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Abstract—Despite the recent advances showing that a model
pre-trained on large-scale source code data is able to gain appre-
ciable generalization capability, it still requires a sizeable amount
of data on the target task for fine-tuning. And the effectiveness
of the model generalization is largely affected by the size and
quality of the fine-tuning data, which is detrimental for target
tasks with limited or unavailable resources. Therefore, cross-task
generalization, with the goal of improving the generalization of
the model to unseen tasks that have not been seen before, is of
strong research and application value.

In this paper, we propose a large-scale benchmark that
includes 216 existing code-related tasks. Then, we annotate each
task with the corresponding meta information such as task
description and instruction, which contains detailed information
about the task and a solution guide. This also helps us to
easily create a wide variety of “training/evaluation” task splits
to evaluate the various cross-task generalization capabilities of
the model. Then we perform some preliminary experiments to
demonstrate that the cross-task generalization of models can be
largely improved by in-context learning methods such as few-shot
learning and learning from task instructions, which shows the
promising prospects of conducting cross-task learning research
on our benchmark. We hope that the collection of the datasets
and our benchmark will facilitate future work that is not limited
to cross-task generalization.

Index Terms—Pre-training of source code, cross-task transfer
learning, few-shot learning, AI for SE

I. INTRODUCTION

The “pre-train then fine-tune” paradigm has become the new
favorite in software intelligence [1]. Since pre-training tasks
can be done with unlabeled data, a model can be pre-trained
on large amounts of, easily accessible data, thus obtaining
much common sense and linguistic knowledge [2]–[4]. With
this knowledge, pre-trained models can achieve better gener-
alizability, which means that it is able to perform better than
its “no pre-training” counterpart on a wide variety of software
engineering (SE) tasks after being fine-tuned on the data of
the target task [5]–[11]. Therefore, rather than learning models
from scratch, the adoption of pre-trained models as backbone
for downstream tasks has become a common practice in the
field of software intelligence [6], [12], [13].

However, the fine-tuning stage requires updating the weights
of a pre-trained model by training on thousands of supervised
labels specific to the target task. Therefore, the “pre-train then
fine-tune” paradigm still relies on the data from the target

task. And the effectiveness of transfer learning of the pre-
trained model to the target task depends heavily on the size and
quality of the fine-tuning data [10]. Unfortunately, in practice,
we often encounter situations where we need to apply a pre-
trained model to a task with very low available data resources.
In such cases, we are unable to fine-tune the pre-trained model
on sufficient target task data to obtain a fine-tuned model that
can be applied to the target task.

Facing the same issue, pioneers in the field of Natural Lan-
guage Processing (NLP) have proposed many ways to address
this issue. Few-shot learning [14]–[16] skips the fine-tuning
phase and applies the pre-trained model directly to the target
task, without any weight updates. To bridge the gap between
the pre-trained model and the target task, few-shot learning
gives the model a task description and a few demonstrations
(i.e., supervised examples) of the task at inference time. If
there is only one positive example, it is also called one-
shot learning [17]. Moreover, instead of any examples, zero-
shot learning gives the model a natural language description
of the task [18], [19]. In the few/one/zero-shot settings, a
large-scale pre-trained language model is able to show strong
performance on many NLP tasks and benchmarks, in some
cases nearly matching the performance of state-of-the-art fine-
tuned systems [14], [16], [18]–[20]. In addition, learning from
task instructions [21]–[23] adopts task definition, positive and
negative examples, where task definition can be seen as a
specification of solving the target task.

The SE community also does some explorations. Mas-
tropaolo et al. [7] and Wang et al. [9] utilizes multi-task
learning [19], [24] to achieve a better performance on the
target task. By learning multiple related tasks simultaneously,
multi-task learning aims to make models exploit both task-
generic and task-specific information, thereby improving the
model’s performance on tasks with low available resources.
However, multi-task learning favors tasks with significantly
larger amounts of data than others, thus requiring sufficient
supervised examples of the target task compared to other
tasks to guarantee the availability of the model [25], [26].
Rather, Prenner and Robbes [27] experiments with several
other techniques that promised a possible benefit for small
datasets, i.e., active learning, data augmentation, soft labels,
self-training and intermediate-task fine-tuning [28]. They find
that soft labels to be more useful, while other methods



are relatively more narrowly applicable, less effective, more
costly, or inconclusive. Instead of using any data from some
target tasks, Guo et al. [11] directly apply the pre-trained
model to the code-to-code retrieval task in order to evaluate
the performance of code fragment embeddings. Given that
there are many very large-scale pre-trained models of source
code being proposed (e.g., GitHub Copilot, Codex [29] and
AlphaCode [30]), there is also a lot of work exploring the
few/zero-shot performance of these models on specific tasks
and domains, such as program repair [31]–[33], software
security [34], [35] and program synthesis [36].

All things considered, in the field of software intelligence,
there is no systematic work to evaluate and explore the cross-
task generalizability of code models. Therefore, in order to
evaluate the cross-task capability of the model on code-related
tasks in detail and comprehensively, we build a large-scale
benchmark called CrossCodeBench. We start by collecting
as many and as diverse code-related tasks as possible, and
end up with 216 tasks across 28 categories, 7 types and
18 programming languages. Then, to make our benchmark
available for multiple cross-task learning settings (e.g., few-
shot learning, learning from task instructions), we manually
label each of the 216 tasks with extensive meta-information
such as task description, definition, positive/negative examples,
etc. Next, we create 10 training/evaluation splits corresponding
to different benchmark types.

Given the data splits, we perform experiments by adopting
two types of pre-trained models: (1) off-the-shelf model, which
are used directly on the evaluation set, and (2) models further
fine-tuned on the training set. All models are applied to all
splits by using all or suitable cross-task learning methods,
such as few-shot learning, learning from instructions, etc.
Last but not least, we carry out a number of scaling ex-
periments, through which we find that (1) when the data
of each task reaches a certain level (e.g., 10,000 instances),
it is difficult for the model to maintain a high improving
speed of performance as data instances increasing, and (2)
larger models always lead to better performance. We hope that
the benchmark, experimental results and analysis we provide
will facilitate future research to more powerful cross-task
approaches in SE literature. Furthermore, since our benchmark
contains massive datasets (and is open to updates), not only our
CrossCodeBench, but we hope that such a large-scale meta-
dataset (i.e., dataset of datasets [37], [38]) will facilitate the
construction of more benchmarks1.

II. RELATED WORK

A. Few-Shot, One-Shot, and Zero-Shot Learning

Albeit defeating human in many fields [18], [39]–[43], cur-
rent artificial intelligence (AI) techniques still rely on learning
from large-scale task-specific data, and they are unable to
rapidly generalize from a few examples. Rather, humans are

1All datasets, tasks and their summaries are available at https://doi.org/
10.5281/zenodo.7321934. Source code is available at https://github.com/
NougatCA/CrossCodeBench.

able to learn new tasks quickly by using what they are born
with, or what they have learned in the past.

Few-shot learning (FSL) is therefore proposed in order to
learn from a limited number of examples with supervised
information. In the cross-task setup, it is an in-context learning
approach where a pre-trained language model does not need
any fine-tuning and weight updating [44]2. The input can be
divided into three parts, namely task description, examples,
and prompt [18]. The task description is a typically short nat-
ural language description of the task, e.g. “translate English to
French”. Examples consist of k canonical supervised examples
(usually 10 < k < 100, one-shot learning for k = 1 [18]), each
of which includes the context (i.e., the input/question of the
example) and the desired completion (i.e., the output/answer
of the example). And the prompt is the context part of the
example for which the model needs to make a prediction.

FSL shows promising results compared to the supervised
approaches. In the FSL settings, GPT-3 [18], a large pre-
trained language model, significantly improves the state-of-
the-art (SOTA) on various datasets across many task types,
such as completion [47], open-domain question answering [48]
and translation [49]. In addition, Madotto et al. [50] demon-
strate that in some task-oriented dialogue system tasks, lan-
guage model priming FSL is able to achieve similar or
better results than fine-tuning-based baseline. Chen et al. [51]
show that in the FSL settings, a language model can achieve
very reasonable performances and outperforms the strongest
baseline by an average of over 8.0 BLEU points improvement,
across multiple domains. Under the multilingual translation
setting, Winata et al. [52] find the in-context few-shot cross-
lingual prediction results of language models are comparative
to the existing SOTA cross-lingual and translation models. In
order to investigate whether and how cross-task generalization
ability can be acquired, Ye et al. [20] propose CrossFit
challenge, a task setup that standardizes the training pipeline,
data access and evaluation protocol. As a complement, they
present the NLP Few-shot Gym, a repository of 160 diverse
few-shot NLP tasks. Experimental results show that the cross-
task generalization ability can be obtained by using multi-task
and meta learning, and can be affected by the selection of seen
tasks.

In contrast to FSL, zero-shot learning (ZSL) is proposed to
enable generalization to the target task without any examples.
Alternatively stated, the language model is given only the task
description and the prompt. As only a short task description
is required, ZSL is able to provide maximum convenience,
potential for robustness, and avoidance of spurious correlations
for transferring language models to new tasks [18]. However,
this presents huge challenges, such as the possibility of am-
biguity in the task description, the absence of examples of
output formats, etc. Even so, on some tasks, zero-shot GPT-
3 can still outperform one-shot GPT-3 (e.g., completion [47],

2Since our work only discusses the cross-task scenario, i.e., where no
supervised training is performed on the data of the target task, we only
introduce the FSL methods that can be applied in this scenario, for more
FSL methods please refer to Wang et al. [45] and Yin [46].

https://doi.org/10.5281/zenodo.7321934
https://doi.org/10.5281/zenodo.7321934
https://github.com/NougatCA/CrossCodeBench
https://github.com/NougatCA/CrossCodeBench


[53]), or even few-shot GPT-3 (common sense reasoning [54]).
Besides, on ANLI [55], GPT-3 under the zero-shot setting
scores higher than under the few-shot and one-shot settings
for some parameter size settings (i.e., 0.1B, 2.6B and 6.7B).

B. Learning from Task Instructions

In addition to investigating on the number of examples,
researchers do some exploration on task description as well.
Recall that in the FSL and ZSL settings, task descriptions
are often short (e.g., 12.6 tokens on average [23]), sometimes
causing ambiguity, sometimes missing necessary formatting
instructions, etc. Therefore, researchers investigated the use
of longer and more detailed task descriptions.

Inspired by current NLP datasets built using crowdsourcing,
Efrat and Levy [21] examine if language models can follow
crowdsourcing instructions with no further training. Weller
et al. [22] construct a crowdsourced dataset, called Zest,
with question-like task descriptions. To study the ability of
a model that learns a new task by understanding the human-
readable instructions that define it, Mishra et al. [23] introduce
a dataset including 61 distinct tasks, their human-authored
instructions and instances, which is named NatInst. Then they
adopt existing pre-trained language models to encode task-
specific instructions along with input and generate task output.
Results show that the model can benefit from instructions and
can improve performance by 19% when evaluated in gener-
alization for unseen tasks. PromptSource [56], FLAN [57],
and InstructGPT [58] also study the cross-task generalization
ability by following the provided in-context task instructions.
As a subsequent work to NatInst, Wange et al. [38] introduce
NatInstv2, a benchmark of over 1,600 diverse language tasks
and their expert-written instructions, which covers 70+ distinct
task types. They also propose Tk-Instruct, a model trained to
follow a variety of in-context instructions, which include plain
language task definitions and k-shot examples.

The above methods can be collectively referred to as
learning from task instructions (LTI). Although the above
work differs in the content of task instructions, after reading
a lot of recent related work, we believe that a typical task
instruction can generally be divided into the following parts:
task definition, positive (and negative) examples, and other
elements (e.g., “Things to Avoid” [23]). Task definition is
a detailed definition of the task, unlike task description in
FSL, it details how to map the given input to the required
output in the current task. As a result, task description is
typically longer and more detailed than the task description in
FSL3. In addition, task instruction sometimes contains negative
instances as opposed to only positive instances in FSL.

By learning in-context task instructions, models such as
InstructGPT and NatInstv2 are able to achieve better cross-
task generalization performance on unseen tasks than current
FSL-based models. For example, on the FLAN benchmark,

3For example, the task definition of the task description “Translate English
to French” is “Given a sentence in English, provide an equivalent paraphrased
translation in French that retains the same meaning both through the transla-
tion and the paraphrase.” [38]

TABLE I
COMPARISON OF CROSSCODEBENCH AND OTHER CODE-RELATED

BENCHMARKS

Benchmark CrossCodeBench CodeXGLUE CodeTrans XLCoST CodeNet

Has description? ! % % % %

Has definition? ! % % % %

Has examples? ! % % % %

Is off-the-shelf? ! ! ! ! %
# of tasks 216 38 13 112 -
# of types 7/10 6+1/7+1 2/3 3+1/3+1 -
# of categories 28 14 4 5 -
# of datasets 66 13 6 1 1
# of PLs 18 9 9 7 55
# of instances 54M 6.53M 9.32M 3.38M 13.9M

InstructGPT has about 76.2% win rate compared to base-
lines such as FSL-based GPT-3 [18], and the 3B-parameter
Tk-Instruct outperforms 175B-parameter InstructGPT by 3.3
ROUGE-L points [59] when evaluated on 119 unseen tasks.

C. Code-Related Multi-Task Benchmarks

There are existing benchmarks that span multiple code-
related tasks. CodeXGLUE [60], a benchmark which includes
14 datasets for 10 diversified code-related tasks covering code-
to-code, text-to-code, code-to-text and text-to-text scenarios.
CodeXGLUE is now widely used to evaluate the performance
of pre-trained models of source code on various downstream
tasks [9], [11]. Elnaggar et al. [61] collect a benchmark that
contains 6 code-related tasks across 9 programming languages
(PLs). Compared to these benchmarks, our work provides a
larger scale and more diverse code-related tasks (216 tasks
and more than 54M data instances in total). In addition, we
also provide systematic and reasonable cross-task task splits,
which can comprehensively evaluate cross-task capabilities in
various scenarios.

XLCoST [62], a benchmark for cross-lingual code in-
telligence proposed by Zhu et al., consists of fine-grained
parallel data from 7 PLs and English. This parallel data in
a total of 8 languages allow XLCoST to support 10 cross-
lingual code-related tasks, for example, program synthesis,
code summarization, cross-language code retrieval, etc. Puri
et al. [63] introduce a large-scale dataset CodeNet, aiming to
benchmark a variety of critical coding tasks, including code
similarity and classification, code translation between a large
variety of PLs, and code performance (runtime and memory)
improvement techniques. Although these efforts provide large-
scale multi-task benchmark, the data for each of their tasks
are extracted from the same collected dataset. Therefore, the
data distribution between their different tasks is identical, and
it is difficult for us to obtain rigorous and valid cross-task
evaluation results by these benchmarks.

Table I compares our proposed CrossCodeBench with afore-
mentioned benchmarks. We first compare whether each task in
these benchmarks has a well-validated task description, defi-
nition, positive and negative examples, and whether it is off-
the-shelf (i.e., the inputs and outputs are already preprocessed
for each task). In addition, we compare their number of tasks,
the number of task types (cf. Table III, where the first number



indicates the number of types in a total of 7 types, the next
number indicates the types after considering sub-types, and
“+1” indicates that there are task types other than those in
Table III4), the number of datasets included, the number of
programming languages (PLs), and the approximate number
of total instances.

III. CROSSCODEBENCH

A. Collecting Tasks

In order to collect as many code-related datasets as possible,
we hired 5 Ph.D. student (including one author of this paper)
and 6 M.S. students (whose research area is software intelli-
gence) to provide all datasets they have used. Their research
span the areas of automated program repair, defect localiza-
tion, code completion, code summarization, code generation,
etc. Then, we recursively expand the scope of collecting
datasets by reading surveys and based on paper relationships
such as citations, related work, etc. In addition, we conduct
an exhaustive search on a number of websites widely used
to publish or collect datasets, such as GitHub, HuggingFace
Datasets, PapersWithCode Datasets, etc. Finally, we end up
collecting a total of 66 code-related datasets.

Since some datasets contain multiple subsets (e.g. Code-
SearchNet [64] contains 6 subsets corresponding to different
programming languages) or can support multiple tasks (e.g. the
XLCoST dataset [62] can support translation between multiple
parallel elements), and they do not correspond to the same
task descriptions, we split these datasets into different tasks.
As a result, we end up with 216 tasks. Moreover, for the task
instances, we directly use the input and output in the form
of text sequences provided by the dataset without any further
processing. Since we are proposing a unified benchmark for all
types of tasks, we formalize the inputs and outputs of all tasks
in text-to-text form with reference to T5 [19]. In particular, for
the classification task, we convert all labels to corresponding
task-relevant text5.

B. Meta Information

Some basic information is already done when collecting
datasets and tasks, such as the URL, BibTeX, and input/output
languages. Next, in order to make our benchmark support
multiple cross-task in-context learning methods, namely FSL,
ZSL, and LTI, we need to pair each task with some corre-
sponding meta information. In this section, we first present
the schema of the meta information we need to complete,
then illustrate the open coding procedure [65] that we follow
to complete the meta information.

4CodeXGLUE and XLCoST have two retrieval tasks, namely natural
language code search and code-to-code retrieval. In this work, we exclude
the retrieval task type because our goal is to evaluate the cross-task capability
of the unified model, however, retrieval tasks cannot be converted to a unified
text-to-text form.

5For example, for some binary classification tasks, we convert the label “0”
to text “No” and “1” to “Yes”.

1) Schema: With Sections II-A and II-B, we decide to
match meta information for each task in the following fields:

(a) Type: the type of task to which the task belongs.
(b) Description: a short description of the task, e.g. “Trans-

late English to French”, “Summarize”, etc.
(c) Definition: detailed instruction of the task, including a

description of the input, and how to map input to output.
(d) Positive/Negative Examples: canonical positive or neg-

ative examples.
With these fields, our benchmark can support all cur-

rent cross-task learning approaches. For FSL, we use task
descriptions and positive examples; for ZSL, we only use
task descriptions; and for LTI, we use task definitions and
positive/negative examples.

2) Coding Procedure: Open coding procedure is a widely
used standard analytical process that can be utilized to label
a dataset [66]–[68]. We invite 1 Ph.D. student and 4 M.S.
students mentioned in Section III-A to participate in the com-
pletion of the meta information, all of whom have more than
4 years of programming experience and have been working
on code-related tasks for more than 2 years. As a prerequisite
background knowledge, we ask all coders to first read the
NLP-related work mentioned in Sections II-A and II-B, and
to become familiar with the corresponding data as well. Below
we show the steps of the coding procedure.

(a) Pilot Study. With the intent of defining the coding
framework, one of the coders conduct a pilot study on ran-
domly selected NLP 30 tasks with meta information, which
are equally derived from the work of Brown et al. [18], Bach
et al. [56], and Wang et al. [38]. The goal of this study
is to identify the initial task type, analyze and identify the
common pattern of the task description, definition, and the
positive/negative examples. The work ends with the definition
of four initial classifications, in addition to the experience and
specifications for writing task descriptions (14 patterns), task
definitions (5 patterns), and positive/negative examples. Here
are details:
• Initial task type includes classification, translation, gen-

eration, summarization and type prediction.
• Task description is a short single sentence command

that often appears before the input instance and connects
it to the instructions. It briefly describes the intent of the
task, usually with one or a few words. 14 initial patterns are
identified, to name a few, Translate A to B, Summarize A,
Detect (defect/clone/variable misuse).
• Task definition is a detailed guide to solving the task and

can be divided into three parts: (1) the description and inter-
pretation of the input under the task, including the language
and form of the input, e.g., given a Java method with the
method name masked by a special symbol ‘[MASK]’, given
a natural language description; (2) how to convert the given
input into output, and the language and form of the output,
e.g., translate the given Java method to Python function with
the same functionality, etc.; (3) others, including the search
space of the output (for classification tasks, e.g., if ..., outputs
‘Yes’, otherwise outputs ‘No’), and the format of the output



(e.g., for each identifier, outputs the name of the identifier
and its type, separated by a colon ‘:’). 5 initial patterns are
identified which connect these three elements into a complete,
fluent, easy-to-understand natural language sentence.

• Four positive and four negative examples are required.
Examples need to reflect the most typical situation in the task,
explaining the main points of generating positive examples for
positive examples, and pointing out the errors and giving the
correct modifications for negative examples.

Based on this, this coder organizes a 60-minute session for
the other four coders for training and discussion.

(b) Completion Procedure. Each coder is assigned to all
216 tasks. For each task, coders are asked to learn about the
task by referring to the websites and paper through the URL
and BibTeX, then observe the data for that task, and finally
identify the task type and fill in the rest of the meta information
as required.

Specifically, for task types, coders are allowed to identify
a task as a new task type despite the fact that an initial task
type already exists. In addition, it is encouraged to identify
the task type while also giving the sub-types of the task under
this task type, if possible. All other coders are informed when
a new task type/sub-type is proposed, and coders will have a
discussion for at least 10 minutes. If all the coders agree on
the new task type/sub-type, then the type/sub-type list would
be updated to include the new one.

As for the task description and definition, coders are asked
to try to follow the 5/14 initial patterns for writing, and if this
is not possible, adding new patterns is also allowed. An online
list of writing pattern is shared between all coders, including
both the initial schema and the newly added schema. In this
way, the latest schema list is visible to all coders and open
for them to use and add. It is worth noting that a new pattern
can only be added to the list after it has been verified by all
coders and the disagreement is solved by discussion.

In addition, for task types/sub-types, pattern lists of task
descriptions and definitions, when adding new entries (i.e.,
new types/sub-types or task description/definition patterns),
the similarity between the new entry and the existing entry is
inspected. Similar entries are merged into a new, more general
entry in due course, without disagreement, and the existing
labels are updated accordingly as well. The process is fully
iterative and includes continuous refinement of the entry and
discussion of ambiguous cases. Each decision made during the
entry extraction process represents the opinion of all coders.

Lastly, when it comes to positive/negative examples we
are not able to follow the procedure described above since
they are all free-form labeled content. We first ask all coders
to independently complete writing the task description, task
definition, and 2 positive/negative examples. After finishing,
we gather all coders to discuss each task, and for the task
description and definition, we put together what all coders
had written, vote on the most concise and clear version,
and revised it until everyone is satisfied. For the positive
and negative examples, we first put together a total of 10

examples they written, vote on the most representative 4 until
no disagreement remains.

(c) Agreement Measurement. To evaluate the validity and
reliability of our coding procedure, we use Cohen’s Kappa
value [69] to measure the agreement among all coders. The
results are 85.4%, 76.7%, 73.2% and 70.9% for task type,
task description, task definition, selection of positive and neg-
ative examples, respectively. This shows that all coders have
“almost perfect agreement” on the task type and “substantial
agreement” on the other three meta information [70].

For fields that still have disagreements, we resolve them
by applying a third person solution. We assign conflicting
reports to 4 external coders (the 5 Ph.D. students mentioned in
Section III-A except the one internal coder) and let them judge
and resolve these disagreements. Our analysis shows that the
disagreements mainly focus on the second part of the task def-
inition, where different coders have different understandings
and representations of the input-to-output mapping, as well as
positive and negative examples.

Finally, in order to ensure the resulting meta information
is sufficient for average software engineering researchers. We
invite five undergraduate software engineering students with
programming experience in non-software intelligence fields to
read the meta information of all tasks. They are then asked
to review the definition, intent, input and output formats, and
other information for each task. Where they are unclear or
incorrectly stated, we will feed back to the 4 external coders
mentioned in the previous paragraph for revision until the task
can be clearly defined and understood.

3) Summary: In the end, we get 7 task types as follows.
• Classification: output the corresponding labels based on

the input. It is further divided into two sub-types, Binary and
Multi-label, which correspond to tasks with only two labels
and more than two labels, respectively.
• Fill in the blank: predict the missing token or sequence

in a given input.
• Translation: translate code snippets written in one lan-

guage into another preserving semantics and functionality.
• Generation: generate a sequence based on the input.

Three sub-types are (1) Rewrite: modify a part of the given
code sequence and output the modified version; (2) Text-to-
Code: input the natural language description and output the
corresponding code sequence; (3) Code-to-Text: input as code,
output the required natural language sequence as required.
• Summarization: given a piece of code, output the func-

tional description of that piece of code6.
• Type Prediction: predict the type of all identifiers in a

given code snippet, which is a kind of sequence tagging tasks.
• Question Answering: given a piece of code and a natural

language question, output the answer to that question.
Table II provides statistical information about Cross-

CodeBench. In addition, Table III shows the statistics of the

6We separate this task from the Code-to-Text sub-type in Generation
because this type of task is in a very important position in software intelligence
research. And its research approach is different from other Code-to-Text
approaches (e.g., commit message generation)



TABLE II
STATISTICS OF CROSSCODEBENCH

Field Average

# of instances per task 250032.48
Task description length 3.52
Task definition length 26.39
Positive example input length 21.42
Positive example output length 15.77
Negative example input length 21.34
Negative example output length 15.48

TABLE III
TASK TYPES AND THEIR STATISTICS

Type # of Tasks # of Categories # of Instances

Classification 21 15 6,565,637
- Binary 17 13 6,430,804
- Multi-label 4 2 134,833

Fill in the Blank 10 3 13,413,614
Translation 94 1 2,366,970
Generation 53 5 19,511,282

- Rewrite 10 2 3,197,080
- Text-to-Code 41 2 15,658,171
- Code-to-Text 2 1 656,031

Summarization 34 2 11,186,611
Type Prediction 2 1 773,038
Question Answering 2 1 189,863

Total 216 28 54,007,015

final task types. In total, the benchmark includes 216 tasks,
28 task categories and over 54M instances.

We define a task category as the set of tasks that have the
same intent. We define a task as a <task category, dataset>
pair, and a task type depends on the input and output of the
task, not on the intent. A task category is a superset of a task.
But a task category is equal to a task if and only if the task
category has only one dataset. A task category is a subset of
a task type (e.g. Bug Fixing [71] and Mutant Generation [72]
categories are both Rewrite sub-types), they are equal if and
only if the task type has only one task category, e.g. the
Translation type has only one category, Code Translation.

4) Demonstration: In our benchmark, each task con-
sists of two json files, one containing the meta in-
formation and the other containing the data instances.
Both files have the same name in the first part, i.e.,
“task {task id} {dataset name} {task type}”, followed by
”.meta.json” and ”.data.json”, respectively.

To better illustrate, Figure 1 shows the contents of a json
file with the meta information of a task. We can see that in
addition to the fields we mentioned in Section III-B1, we also
include some information about the task/dataset, such as the
language of input/output, BibTeX and URL of the dataset, etc.

C. Splits

After preparing the data, we need to create different train-
ing/evaluation splits to evaluate the cross-task learning ability
of the model in different application scenarios and difficulties.
Table IV lists the 10 training/evaluation splits we create and

task 006 swapped operands classification.meta.json

“Type”: [“Classification”, “Binary”],
“Description”: “Detect swapped operands”,
“Definition”: “You are given a function, your task is to identify whether
the operands of non-commutative binary operators are swapped. Construct
an answer that is ‘Swapped operands’ if such a swap occurs and ‘Correct’
otherwise.”,
“Input Language”: “Programming Language -> Python”,
“Output Language”: “Natural Language -> English”,
“Positive Examples”: [{

“Input”: “def contains (self, x): return x in self.columns”,
“Output”: “Correct”,
...

],
“Negative Examples”: [...],
“BibTeX”: ...,
“URL”: ...,
...

Fig. 1. An example of the task meta information.

TABLE IV
TASK SPLITS AND THEIR STATISTICS

# of Tasks # of Instances

Cat-Intra-CD 20/1 4.83M/1.73K
Cat-Intra-BF 44/9 16.4M/3.1M
Cat-Inter-CD 215/1 52.3M/1.73M
Cat-Inter-BF 207/9 50.9M/3.1M
Sub-Intra-ML 17/4 6.4M/135K
Sub-Intra-C2T 51/2 18.9M/656K
Sub-Inter-ML 212/4 53.9M/135K
Sub-Inter-C2T 214/2 53.3M/656K
Type-Trans 122/94 51.6M/2.4M
Type-QA 214/2 53.8M/190K

Cross Type Scope Split Name Train/Eval

Cross-Category
Intra-Type

Inter-Type

Cross-Sub-Type
Intra-Type

Inter-Type

Cross-Type Inter-Type

use in this paper. We classify them in two dimensions: the
level of the cross-task, and the scope of the training task. In
addition, we list the name of each split, the number of tasks
and instances of the training/evaluation split in Table IV. Next,
we will introduce these splits in order from 3 cross-task levels,
namely, cross-category, cross-sub-type and cross-type.

1) Cross-Category: Define new task category is common in
SE, but collecting and labeling a large amount of data for the
newly defined task category can be very labor-intensive, even
impossible. Instead, we can define the task category exactly
and give several examples. At this point, we can consider
using cross-task learning methods, where learning on a large
number of existing tasks acquires generalization capabilities
on this new task. Therefore, we first wish to explore whether,
and to what extent, current cross-task learning methods will
make models achieve cross task category ability. We choose
a binary classification task, i.e., clone detection [73] and a
rewrite generation task, bug fixing [71] as evaluation task
categories, respectively. In addition, since task categories are
a subset of task types, we also want to explore whether more
data from different task types can help improve the cross-task
performance of the model on one task category.

Therefore, for each of the two evaluation sets, we use two
training sets for training: (1) the training set includes only
tasks of the same task type as the evaluation task in the other



tasks (Intra-Type); (2) the training set includes all other tasks
(Inter-Type). Finally, we create 4 splits for the cross-category
level, namely Cat-Intra-CD, Cat-Intra-BF, Cat-Inter-CD, and
Cat-Inter-BF.

2) Cross-Sub-Type: Recall that we also have sub-types for
Classification and Generation types in Table III. We also want
to explore to what extent the model can learn cross-task
capabilities at the level of sub-type. Therefore, we select two
sub-types for each of them, namely Multi-label Classification
and Rewrite Generation. For multi-label classification sub-
type, we want to investigate whether the model can generalize
to multi-label tasks by learning only binary classification sub-
type (and other types of tasks). For rewriting tasks, we wish
to explore how much rewriting skill the model can acquire
without having learned any rewriting task. As with the setup
in the cross-category, we create 2 splits for each of the two
selected sub-types under the different scopes of the training
set. Consequently, we create 4 splits as well, i.e., Sub-Intra-
ML, Sub-Intra-C2T, Sub-Inter-ML, and Sub-Inter-C2T.

3) Cross-Type: The last is the most challenging setup, the
cross-type, where we use all tasks in the entire task type as the
evaluation set and the other types of tasks as the training set.
First, we want to use the Translation type as the evaluation
set, and we want to explore whether the model can learn the
correspondence between different languages by learning from
other types of tasks. Second, we choose a type that contains the
fewest tasks, i.e., Question Answering. This split is closest to
the real practice situation, i.e., by learning on a well-resourced
task type, we expect the model to have a better generalization
ability on the new task type without resources. Therefore, we
create two splits at the cross-type level, namely Type-Trans
and Type-QA.

By now, we create 10 training/evaluation splits of different
difficulty levels and different application scenarios. These
splits are used in the experiments. Besides, we are able to
ensure that there is no data leakage in these splits, in another
word, there is no task in the training set with the same resource
dataset as any task in the evaluation set.

IV. EXPERIMENTAL SETUP

In this section we describe the setup for preliminary ex-
periments on CrossCodeBench, including cross-task learning
methods, baselines, evaluation metrics and other settings.

A. Cross Task Learning Methods

Here we introduce the in-context cross-task learning method
that we use for our experiments. In-context learning methods
also determine the composition of the inputs to the model in
our experiments. By referring to Section II-A, II-B and the
meta information we introduced in Section III-B, we propose
the following learning methods.

• k-shot Learning (k-shot) : recall that the input of the few-
shot learning consists of three parts: task description, k exam-
ples and a prompt. Since each task in CrossCodeBench con-
tains 4 positive examples, we randomly select k(= 4, 3, 2, 1)

positive examples as the examples of the input context, result-
ing four methods named 4-shot, 3-shot, 2-shot and 1-shot.
• Zero-shot learning (zero-shot): same as k-shot, but with-

out the second part of the input, i.e. the example.
• Learning from instructions with m/n positive/negative

examples (m/n-instruct): use instructions items introduced
in Wang et al. [38], with m/n positive/negative examples.
Specifically, we select the two combinations that worked best
shown by Wang et al. [38] (1) 2/0-instruct: m = 2, n = 0
when training and m = 4 when evaluating; (2) 2/2-instruct:
m = 2 and n = 2 for both training and evaluating.

Finally, we derive 7 cross-task learning methods that will
be used as input to the baseline model to be presented below.

B. Models

1) Shortcut Methods: The feasibility of a proposed bench-
mark is important for the subsequent work, which determines
whether the benchmark is practical and meaningful to study.
Specifically for CrossCodeBench, it is whether the model can
actually gain cross-task capability by using a particular cross-
task learning method, rather than just behaving like it has
gained such capability through some easy shortcuts. Therefore,
we propose two such shortcut methods for each split, (1) Copy
Ex-output: randomly copying the output of one of the four
positive examples and (2) Copy Ins-input: copying the input
of the current instance. We use these two shortcut methods to
evaluate the feasibility of CrossCodeBench, i.e., doing cross-
task research in the field of software intelligence.

2) Off-the-Shelf Models: Off-the-shelf models are those
that are evaluated directly on the evaluation set, without
any further fine-tuning. We first wish to choose a model
that is a “few-shot learner”, such as GPT-3 [18]. However,
our request to use the GPT-3 API has not been approved.
Instead, we turn to Tk-Instruct [38], a T5-based model that
is already trained to follow general language task instructions
(including a portion of code-related tasks). Tk-Instruct is
shown to have better cross-task performance than few-shot
learners, such as GPT-3, and other task instruction learners,
such as InstructGPT [58]. Tk-Instruct is only used under
the m/n-Instruct learning settings. Specifically, we use the
3B parameter version of the model, and for the learning
method in the 2/0-instruct and 2/2-instruct settings, we use
the “Tk-Instruct-3b-def-pos’ and “Tk-Instruct-3b-def-pos-neg”
versions of the model, respectively, in order to achieve the best
performance [38]. We use the Tk-Instruct model without any
fine-tuning and directly evaluate them on the evaluation set,
under the different learning methods.

3) Fine-tuned Models: We evaluate pre-trained models
that are fine-tuned on the training set with aforementioned
in-context learning method as well. First, we choose two
recent and widely used pre-trained models of source code,
PLBART [8] and CodeT5 [9]. In particular, PLBART is a
sequence-to-sequence model based on BART [74] and pre-
trained on an extensive collection of Java and Python functions
and associated NL text. CodeT5 is a T5 [19]-based model that



is pre-trained on a large corpus containing 8 programming lan-
guages and natural language. We ensure that neither PLBART
nor CodeT5 had supervised training on any evaluation task in
any splits. We also ensure that there is no overlap between
the dataset they use in pre-training and the source dataset of
the evaluation set in all splits. Besides, we further fine-tune
Tk-Instruct [38] by using the m/n-instruct learning method.
We hope that further fine-tuning will help Tk-Instruct to
adapt to code-specific tasks while understanding generic task
instruction. Consequently, we obtain three fine-tuned models,
two pre-trained models of source code, PLBART and CodeT5,
which will be fine-tuned under all cross-task learning methods.
There is also an instruction learner, Tk-Instruct, which will be
fine-tuned under only two m/n-instruct methods. In order to
balance efficiency and effectiveness, we use the official “large”
version of all three models.

4) Supervised Models: We estimate an upper bound per-
formance of each split by supervised fine-tuning a CodeT5-
large model on all task instances (except instances used for
evaluation) on all evaluation set. This approach follows the
classical “pre-train then fine-tune” paradigm, where we use all
evaluation tasks in the fine-tuning and do not apply any cross-
task learning methods. Since this approach allows the model
to see the data of the target task and perform supervised fine-
tuning, this approach is theoretically the upper limit of the
cross-task approach on the corresponding split.

Finally, we end up with 2 shortcut methods, 2 off-the-
shelf models, 3 fine-tuned models and 1 supervised model.
All model checkpoints are loaded from the official models
published on HuggingFace Hub.

C. Metrics
Since outputs of all tasks are in text form (see Sec-

tion III-A), so text-specific metrics are used in our experi-
ments. Specifically, for classification tasks whose output is
short and limited, we adopt Exact Match (EM) to measures
the ratio of the instances for which a model produces exactly
the same string as the gold labels. For the other tasks, their
output is a longer sequence, so we employ BLEU (B.) [75]
and ROUGE-L (R.L) [59]. Both are widely adopted string
overlap metrics that measure the similarity of between the text
sequence generated by the model and the gold sequence. For
all metrics, we report scores under percentages.

D. Others
In order to avoid the data imbalance problem, we limit

the number of instances in each training tasks to 10,000.
These 10,000 instances are fixed across different running if
the number of instances for a task exceeds 10,000. Similarly,
to avoid the evaluation results being unevenly affected by the
amount of task data and to make the evaluation more efficient,
we select a fixed number of 500 evaluation instances from each
task.

All experiments are conducted on 4×NIVDIA Tesla V100
32Gs with a total fine-tuning epochs of 3. We tune hyperpa-
rameters using grid search. We select learning rate from {1e-
5, 3e-5, 5e-5, 1e-4}, warm-up steps from {500, 1000, 2000},

and batch size per device from {4, 8, 16}. As a result, for the
fine-tuning phase, we use an initial learning rate of 5e-5 for
CodeT5 and PLBART, and 1e-5 for Tk-Instruct, with a batch
size per device of 16 and 1000 warmup steps for all. We run
each experiments three times using different random seeds and
report the mean.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the preliminary
experimental results on CrossCodeBench.

A. Overall Results

Table V shows the overall benchmarking results. Except
scores of the supervised model, the best scores are bolded and
those within 5% below the best scores are underlined, and if
there are no scores within 5% below, the bolded best scores
are further underlined. Based on these results, we have the
following observations and discussions.

1) Room for improvement exists: First of all, we can see
that supervised fine-tuned CodeT5 following the classical “pre-
train then fine-tune” paradigm has very significant advantages
over any other methods. Since supervised CodeT5 performs
supervised training on the target task, it can be seen as an
upper bound for the performance of large language models of
source code on the corresponding evaluation set. This suggests
that there is still a lot of room for theoretical improvement
in cross-task learning based on pre-trained models of source
code.

2) Shortcut wins on low-resource classification: We find
that the best fine-tuned model outperforms shortcut methods
on all metrics for all splits except Cat-Intra-CD and Sub-
Intra-ML. This illustrates that the cross-task learning approach
allows the models to gain real cross-task capability, not just
some simple shortcuts. And on the two splits where the
shortcut method wins, we discover two points, one is that
scopes of the training set of both splits are both “Intra”, and
the second is that only the evaluation sets of these two splits
contain the classification tasks.

For the first point, recall that in Section III-C, we create
splits of “Intra” and“Inter” by changing the scope of tasks in
the training set, the former restricts the tasks in the training
set to the same type as the verification tasks, while the latter
has all other tasks in the training set. On the two “Inter”
corresponding to these two “Intra”, the fine-tuned method
outperforms the shortcut method instead. Therefore, we can
conclude that having more data for other types of tasks could
improves the cross-task performance on tasks of a certain type.

As for the second point, we believe that the main reason is
that the output of these tasks is short (usually one word) and
fixed (corresponding to all labels), and our experiments do not
restrict these conditions, relying only on giving some “soft”
hints in the task definition and in the output of the examples.
For example, in the classification task shown in Figure 1, we
illustrate the restriction/range of output only in two places, (1)
“Definition”: the output are “Swapped Operands” in the case



TABLE V
OVERALL BENCHMARKING RESULTS

EM B. R.L EM B. R.L EM B. R.L EM B. R.L B. R.L B. R.L

50.00 10.35 20.24 50.00 10.35 20.24 10.75 2.52 1.43 10.75 2.52 1.43 3.97 15.95 3.29 2.71
0.00 40.51 54.59 0.00 40.51 54.59 0.00 1.28 3.55 0.00 1.28 3.55 45.44 60.67 0.82 2.00

2/0-instruct 2.96 29.91 33.23 2.96 29.91 33.23 0.12 3.58 3.97 0.12 3.58 3.97 17.31 29.87 9.11 8.94
2/2-instruct 2.22 29.65 32.45 2.22 29.65 32.45 0.11 3.66 3.42 0.11 3.66 3.42 16.46 29.27 8.10 8.38
4-shot 15.86 44.76 57.52 25.54 55.86 67.89 1.75 7.92 6.61 8.54 11.95 12.84 50.14 63.84 12.37 14.61
3-shot 12.94 43.60 56.40 23.49 54.38 65.21 1.23 7.58 6.65 5.82 11.61 11.59 47.90 62.35 11.86 13.59
2-shot 10.59 40.84 54.37 22.01 49.73 64.79 0.89 5.44 5.54 3.74 10.73 11.12 47.60 60.76 9.61 11.70
1-shot 9.27 36.45 46.90 21.95 45.95 54.78 0.56 5.86 4.03 3.12 10.51 10.78 46.66 59.83 8.84 9.86
zero-shot 7.65 45.36 44.08 16.40 52.04 50.34 0.03 3.66 3.61 2.81 7.63 6.87 41.48 54.31 6.99 8.33
2/0-instruct 19.11 47.74 59.23 53.25 59.19 70.55 4.82 8.18 7.22 14.66 14.31 15.43 48.88 65.70 15.72 18.73
2/2-instruct 19.86 42.84 57.74 53.87 58.80 68.89 4.76 8.96 7.82 14.82 14.16 14.24 47.43 63.95 15.37 17.76
4-shot 15.80 46.89 58.15 30.03 56.92 72.01 1.80 7.38 6.80 8.30 12.15 12.04 49.22 66.26 14.78 15.12
3-shot 13.05 44.67 57.33 29.55 54.30 69.41 1.04 7.84 6.59 6.83 11.49 10.06 47.83 64.35 14.27 14.99
2-shot 12.49 40.94 52.68 29.53 51.26 62.70 0.81 6.88 5.85 3.47 10.50 10.46 48.65 65.25 13.69 14.73
1-shot 10.68 35.32 45.38 28.75 48.86 58.14 0.34 6.37 5.57 2.78 9.87 8.47 45.72 62.92 11.41 12.25
zero-shot 7.12 30.69 43.07 18.8 45.85 56.51 0.05 4.15 3.72 1.95 6.44 6.99 43.24 58.38 9.12 10.95
2/0-instruct 20.89 48.33 61.02 56.33 61.89 76.89 5.57 8.35 7.10 15.95 15.40 15.63 52.05 67.87 17.95 20.52
2/2-instruct 20.05 45.57 59.31 56.42 58.49 74.26 5.06 8.05 6.93 15.10 14.60 15.90 51.51 66.61 17.31 20.12
2/0-instruct 18.43 43.86 57.23 51.88 57.45 70.98 4.92 9.18 8.47 15.64 15.60 14.35 45.49 62.14 17.04 20.67
2/2-instruct 18.52 42.01 56.16 51.20 57.67 70.39 4.24 9.10 7.88 14.43 15.01 14.77 45.63 62.41 16.15 19.33

CodeT5 None 78.49 73.41 82.40 78.49 73.41 82.40 63.23 28.11 27.86 63.23 28.11 27.86 72.26 85.83 37.46 39.49

Type Models Methods

Cross-Category Cross-Sub-Type Cross-Type
Intra Inter Intra Inter

CD BF CD BF ML C2T ML C2T Trans QA

Shortcut Copy Ex-output
Copy Ins-input

Off-the-
Shelf

Tk-
Instruct

Fine-
Tuned

PLBART

CodeT5

Tk-
Instruct

Supervised

of operands swapping only in definition, and “Correct” other-
wise, (2) “Positive/Negative Examples”. These restrictions are
simply entered into the model as plain text, and thus cannot
pose any substantial restrictions on what the model generates.
In this case, we can only expect the model to be trained to
acquire the knowledge of how to find the output range on
each classification task in the input. But the results show that
this is far from the case, and the model often generates text
outside the output range, leading to a low performance. This
conclusion is further corroborated by browsing the output of
the fine-tuned model on the classification task.

The performance of the shortcut method on the classification
task suggests that further restrictions on the model’s output on
the classification task are needed if one wants a unified text-
to-text model to have excellent cross-task performance on the
classification task.

3) Further fine-tuning matters: It is clear that the fine-tuned
model has a significant performance advantage over the off-
the-shelf model. This is because fine-tuning on our training
set can help the model understand the input representation
of cross-task learning methods (for PLBART and CodeT5),
or become more familiar with tasks in the software intelli-
gence domain (for Tk-Instruct). Even though Tk-Instruct has
included several code-related tasks, such as “code-to-text”, in
its original training set [38], we believe that these tasks are
diluted in a huge number of NLP tasks, making off-the-shelf
Tk-Instruct unable to obtain good power in code-related tasks.

4) Domain-specific models are better: We also notice that
CodeT5, a pre-trained model of source code, is able to achieve
better results than Tk-Instruct, a model trained to follow task
instructions, in most tasks. This suggests that domain-specific
pre-trained models are generally a better choice than cross-
domain models. Moreover, we also notice that Tk-Instruct
wins in the task of generating natural language, such as
Code-to-Text and Question Answering. This is not difficult

to understand, because training on huge amount of natural
language corpus helps it generate more fluent and reasonable
natural language text.

5) Detailed in-context information generally helps: Among
all cross-task learning methods, LTI produces the best results
for all tasks and metrics. Specifically, in most cases, using only
two positive examples is more effective than using two positive
and two negative examples. By comparing the input represen-
tations of FSL, ZSL and LTI, we can see that compared to FSL
and ZSL, LTI extends the short task description to a detailed
task definition, which allows the model to understand the task
more comprehensively, including the input/output format, the
search space of outputs, etc., and thus learn the solution to the
task. In addition, LSI further introduces negative examples, but
it appears that the extra negative examples do not contribute
positively to the performance of the model in most cases. This
also confirms the results obtained by Wang et al. [38].

B. Data Scaling

In addition to more data on other task types, we also explore
whether the size of the training instances could affect the
cross-task performance of the model given the same tasks.
Therefore, on Type-Trans, we vary the number of instances per
task that are used for fine-tuning CodeT5, and the evaluation
results are shown in Figure 2.

It can be seen that when the number of tasks in the training
set is constant, increasing the maximum number of instances
per task within a certain range can significantly improve
the cross-task performance of the model. However, when the
maximum number of instances per task increases from 10,000
to 20,000, the BLEU shows a significant decrease, so for
the BLEU metric, the model achieves its best performance
at 10,000. On the other hand, for ROUGE-L, although the
average value has been increasing all the time, if the range
of data errors is taken into account, the model may start to
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Fig. 3. Scaling trends of models performance as the number of model
parameter changes. The error is indicated by light shading. The x-axis is
on a log-scale in order to be more intuitive.

show a decrease in performance when increasing from 5,000
to 10,000. Thus, in aggregate, the model may achieve its best
performance at a maximum number of instances of 10,000 per
task, which, if continued to increase, leads to time and space
costs that do not match the gains in model performance.

C. Model Scaling

We also study the effect of model scaling by initializing
CodeT5 and Tk-Instruct from different sizes of checkpoints
and the results are in Figure 3.

We find that increasing the model size consistently delivers
an improvement in the cross-task performance of the model
over the range of model sizes we experimented with, and is
roughly log-linear with parameter size. Combining the results
in Figure 2, we can see that models of a certain size have a
fixed demand on the amount of data. For example, CodeT5-
large reaches a performance bottleneck at a maximum of 10k
instances per task. Conversely, a larger model always leads
to better performance when the data scale is of a certain size
(note that the data volume should be large enough to avoid
overfitting).

TABLE VI
CROSS-TASK PERFORMANCE OF THE MODEL ON DIFFERENT SCOPE OF

FINE-TUNING DATA

In-Sub-Type In-Type Out-Type

1 ! % % 116K 43.41 55.82
2 ! ! % 16.4M 48.33 61.02
3 ! ! ! 50.9M 61.89 76.89
4 % ! % 16.3M 28.22 43.47
5 % ! ! 50.8M 57.13 74.82
6 % % ! 34.5M 53.74 71.63

# Fine-tuning data comes from Training
size BLEU ROUGE-L

D. Scope Scaling

Finally, we investigate a problem with practical applications,
i.e., the case when we propose a new task class and obtaining
the corresponding data is very costly or impossible. Consider-
ing the use of cross-task learning is a feasible approach at this
point. Thus, there is a question, how the scope of the training
set is selected is important for the cross-task capability of
the model. Therefore, we select a target task category, Bug
Fixing [71], and then change various ranges of training sets
to investigate under which scope the model would achieve the
best cross-task performance for the Bug Fixing task category.

We also present two splits in Section III-C1, with experi-
ments on two application scenarios where the target task is
Bug Fixing. The training sets in both splits in Section III-C1
include the sub-type (Rewrite) or type (Generation), to which
Bug Fixing belongs. However, in practical, the proposed task
category may be a new sub-type/type, and other task data of
the same sub-type and type is not available. What we further
study here is whether in this case, the more data is still better
when we can only select tasks of other sub-types or types.

After selecting Bug Fixing as the target task category,
we change the scope of the training set data from three
dimensions: (1) In-Sub-Type: whether the training set contains
task data of the same task sub-type as the target task, i.e.,
Rewrite; (2) In-Type: whether the training set has data of the
same task type as the target task, i.e. Generation; (3) Out-
Type: whether there are data in the training set that do not
belong to the same task type as the target task, i.e., the other
6 types except the Generation type. We investigate the data
in the training set under various combinations in these three
dimensions and present the results in Table VI.

Comparing experiments 2 and 4, or 3 and 5 in Table VI,
we learn that the data within the sub-type plays an important
role. But such a conclusion holds only when other task data
are available. If we compare experiment 1 with 5 and 6, it can
be found that the performance achieved by using only in-sub-
type data is not as good as that achieved by using data outside
the sub-type.

Besides, in comparison with experiments 2 and 6, we can
find that the performance using in-type data is worse than that
using out-type data only. We believe the reason is that the
amount of out-type data is larger than that of in-type data,
which allows the model to learn more cross-task capabilities



with more in-context information.
Therefore, we can conclude that the amount of data still

plays an important role. Its contribution to the cross-task
performance of the model is more important than the data
for the same type of task.

E. Implications

After our experiments and discussions above, we have
some findings and implications that can facilitate subsequent
researchers and practitioners.

The first thing we can see is that all models performs very
poorly on the classification task in the cross-task setting. After
adding the instruction containing the set of classification labels
to the input, the performance of the model on the classification
task, though improved, is still poor because it still often
outputs words outside the output range. So, how to constrain
the model to output valid classification labels requires further
investigation.

In addition, our results show that the different combinations
of SE tasks used for training a model would yield different
performances on a target task. So, when given a new SE task
that lacks data, how to quickly determine which existing tasks
should be used to achieve the best results is an urgent issue
to explore.

Finally, we learn from Sections V-B–V-D that more data,
larger model and more tasks can all benefit the cross-task
generalization ability. Therefore, if there are limited resources,
is it better to devote it to a larger model or to more data, and if
to data, is it better to increase the data per task or to increase
the diversity of tasks. That is, how to make better use of the
limited resources is also an issue worth investigating.

VI. THREATS TO VALIDITY

Internal Validity: Threats to internal validity relate to
the bias introduced when manually annotating some fields
in meta information of the task. To mitigate this, we start
with the open coding procedure to reduce the impact of
individual bias. Then for remaining conflicts, we address these
by employing a third person solution (see Section III-B2 for
details). We believe that the approach we adopt minimizes the
human impact on the meta information, but it still may not be
completely avoidable. Another factor for threatening internal
validity is hyperparameters. Due to time constraints, we only
perform a coarse-grained hyperparameter search. Therefore,
other hyperparameter settings may lead to better results. But
this does not affect the observations and conclusions presented
in this paper, since all experiments are carried out with the
same hyperparameter searching strategy.

External Validity: Threats to external validity concern
about the data imbalanced among different types of tasks.
Even though we limit the maximum number of instances per
task, the number of tasks contained in different task categories,
types varies greatly (see Table III). Therefore, the model
may have different generalization performance on different
types of unseen tasks. In addition, since we need to apply
tasks to the unified sequence-to-sequence model, all tasks in

our benchmark are formalized in a text-to-text form. Those
code-related tasks that cannot be converted to this form are
excluded. An example is the retrieval tasks, such as natural
language code search and code-to-code retrieval [11]. The
retrieval task requires computing the similarity between the
representation vectors generated by the model for different
inputs and cannot be applied to the text-to-text framework.

Construct Validity: The major threat is the data or task
overlap between the evaluation set and the data/task the model
has seen during self-supervised pre-training and fine-tuning on
the training set. First, since the minimum cross-task granularity
of our proposed split is task categories, there is no overlap of
task categories between the training and evaluation sets. Then,
to mitigate such data overlap threats, we use the tool provided
by Allamanis [76] to ensure that the data in the evaluation set
of the proposed 10 splits do not have duplication with the data
in the training set during our experiments. Therefore, we can
guarantee that no overlap problem will be introduced in the
fine-tuning phase, but since we use pre-trained models as the
backbone of our baselines, such threats may be introduced in
the pre-training phase.

VII. CONCLUSION

To study the problem of cross-task generalization in soft-
ware intelligence, we collect a large-scale meta-dataset con-
taining various types of tasks and label each task with
rich meta information to support various cross-task learning
methods. We then create a benchmark, CrossCodeBench,
for studying the generalization ability of source code-related
deep learning models. Through preliminary experiments, we
demonstrate and analyze the feasibility and possible research
directions for cross-task studies of software intelligence.
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