)), where roots exhibit orthographic changes 
when they are attached to by morphemes (e.g. 

 turns into ). Fortunately, irregular 
words only form a small percentage of the vo-
cabulary; hence we hypothesize that given a 
large vocabulary, we can still induce a good list 
of morphemes. The rest of this section describes 
in more detail our morpheme induction process, 
which is composed of three steps. 

3.1 Representing the Lexicon Using Tries 

Following previous work (Goldsmith, 2001; 
Schone and Jurafsky, 2001), we represent the 
lexicon using the Trie data structure to enable 
efficient access of the vocabulary. Specifically, 
we (1) insert all the words in the vocabulary into 
a Forward Trie, and (2) reverse the characters 
of each word in the vocabulary and insert each 
reversed string into a Backward Trie. Figure 1 
shows the Forward Trie created by inserting the 
following words: “���” (jAT), “���” (jmI), 
“���” (jAm), “����” (jATI), “������” 
(jATiTE), “����” (jATE), “�����” (jATEr),�
“������” (jATEri),� “�����” (jATIIy),�
“�������” (jATIIyTA)� �“������” (jATVEd), 
“�������” (jATVEdE). Here, the leftmost node 
is the root of the Trie; each edge corresponds to a 
character, and each black node indicates the end 
of a word. 

3.2 Extracting a List of Candidate Affixes 

Next, we extract a list of candidate affixes from 
the Forward Trie and the Backward Trie. Recall 
from the above that (1) if AB and A are found in 
the vocabulary, then B is a candidate suffix; and 
(2) if AB and B are found in the vocabulary, then 
A is a candidate prefix. Based on this idea, we 
can extract candidate suffixes from the Forward 
Trie and candidate prefixes from the Backward 
Trie, as described below. 

To extract candidate suffixes, we search in the 
Forward Trie using Depth First Search (DFS) 
and extract any character sequence that comes in 
between black nodes as candidate suffixes. If 
there are multiple black nodes after the first 
black node, we include all the character sequence 
combination after the first black node as candi-
date suffixes. To exemplify, consider the black 

                                                
3 Throughout this paper we have used Romanized translit-
eration for Bangla which is almost phonetic. For example, 
‘� ’ is ‘a’, ‘� ’ is ‘@’, ‘� ’ is ‘A’, ‘� ’ is ‘k’. We have used 
‘~’ for Halant in Bangla. 

nodes at [a], [b], [c] and [d] in the Trie shown in 
Figure 1. At [b], the algorithm extracts “ ” (E)  at 
[c] it extracts both “ ”(r) and “ ”(Er), and at [d] 
it extracts “ ”(i)  “ ”(ri) and “ ” (Eri) as 
candidate suffixes. We employ the same proce-
dure for extracting candidate prefixes from a 
Backward Trie. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. An Example Forward Trie 
 
Note from the above that our procedure gener-

ates composite suffixes such as ‘Eri’. However, 
it is undesirable to extract composite suffixes, 
because they can introduce unwanted parses (see 
Section 5 for details). One potential solution to 
this problem is to extract as candidate suffixes 
only those character sequences that come in be-
tween two adjacent black nodes (e.g. ‘E’, ‘r’ and 
‘i’), thus excluding “Er”, “ri”, and “Eri”. How-
ever, we do want to keep suffixes (e.g. “Er”) that 
simply subsume other suffixes (e.g. “Er” sub-
sumes ‘E’ and ‘r’) but are not composite suffixes 
themselves. We will discuss in Section 5 how we 
detect the composite suffixes from our induced 
list of morphemes. 

3.3 Ranking the Candidate Affixes  

The above morpheme induction method can gen-
erate many spurious morphemes. To see the rea-
son, consider the following pair of words taken 
from our vocabulary [“ ” (JAlEm),� “ ” 
(JAl)]. From this word pair, our algorithm would 
induce the candidate suffix “ ” (Em), which, 
however, is an erroneous suffix. To address this 
problem, we examine in the rest of this subsec-
tion two scoring metrics to score each mor-
pheme, with the goal of assigning low scores to 
spurious morphemes and subsequently removing 
them from our list of induced morphemes. 

 
(1) Counting the number of distinct words to 
which each induced morpheme attaches. In 
this metric, we set the score of a morpheme to be 



the number of distinct words to which it attaches 
in the vocabulary. To understand the rationale 
behind this metric, consider the two morphemes: 
“ ” (Er) and “ ” (Em). “Er” attaches to 9817 
distinct words in our corpus, whereas “Em” at-
taches to only 23. This is a good indication that 
“Er” is a good morpheme and “Em” is not.  

 
(2) Incorporating the generative strength. By 
counting the number of distinct words to which a 
morpheme attaches, the first scoring metric es-
sentially places the same weight on each word 
when scoring a morpheme. However, we hy-
pothesize that some words are “better” than the 
others for morpheme induction, and hence a 
good word should be given a high weight. Spe-
cifically, we assign to each word a weight based 
on its generative strength (i.e. how many dis-
tinct induced morphemes attach to the word). In 
other words, if a word X attaches to 199 distinct 
morphemes, its strength will be 199. Given this 
notion of word strength, in this metric we set the 
score of a morpheme to be the sum of the 
strengths of the words to which it attaches. 
    To see why it makes sense to assign weights 
based on word strength, consider the following 
words in English: scholarship, scholars, champi-
onship, champions. From these words, our algo-
rithm will infer that “hip” is a suffix. However, if 
we examine the words to which “hip” attaches, 
we can see that none of them (e.g. scholars and 
champions) has generative strength (i.e. they do 
not attach to any other suffixes). Hence, ‘hip’ 
should be given a low score, which is what we 
desire. As another example, consider the Bangla 
words: “ ” (klEj), “ ” (klE), “ ” 
(lAgEj), “ ” (lAgE), “ ” (ajIj), 
“ ”(ajI), “ ”(hAuj), “ ”(hAu). From 
these words, our algorithm would induce ‘j’ as a 
candidate suffix. However, since “klE”, “lAgE”, 
“ajI”, and “hAu” lack generative strength, the 
candidate suffix ‘j’ should be given a low score, 
which is again what we desire.  
     Neither of the above metrics takes into ac-
count an important factor when scoring an in-
duced affix: the length of the affix. As Goldsmith 
(2001) points out, among the induced affixes, the 
short ones (especially the single character af-
fixes) are more likely to be spurious than the 
long ones. This is due to the fact that among dif-
ferent words it is easier to get one character dif-
ference at the word boundary than two or three 
character difference. To address this problem, 
Goldsmith suggests that a higher weight should 

be placed on longer affixes. Hence, we modify 
each of the scoring metrics above by multiplying 
the score of an affix with the length of the affix. 
In other words, for the first scoring metric, the 
score of an affix m is now computed as: 

 

score(m)=length(m) ×  (Number of different 
words m attaches to) 

 

and for the second scoring metric, the score of an 
affix m is computed as 
score(m)=length(m) ×  �

w

wstrength )(  

where w is a word to which m attaches, and 
strength(w) is the strength of w.  
     Now, the question is: which of these two met-
rics should be used to score a morpheme? To 
address this question, we employ them separately 
to score the induced affixes. The two lists shown 
on the left half of the table are obtained by scor-
ing each morpheme using metric 1, whereas the 
two list shown in the right half of the table are 
induced using the metric 2. Hence, by comparing 
the two lists, we can examine whether generative 
strength is indeed useful for scoring a morpheme. 

As we can see from the table, after incorporat-
ing generative strength, the list does not change 
much for suffixes, but all the top-scoring prefixes 
are spurious. To investigate the reason, we exam-
ined the highest ranked prefix “ ” 
(prIkl~pnA) and discovered that many of the 
words that are attached to “prIkl~pnA” are actu-
ally suffixes like “ ” (gUlO), “ ” (kArII), 
“ ” (mTO), “ ” (bID), “ ” (hIIN).  The 
problem here is that many suffixes in Bangla are 
found in the corpus as a complete meaning bear-
ing entity, and so they work as a stem in a pre-
fixed word. As suffixes (working like roots) gen-
erally have a high generative strength, the overall 
score increases manifold and so higher length 
prefixes (most of them are roots themselves) ap-
pear high in the rank list. In view of this prob-
lem, we employ metric 1 to score each affix, and 
retain an induced affix in our list if and only if its 
score is greater than some pre-defined threshold. 
Specifically, we employ a threshold of 60 and 40 
for prefixes and suffixes, respectively.  

3.4 Extracting a List of Candidate Roots 

After filtering the spurious affixes as described 
in the previous subsection, we can extract an ini-
tial list of candidate roots using the induced list 
of affixes as follows. For each word, w, in the 
vocabulary, we check whether w can be seg-
mented as “r+s” or “p+r”, where p is an induced 



prefix, s is an induced suffix, and r is a word in 
the vocabulary. If so, then w is not a root and so 

we do not add it to the root list; otherwise we add   
 

Top-scoring affixes according to metric 1 Top-scoring affixes according to metric 2 

Prefix List Suffix List Prefix List Suffix List 
Prefix Score Suffix Score Prefix Score Suffix Score 
bI (� � ) 1054 Er �� � � 19634  prIkl~pnA � ��� � ���
	 ���� � 23048 Er �� � � 121936 
a �� � 770 kE �

� � � 13456 kOm~pAnI�
������	 ��� � � 20517 kE �

� � � 113584 
p~rTI � � 	 ��� � � 664 r �� � 12747 p~rTIF~xAn � � 	 ��� � ��	 � � � 20240 Sh ���� �  73184 
mhA �

� �� � 651 o ( � ) 8213 nIr~bAcn �� � � 	 �� ��� � 20139 gUlO ( � � � � ) 65200 
p~r � � 	 � � 640 I �

�
� 7872 S~tEXIyAm�� 	 ! � " � #  � �  20016 o ( � )  56885 

SU ��$� � 636 Sh �� � � 6502 p~rTIjOgITA 

� � 	 ��� � %&� � � �' � 19700 I �
�
� 52290 

@ �( � 626 E �� � 6218 p~rk~rIyA � � 	 � ��	 � � #  � 19635 gUlOr 

� � � �)� � �  52165 

bIs~b �� � *+	 � �  580 dEr �,&� � � 5874 SEW~cUrI��)�
- 	 � �$� � �  19481 E �� � 49459 
bA ��� � 544 TE ��'� .  4296 anUF~xAn ���� � ��	 /  � � 18711 r �� � 48305 
sIk~FA �

*&� ��	 �  �  500 gUlO � � � �)� � 3440 Sid~DAn~T �� � , 	$0  � 	 � �  18613 tA �
!  � 44430 

gN � ��1 � 496 rA ��� � 3262 pAr~tnArsIp 

� �� � 	 ! �� � *�� � �  18080 tI �
!��
� 44208 

prI�� ��� � � 486 tA �
!  � 2592 SmS~jA �� � � 	 %  � 17700 dEr �,��$� � 43626 

 Table 1. Top N induced morphemes ranked according to the proposed scoring metrics 
 
w to the root list. However, since Bangla words 
can contain multiple roots, it is possible that after 
stripping off the induced affixes from a word, we 
will end up with a string that is a concatenation 
of several roots. Hence, we make another pass 
over our initial list of roots to remove those 
strings that contain multiple roots. 
   So far we have described our basic morpheme 
induction algorithm. In Sections 4-6, we will 
propose three extensions to this basic algorithm. 

4 Length-Dependent Threshold 

As mentioned above, we retain an induced mor-
pheme in our list if and only if its score is greater 
than some threshold. However, instead of having 
the same threshold for all induced morphemes, 
we employ a varying threshold that depends on 
the length of a morpheme. In particular, we apply 
larger thresholds for shorter morphemes. The 
rationale is simple: since shorter morphemes are 
more likely to be erroneous than their longer 
counterparts, it makes more sense to employ lar-
ger thresholds to shorter morphemes. We set our 
length-dependent threshold as follows:  
 

Threshold of affix A = m * Uniform Threshold    
Where Uniform Threshold is set to 40 for suf-
fixes and 60 for prefixes, and 
     m = (4-length of A) if length < 4 

    = 1 if length >= 4  
 

We will empirically investigate in Section 7 
whether employing this varying threshold would 
yield better segmentation performance than em-
ploying a uniform threshold. 

5 Composite Suffix Detection  

A composite suffix is a suffix formed by combin-
ing multiple suffixes. For instance, 
“ ”(TAkE)  
 
is a composite suffix that comprises “ ” (TA) 
and “ ” (kE). As mentioned above, we have to 
detect and remove composite affixes from the 
induced morpheme list because their presence 
can produce incorrect segmentation of words. 
For example, if “TAkE” is present in the suffix 
list then “ ” (vd~rTAkE) will be errone-
ously segmented as “vd~r+TAkE” (note: the cor-
rect segmentation is “vd~r+TA+kE”).  

Now the question is: how to detect a compos-
ite suffix? Simple concatenation of multiple suf-
fixes does not always produce a composite suf-
fix. For example, “Er”, “E” and “r” all are valid 
suffixes but “Er” is not a composite suffix. 
Hence, we need a more sophisticated method for 
detecting composite suffixes. Specifically, our 
method posits a suffix as a composite suffix if 
both of the following criteria are satisfied. 

 
Affix strength. This criterion is based on the 
observation that, given a composite suffix a 
formed by combining two suffixes a1 and a2, the 
strength of a (i.e. the number of different words 
to which a attaches) should be smaller than the 
strength of a1 and the strength of a2.  To see the 
reason, consider the composite suffix “ments” 
(“ment” + “s”) in English. The number of words 
to which “ment” or “s” attaches is far greater 



than the number of words to which “ments” at-
taches. As another example, consider the Bangla 
suffix “ ” (Er). As shown in Table 2, “Er” at-
taches   to 9817 distinct words, whereas its com-
ponent suffix “E” only attaches to 6218 words in 
the corpus. Hence, employing affix strength en-
ables us to correctly determine that “Er” is not a 
composite suffix. 

 
Word-level similarity. This criterion is based on 
the observation that, if a word is attached to a 
composite suffix (AB), then it is highly likely 
that it will also be attached to first component 
suffix A. In other words, AB and A should be 
similar in terms of words to which they are at-
tached. For example, if an English word (say 
“sing”) is attached to “ers”, it should also be at-
tached to “er”. This property does not hold for 
non-composite suffixes, however. For instance, 
words that are attached to “ent” (say “absorb”) 
are not attached to “en”. Given this observation, 
we can detect composite suffixes by first com-
puting the similarity in between a suffix (AB) 
and its first component suffix (A) as follows: 
      

||
|'|)|(

W

W
ABAP =  

       where |W�| is the number of words that    
attach to both suffix AB and suffix A,   

       and |W| is the number of words that  
attach to suffix AB. 

     If the above probability is greater than some 
threshold (normally set as 0.6) and the first crite-
rion (i.e. affix strength) is satisfied, then we posit 
AB as a composite suffix. One advantage of the 
above probabilistic metric is that it helps select 
the best one among multiple segmentation op-
tions. For example, “Eri” is a composite suffix 
that can be segmented two ways: “E+ri” and 
“Er+i”. The similarity between “Eri” and “Er” is 
0.979, which is greater than the similarity be-
tween “Eri” and “E” (0.739). So, “Er+i” is se-
lected as a correct segmentation of composite 
suffix “Eri”. 

Most importantly, composite suffix detection 
has enabled correct parsing of many Bangla 
verbs, which arguably have a very complex mor-
phological structure. For example, the actual 
segmentation of the verb “ ” (hAt-
CIlAm) is “hAt+CI+l+Am”, where “hAt” is the 
root, “CI” is the tense (Continuous) marker, “l” 
is the time (Past) marker, and “Am” is the person 
(first person) marker. Encouragingly, our algo-
rithm produces exactly the same output. The 

segmentation of “hAtCIlAm” is shown below 
step by step: 
hAtCIlAm = hAt + CIlAm 
                  = hAt + CI + lAm  

[detection of composite suffix CIlAm] 
      = hAt + CI + l + Am  

[detection of composite suffix lAm] 
Nevertheless, the algorithm fails to parse verbs 

with perfect tense and future time marker. For 
example, the word “ ” hAtbE  is incorrectly 
parsed as “hAt+bE” although the correct parse 
should be “hAt+b+E” (‘b’ is a future marker in 
Bangla).   

 
Suffixes determined to be 
composite  

 

Suffixes determined to be 
non-composite  

Suf-
fix 

Division Word 
level 
Simi-
larity 

Suffix Division Word 
level 
Simi-
larity 

AkE 
(220) 

A (1764) + 
kE (6728) 

0.954 AT 
(83) 

A (1764)  + 
T (340) 

0.45 

AnO 
(98) 

A (1764) + 
nO (160) 

0.70 Ar 
(854) 

A (1764)   + 
r (12747) 

0.57 

ErtA 
(16) 

Er (9817) + 
tA (1296) 

0.9375 IyE 
(116) 

I (1246) + 
yE (325) 

0.53 

ITE 
(214) 

I (1246) + 
TE (2148) 

0.915 TA 
(463) 

T (340)    + 
A (1764) 

0.038 

TAo 
(82) 

TA (463)   + 
o (8213) 

0.94 TE 
(2148) 

T (340)    + 
E (6218) 

0.057 

T~bEr 
(45) 

T~b (62) + 
Er (9817) 

0.91 Tm 
(85) 

T (1246)   + 
m (236) 

0.023 

dEri 
(107) 

dEr (1958) + 
i (7872) 

0.95 Tr (54) T (346)     + 
r (12747) 

0.07 

IIsh 
(58) 

II (684) +  
sh (3251) 

0.98 Er 
(9817) 

E (6218)    + 
r (12747) 

0.43 

krNE 
(27) 

krN (84)   + 
E (6218) 

0.77 kE 
(6728) 

k (332)    + E 
(6218) 

0.015 

CEn 
(259) 

CE (335)   + 
n (1478) 

0.83 nA 
(188) 

n (1478) + A 
(1764) 

0.4 

ECI 
(34) 

E (6218) + 
CI (144) 

0.97 bA (64) b (156)    + 
A (1764) 

0.2 

bEn 
(94) 

bE (147)   + 
n (1478) 

0.82 bE (55) b (156)    + E 
(6218) 

0.47 

lAm 
(120) 

l (616)   + 
Am (235) 

0.85 bI (81) b (156)      + 
I (1246) 

0.45 

lEn 
(233) 

l (616)    + 
En (597) 

0.86 c~CIl 
(22) 

c~CI (20)   + 
l (616) 

0.45 

Table 2. Examples of suffixes checked for com-
positeness. Individual suffix strengths are paren-
thesized. 

 
The reason why the algorithm fails to detect 

“bE” as a composite suffix is that there are not 
enough words in the vocabulary that are attached 
to suffix ‘b’ (first person future indefinite tense 
form of a verb), and so the similarity value in 
between “bE” and “b” is low. It is worth noticing 



that our Bangla corpus is composed of news arti-
cles, which are normally written in “Third Per-
son” form. (Consider the following two sen-
tences extracted from the corpus: (1) “ �

� � � � � ” (“prad-
han mantri aaj jatir urdershe vhashan diben”), 
and (2) “ � � � � ”, 
(shoyeb aaj durdanta baling kreche) (s) where 
“ ” (diben) and “ ” (kreche) are the 
third person honorific and non-honorific repre-
sentation of the corresponding root verb). Unless 
we have a text collection with different verb 
forms (first, second and third person variations), 
it would be very difficult to segment Bangla 
verbs correctly. 

6 Incorrect Attachment Detection 

After inducing the prefixes, suffixes and roots, 
the next challenge is to identify inappropriate 
affix attachment. Consider the English word 
“candidate”. The affix induction and parse strat-
egy described thus far incorrectly segment it into 
“candid” and “ate” (where “candid” is a stem 
found in the corpus and “ate” is a valid suffix).  
    Consequently, we propose a simple yet novel 
idea of using relative corpus frequency to decide 
whether morpheme attachment to a particular 
root word is plausible or not. Our idea is based 
on the following hypothesis: if a word, A, is a 
morphological inflection or derivation of a word, 
B, then the corpus frequency of A is likely to be 
less than that of B. In other words, we hypothe-
size that the inflectional or derivational form of a 
root word occurs less frequently in the corpus 
than the root word itself.  

To obtain empirical support for our hypothe-
sis, we show in Table 3 some word-root fre-
quency ratios (WRFRs), each of which is ob-
tained by dividing the frequency of a Bangla 
word by the frequency of its root. As we can see, 
the corpus frequency (1670) of “ ” (nArII) is 
far bigger than that of the constituent stem “nAr” 
(3). Hence, our hypothesis correctly predicts that 
the suffix “ ” (II) cannot attach to “nAr” to form 
“nArII”. Note that, WRFR is less than 1 for all 
the words in the left side of the table, whereas 
it’s greater than 1 for all the words in the right 
side of Table 3. 

The question, then, is: to what extent does our 
hypothesis hold true? To investigate this ques-
tion, we randomly selected 400 words from our 
vocabulary and removed from them the follow-
ing words: (1) words that do not have morpho-

logical segmentation (e.g. “ ” mAnUsh ); 
(2) proper nouns (e.g. “ ” krIm ); (3) words 
whose constituent root word is absent in the vo-
cabulary (e.g. “ ” sb= “ s+b” but “ s” 
is not found in the vocabulary); and (4) com-
pound words (i.e. words with multiple roots). 
The final list contains 287 words. We then hand-
segmented each of these words into Prefix+Root 
or Root+Suffix, and found that the WRFR is less 
than 1 in 83.56% of the cases (see Table 4). This 
provides reasonably strong evidence for our hy-
pothesis that during attachment, the frequency of 
a word is less than that of its constituent root 
word. Among the remaining 16.44% of the 
words that violate our hypothesis, we found that 
many of them that should be segmented as 
“Root+Suffix” are verbal inflections. In Bangla, 
inflected forms of the verb roots occur more of-
ten in the corpus than the roots (e.g. “ ” (kre) 
occurs more often than “kr”). This can be attrib-
uted to the grammatical rule that says that the 
main verb of a sentence has to be inflected ac-
cording to the subject in order to maintain sen-
tence order. 

     
Correct Attachments Incorrect Attachments 

 
Word 
 

Root WRFR Word Root WRFR 

@SrEr 
(�����.

@Sr 34/200 = 
0.17 

nArII  
(����.

nAr 1670/3 = 
556 

@bEgE
�
�����.

@bEg 28/71 = 
0.39 

JAbTIy
�
������.

JAbT 198/3 = 
66 

jIIbnKE
�
������.

jIIbn 63/908 = 
0.0693 

KOlA
�
����.

KOl 587/4 = 
146.75 

apb~jy
�
������.

b~jy 8/940 = 
0.0085 

jAmAyAT
�
�������.

jA-
mAy

996/5 = 
199.2 

upjATI 
(������.  

jATI 17/509 = 
0.033 

bAjAr
�
�����.

bAj� 1093/3 = 
364.3 

p~rTIdIn 
� � 	 � ����
�.  

dIn 728/6932 
= 0.105  

jbAb
�
����.

jbA 813/3    = 
271 

Table 3. Word/root frequency ratios 
 

 Root+Suffix Prefix+Root Overall 
Number of 
Words 

245 41 286 

WRFR less 
than 1 

84.5% 78.05% 83.56% 

Table 4. Hypothesis validation 
 
Now, we can make use of the above hypothe-

sis, incorporating relative frequency information 
to improve word segmentation as follows: if a 
word is segmented as “Prefix+Root” or 
“Root+Suffix”, we then check whether the corre-



sponding WRFR is greater than some predefined 
threshold (>1). If so, we consider the attachment 
erroneous and treat the whole word as a root. The 
threshold is set differently for prefixes and suf-
fixes. Specifically, we set the threshold to be 2-4 
for prefix attachment and 10-15 for suffix at-
tachment 4 . The threshold for suffixes is set 
higher than the prefixes to account for the inflec-
tional words (mainly verbs) which normally 
come more than their corresponding root forms.  

7 Word Segmentation 

In Sections 3-6, we described how we induce a 
good list of morphemes. Once we induce the 
morphemes, we can apply them to segment a 
word in the test set.  
    The segmentation process is fairly simple. 
Given a word in the test set, we identify all pos-
sible segmentations of the word using only the 
induced affixes and roots. Then, we filter those 
candidate segmentations that violate any of the 
simple linguistic constraints below: 

• There has to be at least one root in the 
segmentation. 

• If a morpheme is a prefix, then the im-
mediately following morpheme should 
be either a root or a prefix. 

• If a morpheme is a suffix, then the im-
mediately preceding morpheme should 
be either a root or a suffix. 

If more than one candidate segmentation re-
mains after applying the above constraints, we 
take the one that has minimum number of mor-
phemes to be the final segmentation of the word. 
For example, if “ ” (bAlkgUlO) has 
two candidate segmentations: “bAlk+gUlO” and 
“bAl+k+gUl+O”, then our algorithm selects the 
first one to be the segmentation of the word. 

8 Evaluation 

Now, let us evaluate our segmentation algorithm. 

8.1 Experimental Setup 

Vocabulary creation. The corpus from which 
we extract our vocabulary contains one year of 
news articles taken from the Bangla newspaper 
"Prothom Alo". Specifically, we only use articles 
that are sports news or editorials, as well as those 
that appear in the first page or the last page of the 
newspaper. We then pre-process each of these 
articles by tokenizing it and removing punctua-
                                                
4 We found that the result does not change much when we 
vary the threshold within these ranges. 

tions and other unwanted character sequences 
(such as “***”). The remaining words are then 
used to create our vocabulary, which consists of 
142955 distinct words. Unlike morphological 
analysis for many European languages, however, 
we do not take the conventional step of removing 
proper nouns from our vocabulary, because we 
do not have a name entity identifier for Bangla.  
Test set preparation. To create our test set, we 
randomly choose 3000 words from our vocabu-
lary that are at least 3-character long. We impose 
this length restriction when selecting our test 
cases simply because words of length one or two 
do not have any morphological segmentation in 
Bangla. We then manually remove the proper 
nouns and words with spelling mistakes from the 
test set before giving it to two of our linguists for 
hand-segmentation. In the absence of a complete 
knowledge-based morphological parsing tool and 
a hand-tagged morphological database for 
Bangla, our linguists had to depend on the 
Bangla dictionary5  for annotating our test cases.  
    There is one caveat in our manual annotation 
procedure, however. Many Bangla words are 
morphologically derived from Sanskrit roots. 
These words are very difficult, if not impossible, 
for any morphological analyzer to segment cor-
rectly, because the orthographic changes that 
take place during the segmentation process are 
highly non-linear and complex in nature. One 
example of such word is “�������” (bIrUd~D), 
whose actual segmentation is “�� ��� ��� � ” 
(bI+rUd+k~T (T)) – which is tough to obtain. As 
a result, we instruct our linguists to simplify the 
segmentation of these words so that the ortho-
graphic changes are within tractable edit dis-
tance. Given this restriction, the Bangla word 
shown above (i.e. “�������”) will simply be 
segmented as “��+�����” (bI+rUd~D). How-
ever, if the meaning of a segmented word differs 
from that of the original word, then we simply 
treat the original word as a root (i.e. the word 
should not be segmented at all). Words that fall 
within this category include “������”, “�����”, 
and “���������” etc. After all the words have 
been manually segmented, we remove those for 
which the two linguists produce inconsistent 
segmentations. The resulting test set contains 
2511 words. 

                                                
5 The dictionaries we used are “������� �	�

�
����  ����� ” (Bangiya 
Sabdakosh) by ����� ����� ������ �� ����� � �!� � �

�
 (Haricharan Ban-

dopaday) and “� �#"#$ � � % � � &('*) � ���� ����� � ��� � �� �*" $ � ��,+ �#� � � ” 
(Bangla Academy Bebharic Bangla Avidan). 



Evaluation metrics.  We use two standard met-
rics --- exact accuracy and F-score --- to evalu-
ate the performance of our morphological ana-
lyzer on the test set. Exact accuracy is the per-
centage of the words whose proposed segmenta-
tion is identical to the correct segmentation. F-
score is simply the harmonic mean of recall and 
precision, as computed using the formulas below. 

Precision = (H) / (H+I) 
Recall = (H) / (H+D) 
F-score = (2H) / (2H+I+D)   

where H represents the number of morpheme 
boundaries correctly identified, and I and D rep-
resent the total number of Insertions and Dele-
tions that needs to be applied to the correct out-
put to make it identical to the proposed output. 
For instance, comparing the incorrect segmenta-
tion “un+fri+endly” against the correct segmen-
tation “un+friend+ly” results in 1 Hit, 1 Insertion 
and 1 Deletion. 
 
 
System  
Variations 

Exact  
Accu-
racy 

Preci-
sion 

Recall F-
score 

Baseline 
(Linguistica) 

37.08 
 

58.25 65.15 61.48 

Basic  
Induction 

46.67 
 

76.66 66.2 71.04 

Composite Suffix 
Detection 

55.99 79.07 80.61 79.83 

Length dependent 
thresholds 

58.38 81.97 79.75 80.85 

Incorrect attach-
ment detection 

65.83 89.1 80.22 84.43 

Table 5. Results 

8.2 Results 

The baseline system. Following previous work 
(Schone and Jurafsky, 2001), we use Gold-
smith’s (2001) Linguistica6 as our baseline sys-
tem for unsupervised morphological learning. 
The first row of Table 5 shows the results of our 
baseline system on the test set when it is trained 
on the Bangla corpus described in Section 8.1 
(with all the training parameters set to their de-
fault values). As we can see from Table 5, the 
exact accuracy is about 37%, which is poor to 
say the least. We presume the poor result is due 
to the inability of Linguistica to handle Bangla 
compound words and its complex verbal inflec-
tional system. Nevertheless, the baseline 
achieves a decent F-measure of 61.48%. 

                                                
6 Linguistica is publicly available at http://humanities. 
uchicago.edu/faculty/goldsmith/Linguistica2000/ 

Our segmentation algorithm. Results of our 
segmentation algorithm are shown in rows 2-5 of 
Table 6. Specifically, row 2 shows the results of 
our basic segmentation algorithm. Rows 3-5 
show the results when composite suffix detection 
(see Section 5), length-dependent thresholds (see 
Section 4), and incorrect attachment detection 
(see Section 6) are added to the basic system one 
after the other. It is worth mentioning that (1) our 
basic algorithm already outperforms the baseline 
system by a wide margin in terms of both exact 
accuracy and F-score; and (2) while each of our 
additions to the basic algorithm boosts system 
performance, composite suffix detection and in-
correct attachment detection contribute to per-
formance improvements particularly signifi-
cantly. As we can see, the best segmentation per-
formance is achieved when all of our three addi-
tions are applied to the basic algorithm. We also 
perform 5-fold cross-validation on our test set 
and found that the F-scores at each level are sta-
tistically significant at p=0.05. 

8.3 Discussion and Error Analysis  

 As part of the analysis of our word segmentation 
algorithm, we are interested in examining 
whether it can correctly segment complicated test 
cases. Encouragingly, our system successfully 
segments complex verbal inflections like 
“���������” (dUlIyECIl) as “dUl+IyE+CI+l”, 
as well as multi-root words like 
“ ” (bInOdnkEndRgU-
lOo), whose correct segmentation is “bI-
nOd+n+kEndR+gUlO+o”. Even more interest-
ingly, it correctly parses English words, which 
are widely used in the Sports section of the 
newspaper. For example, words like “����” 
(blIng) and “����������”(FAinAlIS~t) are cor-
rectly segmented into “bl+Ing” and 
“FAinAl+IS~t”. It is worth mentioning that the 
compounding nature of Bangla and the influence 
of foreign languages have introduced into our 
repository a lot of new words, whose presence 
increases the difficulty of the segmentation task. 
Nevertheless, our word segmentation system 
manages to stem those words correctly.  
    We also investigated the words that were in-
correctly segmented by our system. The errors 
can be broadly divided into following categories: 
(1) Verbal inflections. These constitute a large 
portion of the words incorrectly segmented by 
our algorithm. There are two reasons for such 
errors. First, the root of an incorrectly segmented 
verb is missing from the corpus. (Hence, “ ” 



(uthA) is incorrectly segmented because its root 
“ ” (uth) is not found in the corpus, for in-
stance.) Second, the first and second person 
forms of verbs are often missing in the corpus, as 
the newspaper articles from which our vocabu-
lary is induced contain mostly third person forms 
of verbs.  
(2) Irregular words. When root words exhibit 
orthographic spelling changes during attachment, 
our system fails to identify the roots. For exam-
ple, “ ” is not correctly segmented, be-
cause the root “ ” (@rhII) is changed into 
“ ” (ArhII) during attachment.  
(3) Incorrect attachments. Although we use 
relative frequency to detect incorrect morpheme 
attachments, many incorrect prefixations and 
suffixations remain undetected (e.g. “ ” 
(sIkl) is a root word but it is incorrectly parsed as 
“sIk+l”). This suggests that we need a more so-
phisticated system for incorrect morpheme at-
tachment detection. 
(4) Unseen roots. Many words remain un-
segmented because their constituent root words 
are absent in the corpus. For example, the root 
“ ” (nETR)� in “ ” (nETRT~b) is not 
found in our corpus. 

9 Conclusions and Future Work 

We have presented a new unsupervised algo-
rithm for Bangla word segmentation that, when 
evaluated on a set of 2511 human-segmented 
Bangla words, substantially outperforms Gold-
smith’s Linguistica. Analysis reveals that our 
novel use of relative frequency information, to-
gether with our proposed technique for compos-
ite suffix detection, have contributed to the supe-
rior performance of our algorithm. 

In future work, we plan to investigate whether 
our algorithm can be improved by incorporating 
automatic irregular word form detection (cf. 
Yarowsky and Wicentowski (2000)) and using 
automatically acquired information about the 
semantic relatedness between word pairs (cf. 
Schone and Jurafsky (2001)). In addition, we 
plan to build a POS tagger for Bangla that ex-
ploits the morphological information provided by 
our algorithm. This contrasts with existing work 
on POS tagging for Indian languages, where POS 
taggers are commonly built by using information 
provided by knowledge-based word segmenta-
tion algorithms (e.g. Singh et al. (2006)). 
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