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ABSTRACT
While the majority of existing pre-trained models from code learn
source code features such as code tokens and abstract syntax trees,
there are some other works that focus on learning from compiler
intermediate representations (IRs). Existing IR-based models typi-
cally utilize IR features such as instructions, control and data flow
graphs (CDFGs), call graphs, etc. However, these methods confuse
variable nodes and instruction nodes in a CDFG and fail to distin-
guish different types of flows, and the neural networks they use fail
to capture long-distance dependencies and have over-smoothing
and over-squashing problems. To address these weaknesses, we
propose FAIR, a Flow type-Aware pre-trained model for IR that
involves employing (1) a novel input representation of IR programs;
(2) Graph Transformer to address over-smoothing, over-squashing
and long-dependencies problems; and (3) five pre-training tasks
that we specifically propose to enable FAIR to learn the semantics of
IR tokens, flow type information, and the overall representation of
IR. Experimental results show that FAIR can achieve state-of-the-art
results on four code-related downstream tasks.
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1 INTRODUCTION
Recent years have seen the dramatic development and tremen-
dous success of pre-trained models of code, such as CodeBERT [18],
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GraphCodeBERT [23], PLBART [2], CodeT5 [57] andUniXcoder [22].
These pre-trained models employ code features such as code to-
ken sequences, abstract syntax trees (ASTs), and data flow graphs,
and have achieved remarkable results on a variety of software en-
gineering (SE) downstream tasks such as code summarization [2,
18, 22, 57], code search [18, 22, 23], code-to-code retrieval [18, 22],
and defect detection [57]. While the overwhelming majority of SE
researchers are working on the source code of high-level program-
ming languages to explore better representation methods, others
set their sights on compiler intermediate representations (IRs).

IR is a low-level representation of code used by the compiler
infrastructure. Though described as “low-level”, IR retains rich
semantic information and can express high-level ideas. First, com-
pared to other low-level languages such as the assembly language,
IR is much easier to understand due to its higher-level abstraction,
consistent syntax, platform independence, and register-agnostic.
Moreover, IR is programming language-independent, which could
provide a more concise, uniform, and efficient representation of
code than a high-level programming language. However, the IR-
based model requires a high demand on the dataset and needs the
code to be compilable. Most of the current code datasets are col-
lected with the compilation-related information removed, which
implies that the code in them cannot be compiled. Consequently,
compared with source code-based models, IR-based models are
much less studied. Nevertheless, due to the unique advantages that
IR has, IR-based research continues to flourish.

In existing IR representation learning research, IR features such
as token sequences [46], control flow graphs (CFGs) [55, 59], con-
trol and data flow graphs (CDFGs) [5, 8, 14] are commonly used. As
for the model architecture, existing work mostly chooses message-
passing paradigm-based graph neural networks (GNNs) to encode
graphical features [8, 14, 59]. Existing approaches also use other
methods to learn the representation of an IR program. For ex-
ample, in order to obtain the embedding vector of an IR instruc-
tion, inst2vec [5], a skip-gram model, and seed embeddings [55],
a TransE [7] model, are trained on CDFs and CFG priors, but the
key drawback of these approaches is that the resulting pre-trained
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embeddings are not task-agnostic and therefore cannot embed the
contextual information of a target downstream task.

Nevertheless, there are several weaknesses in existing work (ex-
cept for those based on GNNs) on IR-based models w.r.t. the IR
features used by these models. Recall that in a CDFG, there are
two types of nodes, one for variables/values (operands) and one
for instructions, Existing approaches fail to distinguish between
these two types of nodes by embedding in the same representation
space using the same embedding method, while other approaches
simply eliminate one type of nodes, which might greatly reduce
performance [5, 8]. In addition, existing work treats all flows as
equivalent [59] or does not completely distinguish between all flow
types [5, 8, 14], However, the flows in a CFG and a DFG should not
be treated as identical. For example, in a CFG, a node may have mul-
tiple jump relationships controlled by conditions such as a Boolean
expression, while in a DFG, the dependencies between data can
be additive, divisive, etc. In fact, the flow-type information does
exist in the original CDFG. For example, the flow type of a CFG
can be retrieved from the last instruction of the basic block node,
and the flow type of a DFG is in the opcode of the instruction node.
Existing approaches embed the nodes first and then learn the flow
information. As a result, the flow-type information stored in the
nodes will be diluted by other texts in the nodes when performing
node embedding, and more importantly, this flow-type information
cannot be correctly associated with the corresponding flows in a
CDFG.

Another weakness associated with existing work on IR-based
models lies in the model architecture. Specifically, while existing
work typically chooses message-passing-based GNNs to encode
graphical features such as CDFGs, a CDFG is usually very large,
often with more than a thousand nodes and thousands of flows.
Such a large and densely connected graph would cause long-range
dependencies [34, 49] problems for GNNs. Besides, the training
process of GNNs naturally has over-smoothing and over-squashing
problems, where the former refers to a situation where the repre-
sentations of nodes become too similar to each other as a result
of repeated graph convolutions [9, 28, 45], and the latter refers to
a situation where the activation function used in the GNN model
compresses the node representations too much, causing the model
to lose important information [3, 52].

All things considered, there is no existing work that seeks to
address the size and heterogeneity (i.e., different node/flow types)
problem of CDFGs, as well as the problems caused by GNNs. In
light of these observations, we propose FAIR, a Flow type-Aware
code pre-trained model based on IR. FAIR distinguishes itself from
existing IR-based pre-trained models in its input representation,
model architecture, and pre-training tasks, as described below:

Input Representation. FAIR (1) decomposes a CDFG into a CFG
and a DFG in order to reduce graph size; (2) assigns an explicit
Flow Type to each flow in both the CFG and the DFG to distinguish
different flow types; (3) adds the flows according to the call graph in
order to connect multiple CFGs or DFGs of one single IR program;
and (4) adds flows to link the nodes from the CFG and those from
the DFG that have reference relationships. This process yields a
novel graph-based input representation of an IR program.

Model Architecture. FAIR (1) uses a Transformer Encoder [54]
and a normal word embedding layer to embed the nodes of CFG

and DFG, respectively; (2) employs Graph Transformer [17] to learn
the representation of the entire IR program by taking the nodes’
embedding as input and injecting graph priors into the attention
computation via graph bias terms; and (3) associates each flow type
with a unique bias term in order to learn from flow types.

Pre-Training. FAIR employs five pre-training tasks: (1) Masked
LanguageModeling (MLM) [15], which enables the model to predict
the original nodes in the CFG and the DFG that are masked in the
input; (2) CFG Flow Type Prediction (CFT), (3) DFG Flow Type
Prediction (DFT), and (4) BB-Var Flow Prediction (BVP), all of which
randomly mask some flows in the graph and then let the model
predict whether these flows exist, and/or the flow type; and (5) a
pre-training task based on contrastive learning, where we design
four novel strategies to construct positive examples.

We compare FAIR with strong baselines based on both IR and
source code on four downstream tasks, namely code-to-code re-
trieval, algorithm classification, heterogeneous device mapping, and
optimal thread coarsening factor. Empirical results show that FAIR
achieves state-of-the-art performance on all tasks and generalizes
very well to unseen programming languages.1

Overall, we make the following contributions. First, we pro-
pose FAIR, a flow type-aware pre-trained model of IR, which is
programming language- and platform-independent. FAIR is novel
in its design of an input representation of IR programs as well as
pre-training tasks that aim to predict concrete types of flows and
novel strategies to generate more positive examples for contrastive
learning. Second, when pre-training FAIR on several large open-
source repositories, we achieve state-of-the-art performance on
four downstream tasks.

2 RELATEDWORK
2.1 Source Code-based Pre-Trained Models
Inspired by the successes of pre-trained models in natural language
processing (NLP), e.g., BERT [15], RoBERTa [37], BART [29] and
T5 [48], a number of pre-trained models of source code have been
proposed [2, 18, 22, 23, 41, 44, 57]. While some of the pre-training
tasks used in these models are directly copied from NLP such as
MLM and replaced token detection [37], other pre-training tasks are
designed to encode code content. In particular, code token-aware
and natural language-aware pre-training tasks are widely adopted.
For instance, identifier MLM only masks identifiers in the code
tokens and trains the model to predict them [33, 50, 57], and cross-
modal generation [22, 57] aims to generate natural language/code
given code/natural language. Structure-aware pre-training tasks
have also been proposed to enable a model to learn the structural
information in, for instance, ASTs and DFGs. Examples include
edge prediction and node alignment tasks, which help a model
learn features within a DFG and between a DFG and code [23].

Contrastive learning is frequently used to improve the overall
representation capability of a model. Existing contrastive learning
strategies differ primarily in the methods used to generate positive
examples. These methods include swapping the order of input parts,
inputting different modalities of the same example separately [56],
and using different dropout masks [22].

1Artifacts are available at https://github.com/NougatCA/FAIR.

https://github.com/NougatCA/FAIR
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Despite the successes of source code-based pre-trained models,
we believe it is important to investigate IR-based models for at
least two reasons. First, IR is programming language-independent,
so IR-based models only need to capture the unique features of
the IR language, such as grammar, vocabulary, and syntax. Second,
IR-based models can be trained more efficiently since they do not
require processing and aligning data from multiple languages.

2.2 IR-based Models
Recent work on IR-based pre-trained models can be broadly divided
into three categories:

Using existing pre-trained models for node embedding.
Ncc [5] combine a Control Flow Graph (CFG) and a Data Flow
Graph (DFG) in order to build a Contextual Flow Graph (XFG).
With an XFG, they train inst2vec, a skip-gram-based pre-trained
embedding lookup table for each IR instruction, by defining the
context of size 𝑁 as nodes within distance 𝑁 in the XFG. Then,
they use LSTM to verify the performance of the trained inst2vec on
downstream tasks. IR2VEC [55] uses a trained embedding lookup
table of seed embeddings. To obtain the lookup table, the authors (1)
extract opcode, data type, and arguments from each instruction, (2)
use the extracted information to convert an instruction into several
triples, (3) apply the TransE learning model [7] to the resulting
triples to learn the seed embeddings of each instruction. Based on
seed embeddings, they add the information of a CFG to obtain the
representation vectors of an IR program. Rather than utilizing a
lookup table, Gui et al. [21] use a BERT model pre-trained on IR
data to embed a given IR program.

Using GNNs to encode graph features. CodeCMR [59] feeds
the source code of a high-level language and the CFG of a low-level
language into the DPCNN [26] and the GNN, respectively. GNN-
CDFG [8] (1) adds call graph and store-load dependencies into the
CDFG of IR, (2) simplifies the nodes in the CDFG by eliminating the
variable/value nodes and replaces each instruction node with its
opcode, and (3) encodes the resulting graph using amessage-passing
paradigm-based GNN [31]. GNN-CEFG outperforms state-of-the-
art approaches that use sequential models based on token sequences.
ProGraML [14] (1) adds call graph to a CDFG and utilizes Message
Passing Neural Network (MPNN) framework [19] to encode the
whole graph, and (2) uses opcode and data type to represent an
instruction. Both of these work tries to address the heterogeneity
of CDFG by discarding some critical information, such as operands
and return values. However, the heterogeneous nature of CDFG is
not considered [59] or well handled [8, 14]. Different from them, in
FAIR, we decompose CDFG into CFG and DFG, and in addition to
adopting a call graph, we define explicit types for flows, as well as
simplify DFG and connect CFG and DFG with a novel type of flow.

Developing pre-trained models of IR.With the emergence
of pre-training, some recent approaches utilize pre-training. OS-
CAR [46], a pre-trained model of IR, leverages abstract environment
information (AEI) along with the IR token sequence as model input.
In contrast, IRGen jointly learns source code and the corresponding
IR code generated using different compilation optimization options
in order to better represent programs [32]. As pre-training tasks,
MLM is used by OSCAR, whereas contrastive learning is used by
both OSCAR and IRGen, even though the way contrastive learning

is being used is different in the twomodels. Specifically, to construct
more positive examples for contrastive learning, OSCAR generates
correct IRs for each source code with different compilation optimiza-
tion options, whereas IRGen uses contrastive learning by extending
CodeCMR with a new objective based on triplet loss that increases
the similarity between a source code and its corresponding IR and
at the same time reduces the similarity between the source code and
the irrelevant IRs. While we also employ contrastive learning in the
design of FAIR, we (1) propose four novel strategies to construct
positive examples by mutating the input of the given IRs, and (2)
design the other two novel pre-training tasks that had never been
used by existing pre-training models of IR, i.e., predicting the flow
type of CFG and DFG.

3 FAIR
In this section, we present FAIR, including its Input (Section 3.1),
Architecture (Section 3.2), and Pre-training Tasks (Section 3.3).

3.1 Input Representation
FAIR’s input is constructed from a given IR program2. Figure 1.a is
an example of an IR function. Like most high-level programming
languages, IR functions consist of a function signature and a func-
tion body, which contains one or more Basic Blocks, each starting
with its label and a colon (e.g. “entry:”). Each basic block consists of
a sequence of Instructions, and the instructions in a basic block
are executed sequentially, without any branches.

Concretely, we propose a representation of an IR program that
will be used as FAIR’s input based on a Control Flow Graph (CFG)
and a Data Flow Graph (DFG). This representation is composed
of a CFG with Flow Type, a Simplified DFG with Flow Type, and
BasicBlock-Variable Flows.

The reason for encoding CFG and DFG separately instead of
using CDFG is that CFG and DFG describe the behavior of the
IR program from different perspectives, and they are completely
independent of each other. Although CDFG is a graph formed by
merging CFG and DFG, the information expressed by CFG and DFG
is still independent and orthogonal in CDFG. Therefore, using one
single neural network to encode two different types of information
at the same time may lead to worse results. In addition, as a cost of
merging, the CDFG becomes very large and there becomes more
than one type of node, which makes it even more difficult for the
neural network to encode it.

3.1.1 CFG with Flow Type. A CFG specifies the order in which
a function executes its instructions. It determines not only the
sequence in which different parts of a function are executed but also
how the function reacts to different conditions or inputs. The left
side of Figure 1b shows an original CFG of the IR function “@main”
in Figure 1a (except “br.T” and “br.F”). Each node of a CFG is a
basic block and the edges are originally identical. The edges show
possible jumps without the corresponding condition. For example,
the basic block “entry” in this CFG has two jumps, <entry, if.end4>
and <entry, for.body>3. Using this CFG, it is impossible to determine
which jump to choose. Therefore, we need to explicitly add this
2Without loss of generality, we use LLVM IR (https://llvm.org/docs/LangRef.html)
3In this paper, we denote edges/flows without or with types as <𝑖 , 𝑗> or <𝑖 , 𝑗 , 𝑡>, for
untyped flows from node 𝑖 to 𝑗 or flows from 𝑖 to 𝑗 with type 𝑡 , respectively.

https://llvm.org/docs/LangRef.html
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(a) An example of IR program.

entry

for.body

for.body4

if.then

for.inc

for.end

if.end4

br.T

br.F

CFG of function @f

CFG of function @main

entry

…

if.end

call.func

call.return

(b) Adding flow type and call graph to CFG.

%cmp = icmp slt i32 %m, %x

%m %x %m %x

%cmp

icmp.slt.2icmp.slt.1

simplify

(c) Simplifying DFG and adding flow type.

%call

%i

%j

%x

%m

%sum

DFG of function @main DFG of function @f

…

…

…

call.arg

call.arg

call.return

(d) Adding call graph to DFG.

Figure 1: The procedure of building input representation of the FAIR model.

information to the CFG as the type of flow, which is important
for understanding the jumps between basic blocks, and this is the
reason why we consider CFGs to be heterogeneous graphs.

Adding Flow Types. Such jump condition information can be
retrieved from the last instruction in the basic block, i.e., the termi-
nator instruction. Referring to Figure 1a, the terminator instruction
of the basic block “entry” is a “br” instruction that is used to per-
form conditional or unconditional transfer between different basic
blocks. This terminal instruction performs a conditional transfor-
mation using the previously computed Boolean variable “%cmp”
as the condition. If the condition is true, then it will jump to the
basic block “if.end4”; otherwise it will jump to “for.body”. Based
on this, we add the corresponding types, “br.T” and “br.F”, to the
two flows of the basic block “entry” in CFG, as shown in the orange
words in Figure 1b. It is worth mentioning that in addition to the
“br” instruction, there are many other terminator instructions, such
as “ret” (return to the caller), “switch”, “invoke”, etc.

Adding Call Graphs. IR programs usually contain multiple
functions, while the current CFG can only represent jump infor-
mation inside a function. Therefore, we add call graph information
between functions to associate them. The call graph shows which
functions call which other functions and how they are connected.
From Figure 1a in function “@main”, one of the instructions of
the basic block “for.inc” calls the function “@f”, which executes
the return instruction in its “if.end” basic block. In this case, we
add two flows, <for.inc, @f-entry, call.func> and <if.end, for.inc,
call.return>4, indicating a function call and a return to the caller,
respectively.

3.1.2 Simplified DFG with Flow Type. DFG demonstrates the de-
pendencies between instructions and values in a function. Figure 1c
shows how we add flow types to a DFG of the first instruction of
the basic block “entry” of function “@f” in Figure 1a. On the left
side, the original DFG consists of two types of nodes: variable/value
nodes (e.g., “%m”), and instruction nodes. To unify the two types
of nodes, we replace the entire instruction node with its return
value, i.e., “%cmp”. By doing so, we can unify the nodes of the DFG
into the same type, i.e., variables, which will make them easier to

4We use “@f-entry” to avoid confusion with the basic block “entry” in “@main”.

encode. Since this will lose information such as opcode, e.g. “icmp
slt”, we add opcode information as the flow types.

Adding Flow Types.We assign the key information, i.e., opcode,
which is discarded during the simplification of a DFG, to the type of
flow. Concretely, we represent the opcode as three parts separated
by dots: (1) opcodes, such as “icmp” (integer comparison), “add”,
“sub”, etc.; (2) options, which are only available for certain operands,
e.g. “icmp” has options such as “eq” (equal), “ne” (not equal), “slt”
(signed less than), “uge” (unsigned greater or equal), etc., while
“add”, for example, has no options; and (3) operand positions, which
are only available for non-commutative operands/options, such as
“icmp.slt”, “icmp.uge”, or “sub”, but not for “icmp.eq”, “icmp.ne”, or
“add”. In this way, we complete the addition of DFG flow types that
contain key information such as opcodes, options, and operand po-
sitions, namely <%m, %cmp, icmp.slt.1> and <%x, %cmp, icmp.slt.2>
in the right of Figure 1c.

Add call graph. Just like a CFG, a DFG only represents the flow
of data within one function. So, we add call graphs between different
DFGs to join them together. Figure 1d shows how to add the call
graph. As can be seen in the example in Figure 1a, an instruction in
the caller function “@main” calls the function “@f” with arguments
“%i” and “%j”, while the corresponding parameters of the callee is
“%x” and “%m”. Then the return instruction of the callee returns
variable “%sum”, which is assigned to “%call” in “@main”. Therefore,
we first add flows with type “call.arg” between the corresponding
caller’s arguments and callee’s parameters, i.e., <%i, %x, call.arg>
and <%j, %m, call.arg>. Then we add a flow from the callee’s return
variable to the caller’s return value, with type “call.return”, that
is <%sum, %call, call.return>. Note that the flow type “call.return”
here is not the same as the CFG flow type “call.return”.

3.1.3 BB-Var Flows. Since we encode CFG and DFG separately, the
relationship between the CFG and DFG is lost, and the relationship
is most notably the subordination of Variables and Basic Blocks.
This makes the construction of the BB-Var Flow (for connecting
Basic Blocks to Variables) quite simple: if a variable node 𝑚 in
the DFG belongs to one of the basic blocks 𝑖 in the CFG, then an
untyped flow <𝑖 ,𝑚> will be added between the CFG and the DFG.

So far we have accomplished the processing and construction
of the CFG, the DFG, and the BB-Var flow of an IR program. From
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Basic Block Embedding
(Transformer Encoder)

E1

BB1 BBn...

Variable Embedding
(Word Embedding)

Var1 Var2 Varm...

En E1 E2 Em

Encoder (Graph Transformer)

IR Representation

vb b v v

[CLS] entry [SEP][SEP] ... %m %x

... ...

BB-Var 
Flows

CFGCall Flows DFGCall Flows

BB Nodes Var Nodes

Flows

Self-Attention

Figure 2: The overall architecture of FAIR model.

now on we will consider the CFG and the DFG after the BB-Var
flow connection as a whole graph 𝐺 = ⟨𝑉 , 𝐹 ⟩, where 𝑉 is a set of
CFG and DFG nodes, and 𝐹 = {𝐹CFG, 𝐹DFG, 𝐹BV} is a set of all flows,
where 𝐹CFG, 𝐹DFG, 𝐹BV are sets of CFG flows, DFG flows and BB-Var
flows, respectively.

3.2 Model Architecture
As shown in Figure 2, FAIR is a two-level model, where the first level,
which includes Basic Block Embedding and Variable Embedding, is
employed to encode the nodes in the CFG and the DFG to derive
the embedding representation of the nodes, while the second level,
the Encoder, is used to learn the overall IR representation from both
the node embedding and the flow information within and between
the CFG and the DFG.

3.2.1 Node Embedding. The nodes of the CFG and the DFG are
basic blocks and variables respectively, and given their distinct
characteristics, we adopt different methods to embed these two
kinds of nodes.

Basic Block Embedding: As mentioned before, in basic blocks,
instructions are executed sequentially, so we can naturally use a
sequential model such as LSTM [24] and Transformer Encoder [54]
to encode a basic block.We choose a Transformer Encoder to embed
the basic block in this paper.

We show in the bottom left of Figure 2 how we obtain the embed-
ding vector of each basic block. Given the CFG that we construct
in Section 3.1, we first extract its nodes, namely the basic blocks,
and present each basic block as a sequence of text tokens. Then,
we add a special symbol “[CLS]” at the beginning of the sequence
to identify the position of the output embedding vector, and feed
this token sequence to the word embedding layer, the positional
encoding layer, as well as several Transformer Encoder layers (in
the figure, they are represented as a “Basic Block Embedding”).
Finally, we extract the hidden vector of “[CLS]” in the input at the
last layer as the embedding vector of the whole basic block. Note
that all basic blocks share the same Transformer Encoder when
embedding.

In this manner, for a CFG, we can derive the embedding vectors
of each node. These vectors are sorted in the order in which the

basic blocks appear in the IR program, and the resulting sequence
of vectors will be fed into the Encoder in the second level.

Variable Embedding: The embedding of DFG nodes is relatively
simple since these nodes are all variables. Specifically, we embed
them using a regular Word Embedding layer. As shown in the
bottom right of Figure 2, we (1) extract the variables from the
processed DFG, (2) convert them into one-hot vectors, and (3) use
a learnable linear layer to obtain the word embedding vectors of
the variables.

3.2.2 Encoder. We use Graph Transformer as the second level en-
coder to obviate the problems of long dependencies, over-smoothing,
and over-squashing that are present in the message passing-based
GNNs widely adopted in existing approaches [27, 42, 49]. The two
inputs of this encoder are the output of the first-level encoder and
the flow information. Note that they are utilized in different ways.

Formulate Node Embedding: Given a sequence of𝑚 vectors
of basic blocks 𝐸𝑏 = [𝐸𝑏1 , . . . , 𝐸

𝑏
𝑚] ∈ R𝑚×𝑑 , and a sequence of 𝑛

vectors of variables 𝐸𝑣 = [𝐸𝑣1 , . . . , 𝐸
𝑣
𝑛] ∈ R𝑛×𝑑 , where 𝑑 denotes

the hidden dimension of our model. We first build the input of the
Encoder. Specifically, we concatenate these two sequences, using
the embedding vector of “[SEP]” (𝐸[SEP] ∈ R𝑑 ) to separate them,
and insert the embedding vectors of “[CLS]” (𝐸[CLS] ∈ R𝑑 ) and
𝐸[SEP] at the beginning and the end of the sequence, respectively.
Consequently, we form the input to the Encoder 𝐼Enc ∈ R𝑙×𝑑 , where
𝑙 =𝑚 + 𝑛 + 3,

𝐼Enc = [𝐸 [CLS] , 𝐸𝑏1 , . . . , 𝐸
𝑏
𝑚, 𝐸[SEP], 𝐸

𝑣
1 , . . . , 𝐸

𝑣
𝑛, 𝐸[SEP]] (1)

In order for the Encoder to better distinguish the nodes of the
CFG and those of the DFG, we add another vector sequence 𝐼type ∈
R𝑙×𝑑 on top of 𝐼Enc before we input this vector sequence to the
Encoder. This is achieved by a mechanism similar to Segment Em-
bedding in BERT [15]. To be specific, we construct a sequence
containing only 0s and 1s, where a 0 is used to indicate a CFG node
(i.e., the position of 𝐸𝑏 in the 𝐼𝐸𝑛𝑐 (including the special symbols)),
while a 1 is used to indicate a DFG node (i.e., the position where
𝐸𝑣 is located). Then we pass the numbers in this sequence through
another embedding layer and get the vector sequence that presents
the node type, i.e. 𝐼𝑡𝑦𝑝𝑒 .

Finally, we add 𝐼Enc and 𝐼type and input the results 𝐼 = 𝐼Enc +
𝐼type ∈ R𝑙×𝑑 into the Encoder.

Integrating Flows: We make the model learn flow information
by injecting graph priors into the attention computation via graph
bias terms. In other words, since our input is composed of the nodes
of the graph, when we compute the self-attention matrix in each
layer of the Transformer, the flow information between the nodes
is injected into the attention matrix through an adjacency matrix.
This makes our model different from the vanilla Transformer En-
coder [54] in the self-attention module of each encoder layer. For
simpler illustration without loss of generality, we assume in this
section that there is only one self-attention head.

Concretely, let 𝐻 = [ℎ1, . . . , ℎ𝑙 ] ∈ R𝑙×𝑑 be the input of the self-
attention module, where ℎ𝑖 ∈ R𝑑 is the hidden vectors of position
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𝑖 . The attention scores of input matrix 𝐻 are computed as:

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉 , (2)
Attention(𝐻 ) = softmax(𝐴)𝑉 , (3)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑 are projection matrices, 𝐴 ∈ R𝑙×𝑙 is
the attention score matrix between every two input nodes. Let 𝐴𝑖 𝑗
be the (i, j) elements of 𝐴, we have:

𝐴𝑖 𝑗 =
(ℎ𝑖𝑊𝑄 ) (ℎ 𝑗𝑊𝐾 )𝑇√

𝑑
+ 𝑏, (4)

𝑏 =


0, ⟨𝑖, 𝑗⟩ ∉ 𝐹
𝑏CFG
𝜙 (𝑡 ) , ⟨𝑖, 𝑗, 𝑡⟩ ∈ 𝐹CFG
𝑏DFG
𝜙 (𝑡 ) , ⟨𝑖, 𝑗, 𝑡⟩ ∈ 𝐹DFG
𝑏𝐵𝑉 , ⟨𝑖, 𝑗⟩ ∈ 𝐹BV

, (5)

where 𝑏CFG
𝜙 (𝑡 ) , 𝑏

DFG
𝜙 (𝑡 ) ∈ R are learnable parameters indexed by 𝜙 (𝑡).

Taking a CFG as an example, we let there be a total of 𝑝 CFG
flow types. Then we have a vector 𝐵CFG = [𝑏CFG1 , . . . , 𝑏CFG𝑝 ] ∈
R𝑝 , and 𝜙 (𝑡) is the index of CFG flow type 𝑡 in 𝐵CFG. The vector
𝑏𝐵𝑉 ∈ R is also learnable. All these three types of parameters are
shared in all layers. It can be seen that we achieve the injection
of flow information by adding bias terms to the attention scores.
Specifically, when calculating the attention score between nodes 𝑖
and 𝑗 , if there is no flow between them, we do not add a bias term,
but if there is a flow of CFG or DFG of type 𝑡 between them, then
we add the bias term corresponding to that type 𝑡 to the attention
score, noting that there is a corresponding learnable bias term for
each flow type of CFG and DFG. Finally, if there is an untyped flow
of BB-Var between 𝑖 and 𝑗 , we add another learnable bias term to
the attention score.

With respect to the other aspects, e.g., the feed-forward module
and layer normalization, FAIR is identical to the vanilla Transformer
Encoder [54], so we will not go over them here. Next, we present
the pre-training tasks used to train FAIR.

3.3 Pre-Training Tasks
Pre-training has been shown to massively improve the performance
of models on downstream tasks [15, 18, 37, 44]. With respect to
Graph Transformer, pre-training is able to help a model to learn
generalizable and transferable representations of graphs and exploit
additional knowledge to guide a model to capture structural and se-
mantic information [30, 36]. Therefore, we propose five pre-training
tasks that enable the model to learn the semantic information in
the basic block, the flow information of the graph, and the overall
representation capability for IR.

3.3.1 Masked Language Modeling. Masked Language Modeling
(MLM) is widely adopted in the field of NLP and SE [12, 15, 18, 22].
It can help a model to acquire a good contextual and semantic
understanding of the basic block [37, 53]. As a result, we first adopt
MLM to train our Basic Block Embedding module to generate better
representations for basic blocks. The task is to predict the original
tokens that are masked in the input. We follow the original MLM
setup, which samples 15% of the tokens from the input sequence,
and then replaces 80% of them with a [MASK] token, 10% with a
random token, and another 10% of them unchanged.

Let 𝑥 = [𝑥1, . . . , 𝑥𝑛] be a sequence of tokens of a basic block of
length 𝑛 and𝑀 be a set of indices of masked tokens. Then the MLM
objective is to minimize the following loss:

LMLM = − 1
|𝑀 |

∑︁
𝑖∈𝑀

log 𝑃 (𝑥𝑖 |𝑥¬𝑖 ), (6)

where 𝑥¬𝑖 denotes the sentence 𝑥 with the 𝑖-th token masked and
𝑃 (𝑥𝑖 |𝑥¬𝑖 ) denotes the probability of predicting the original token
𝑥𝑖 given the masked sentence 𝑥¬𝑖 .

3.3.2 CFG/DFG Flow Type Prediction. To learn the added flow
information in a CFG and a DFG, we design two pre-training tasks,
one for each of these two graphs, namely CFG Flow Type Prediction
(CFT) and DFG Flow Type Prediction (DFT). We adopt these two
pre-training tasks with the motivation that the model learns the
structure-aware information of the input IR so that it can grasp the
control flow information in the CFG and the data flow information
in the DFG. The objectives of these two tasks are the same, so we
only illustrate CFT here for the sake of simplicity.

Given a CFG with 𝑛 nodes, we randomly sample 15% from a total
of 𝑛2 ordered pairs of nodes, i.e., 𝑛𝑚 = 15%×𝑛2. Then, we mask the
flows if they exist between these pairs, and subsequently, we make
the model predict whether these edges exist as well as the type of
edges. The absence of a flow can be seen as a special type of flow,
and consequently, this task becomes a (𝑘 + 1)-way classification
task, where the number of CFG flow types is 𝑘 . Note that each type
of flow is sampled in a balanced manner.

Formally, let 𝐹CFG𝑚 = {⟨𝑢𝑖 , 𝑣𝑖 , 𝜙𝑖 ⟩|𝑖 ∈ [1, 𝑛𝑚], 𝜙𝑖 ∈ [0, 𝑘]} be the
set of sampled node pairs, where 𝜙𝑖 indicates the index of the flow
type (with 0 representing no flow and [1,𝑘] representing the flow
types). Therefore, the masked CFG becomes𝐺CFG

𝑚 = ⟨𝑉CFG, 𝐹CFG \
𝐹CFG𝑚 ⟩. where 𝐹CFG \ 𝐹CFG𝑚 represents the set difference between
the original set of flows 𝐹CFG and the masked flows 𝐹CFG𝑚 .

Assuming ⟨𝑢𝑖 , 𝑣𝑖 , 𝜙 (𝑡)⟩ is the 𝑖-th element in 𝐹CFG𝑚 , the model
predicts the type of flow by inputting their hidden vectors in the
last layer into an extra linear layer. Let ℎ𝑢𝑖 , ℎ𝑣𝑖 ∈ R𝑑 be the hidden
vectors of nodes 𝑖 and 𝑗 . The index of the predicted flow type
𝜙𝑖 ∈ [0, 𝑘] is:

𝜙𝑖 = argmax(softmax(𝑊 [ℎ𝑢𝑖 ;ℎ𝑣𝑖 ] + 𝑏)), (7)

where𝑊 ∈ R2𝑑×(𝑘+1) and 𝑏 ∈ R𝑘+1 are learnable parameters,
and [ℎ𝑢𝑖 ;ℎ𝑣𝑖 ] is the concatenation of ℎ𝑢𝑖 and ℎ𝑣𝑖 . We can then
represent the predicted index set of masked flows as ˆ

𝐹CFG𝑚 = {𝜙𝑖 |𝑖 ∈
[1, |𝐸𝑚 |]}. The objective of CFT is to minimize the following loss:

LCFT = − 1
|𝐹CFG𝑚 |

∑︁
⟨𝑢,𝑣,𝜙 ⟩∈𝐹CFG𝑚

log 𝑃 (𝜙 |𝐺CFG
𝑚 ), (8)

where 𝑃 (𝜙 |𝐺𝑚) is the probability of predicting the original flow
type 𝜙 given the masked CFG 𝐺𝑚 .

In the same way, the DFT objective is to minimize the following
loss:

LDFT = − 1
|𝐹DFG𝑚 |

∑︁
⟨𝑢,𝑣,𝜙 ⟩∈𝐹DFG𝑚

log 𝑃 (𝜙 |𝐺DFG
𝑚 ), (9)

where 𝐹DFG𝑚 is the set of sampled node pairs, 𝐺DFG
𝑚 denotes the

DFG after masking the flow type in 𝐹DFG𝑚 .
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3.3.3 BB-Var Flow Prediction. BB-Var Flow Prediction (BVP) is
similar to CFT and DFT, except that BVP is a binary classification
task that only predicts whether the flow exists or not. Let 𝐺BV =

⟨𝑉 BV, 𝐹BV⟩ denote the graph where 𝑉 BV includes 𝑛 basic blocks
and𝑚 variable nodes, and 𝐹BV is the set of BB-Var flows. We use the
same probability (i.e., 15%) to mask the flow in 𝐺BV, which results
in the masked graph 𝐺BV

𝑚 = ⟨𝑉 BV, 𝐹BV \ 𝐹BV𝑚 , where 𝐹BV𝑚 is the set
of masked flows. The loss of BVP is calculated as:

𝑝⟨𝑢,𝑣⟩ = sigmoid(ℎ𝑢 · ℎ𝑇𝑣 ), (10)

LBVP = − 1
|𝐹BV𝑚 |

∑︁
⟨𝑢,𝑣⟩∈𝐹BV𝑚

[𝑦 log𝑝⟨𝑢,𝑣⟩ + (1 − 𝑦) log(1 − 𝑝⟨𝑢,𝑣⟩)],

(11)

where ℎ𝑢 , ℎ𝑣 ∈ R𝑑 are the hidden vectors of the nodes 𝑢 and 𝑣 in
the last layer, 𝑦 is 1 if ⟨𝑢, 𝑣⟩ ∈ 𝐹BV and 0 otherwise, and 𝑝⟨𝑢,𝑣⟩ is
the probability of predicting that there is an BB-Var flow between
nodes 𝑢 and 𝑣 .

3.3.4 Contrastive Learning. We employ contrastive learning as our
last pre-training task. Contrastive learning aims to learn representa-
tions of an input example (a.k.a. the anchor example) by contrasting
its positive and negative pairs5, which allows models to improve
their capabilities on multiple dimensions, such as scalability [6],
generalization ability [58], global and hierarchical local features
learning [11] and performance on downstream tasks [10, 61].

The key to contrastive learning is to construct positive and neg-
ative examples. Recall that the input of our model can be seen as a
single graph (Section 3.1.3) 𝐺 . Given 𝐺 , we leverage the following
methods to construct positive examples.

• Function Permutation: randomly change the order of the
functions when input contains multiple functions (which is
the majority of cases).

• Function down-sampling: remove one or more functions
randomly when the input contains more than one function.

• Flow Mutation: randomly change some of the flows, i.e.
adding, removing flows, and changing the type of the flows.

• Node Adding/Removing: add some random standalone
nodes (no flow), or remove some nodes (and its flows).

Since most of our inputs contain multiple functions, it is natural
to construct positive examples by treating each function as a sub-
graph, such as function down-sampling, rather than the random
down-sampling used by other methods.

Unlike OSCAR and IRGen, which also use contrastive learning
based on IR, FAIR constructs positive examples using the afore-
mentioned methods instead of using different optimization options
to generate different IRs from the same source code. We believe
that the method of constructing positive examples using different
optimization options would lead to exposure bias of the model on
a downstream task, i.e., the model is only trained on IRs generated
by different optimization options during pre-training, while on
downstream tasks, IRs are generated after the same optimization
options. This could result in a model that only learns how to identify

5Positive examples are examples that are similar to the anchor example, while negative
examples are examples that are different from the anchor examples. The goal is to
make the positive examples closer to the anchor example and the negative examples
farther away in the representation space.

IRs generated by the same source through different optimization
options, rather than different IRs generated by different sources
through the same optimization options.

Some might also argue that when we construct positive exam-
ples by using the methods described above, the underlying IR of
constructed positive examples could be incorrect and semantically
invalid. While this may be true, we think that it does not impact
the effectiveness of the contrastive learning we use. Our goal with
contrastive learning is to enable the model to distinguish similar
and dissimilar examples, and semantically similar IRs will then
result in similar graph representations. As the input to our model
is the graph, we, therefore, are able to make some changes to the
graph of the anchoring example to construct pseudo-graphs with
similar graph structures, without requiring a large-scale dataset
with real-world similar IRs.

As negative examples, we utilize other examples in the training
mini-batch. Then, we feed the input and the positive/negative exam-
ples into the model and obtain their representations. Let 𝑣 ∈ R𝑑 de-
note the representation vector of the𝐺 , and 𝑆pos = {𝑣pos1 , . . . , 𝑣

pos
𝑛 },

𝑆neg = {𝑣neg1 , . . . , 𝑣
neg
𝑚 } be the sets of representations of positive and

negative examples, respectively. The loss of contrastive learning is
computed as follows,

LCL = max(0, 𝐷pos − 𝐷neg +margin), (12)

where𝐷pos, 𝐷neg ∈ R are the averages of the Euclidean distance [16]
between 𝑣 and each element in 𝑆pos and 𝑆neg, respectively.

3.3.5 Overall Objective. The overall pre-training objective is to
minimize the sum of the all above losses, that is,

L = LMLM + LCFT + LDFT + LBVP + LCL (13)

4 EVALUATION SETUP
4.1 Pre-Training
Data Preparation. We adopt the dataset provided by Peng et
al. [46] as our pre-training dataset, which consists of eleven popular
open-source C/C++ projects from GitHub. This dataset includes
41,322 IR programs, 855,792 functions, and 48,023,781 instructions
in total. We further optimize the given IRs using LLVM of version
13.0.1 with the optimization options “-Os” and “-ffast-math”.

Tokenizer. Due to the large gap between the lexical features of
IR and those of the high-level programming languages, we do not
use existing tokenizers developed for high-level languages. Instead,
we build a tokenizer of size 30,000 from scratch using the BPE
algorithm [51] upon the pre-training data.

Hyperparameters.We set the hidden dimension 𝑑 to 768, the
intermediate dimension of feed-forward to 3072, the number of
layers of the Basic Block Embedding module and Encoder module
to 6, and the number of self-attention heads to 12. We set the maxi-
mum length of each basic block to 256, the maximum number of
basic blocks of each program (which is also the number of CFG
nodes) to 64, and the maximum number of DFG nodes to 256. This
results in a total of 138M parameters used for model pre-training,
of which 30M are temporary parameters that are only used during
pre-training. This gives us 108M pre-trained model parameters for
the downstream tasks. We pre-train FAIR for 10 epochs by minimiz-
ing the loss L. We use AdamW [38] as our optimizer. The initial
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learning rate is 5e-5 and the warmup step is 2,000. The pre-training
is run on 4 NVIDIA V100 32G GPUs with a total batch size of 8.

4.2 Downstream Tasks
In this subsection, we present the fine-tuning procedure of FAIR on
four downstream tasks. For each downstream task, we first provide
a brief introduction and then describe the dataset and the evaluation
metrics.

4.2.1 Code-to-Code (C2C) Retrieval. Given a source code as the
query, the code-to-code retrieval task aims to retrieve codes with
the same semantics from a collection of candidates. This task can
evaluate the ability of a model to distinguish between codes/IRs
with different semantics.

We use two datasets for this task, namely, POJ-104 [43] and GCJ6.
POJ-104 contains 42,000 C/C++ programs that implement entry-
level programming assignments for 104 different problems. We use
the train/valid/test splits provided by CodeXGLUE [39], where the
numbers of problems/codes of each split are 64/32,000, 16/8,000, and
24/12,000. GCJ contains the source code from solutions to Google
Code Jam programming challenges and includes 302,070 C/C++
programs across 331 problems. There are no available splits, so we
create the train/valid/test splits, which include 265/26/40 problems
and 181,103/60,230/60,737 programs.

As for the metric, we adopt mean average precision with the
recall level of 499 (i.e., MAP@R, R=499) [39]. That is, we let the
model retrieve the top 499 semantically similar candidates given a
query.

4.2.2 Algorithm Classification. Algorithm classification aims to
categorize a given code. We also use the POJ-104 as the dataset, but
adopt the train/valid/test split created by Ben et al. [5]. The sizes of
train/valid/test splits are 27,649/9,155/9,227. We use the error rate
(ER) on the test set as the evaluation metric.

4.2.3 Heterogeneous Device Mapping. Heterogeneous device map-
ping is the task of choosing the execution device that has the best
performance given an OpenCL Kernel, the Input Data Size andWork
Group Size (i.e., the number of threads that work in a group with
shared memory). We use the dataset provided by Grewe et al. [20],
who formulate this task as a binary classification task. This dataset
consists of two subtasks, namely predicting whether the given
OpenCL kernel will run faster on an Intel CPU or an AMD GPU
and whether it will run faster on an Intel CPU or an NVIDIA GPU.
Both of them contain 680 labeled examples derived from the 256
unique kernels by varying dynamic inputs.

In addition to accuracy (Acc), we use a metric called “Speedup”,
which is the average ratio of the runtime improvement of each
OpenCL on the devices predicted by the model compared to the
runtime of the static mapping. The static mapping chooses CPU
when comparing CPU and AMD GPU, and chooses GPU when
comparing CPU and NVIDIA GPU.

We concatenate the Input Data Size and Work Group Size to
create the input. Following the usual strategy of utilizing this
dataset [5, 14, 20], we use 10-fold cross-validation with rotating
8/1/1 train/valid/test splits for evaluation.

6https://github.com/Jur1cek/gcj-dataset

4.2.4 Optimal Thread Coarsening Factor. Given an OpenCL kernel,
this task is to predict the best-performing thread coarsening fac-
tor, which is a value that determines how many threads to merge
together.

We adopt the dataset provided by [40]. It contains the runtimes
on 17 benchmarks with 4 GPUs having thread coarsening factors
of 1, 2, 4, 8, 16, and 32, respectively. The GPUs are Cypress (AMD
Radeon HD 5900), Tahiti (AMD Tahiti 7970), Fermi (NVIDIA GTX
480) and Kepler (NVIDIA Tesla K20c). It is a 6-way classification
task (i.e., predicting one of the 6 possible factors) and includes 4
subtasks, each corresponding to one GPU.

We use the Speedup metric to evaluate the performance of the
model. Speedup is the ratio of runtime reduction of the GPU at
the factor predicted by the model to the runtime without thread
coarsening (i.e., when the factor is 1).

4.3 Fine-Tuning
The pre-trained FAIR model will be fine-tuned on each individual
downstream task. We discard the modules that are temporarily
added during the pre-training phase, such as the learnable matrix𝑊
and the vector 𝑏 in the classification head module (see Section 3.3.2),
and only preserve all the modules present in Figure 2 when FAIR
is applied to the downstream tasks. For the classification model,
we will add the corresponding classification module so that the
representation vector generated by FAIR can be mapped to each
class. Before fine-tuning, we convert high-level source code into
LLVM IR for each dataset of the downstream tasks with Clang
13.0.1. LLVM 13.0.1 is used to optimize the LLVM IR.

4.4 Baselines
We use two groups of baselines. The first group is composed of mod-
els of high-level language source code, all of which were pre-trained
on source code and have achieved state-of-the-art performance on
various code-related downstream tasks. They are CodeBERT [18],
CodeT5 [57] andUniXcoder [22]. For each downstream task, these
three models are directly fine-tuned on the high-level source code
in the dataset. The second group is composed of models that are
designed for IR, including ncc, IR2VEC, GNN-CDFG, ProGraML,
OSCAR, and IRGen. They are introduced in Section 2.2.

5 RESULTS AND DISCUSSION
To evaluate FAIR, we propose three Research Questions. We run
each experiment three times by using different random seeds and
report the mean. To check the statistical significance of the experi-
mental results, we utilize the Approximate Randomization Test7.

5.1 Comparison with Baselines
RQ1: How effective is FAIR compared with the state-of-the-
art baselines on four downstream tasks?

We conduct experiments to check the performances of all com-
pared approaches on the four downstream tasks. The results of
code-to-code retrieval and algorithm classification are in Table 1,
and the results of heterogeneous devicemapping and optimal thread
coarsening factor are in Tables 2 and 3, respectively. (Note that in

7https://github.com/danieldk/approx-rand-test

https://github.com/danieldk/approx-rand-test
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Table 1: Results onC2C retrieval and algorithm classification.

Models
Retrieval Algorithm

ClassificationPOJ-104 GCJ
MAP@R MAP@R Error Rate

CodeBERT 82.67 77.16 4.61
CodeT5 88.65 79.65 4.12
UniXcoder 90.52 82.23 1.91
ncc 54.19 64.68 5.17
IR2Vec 76.34 77.90 3.93
GNN-CDFG 79.20 66.64 3.72
ProGraML 81.53 71.27 3.38
OSCAR 89.98 81.76 1.92
IRGen 89.22 83.26 2.01
FAIR 92.04 85.41 1.75

Table 2: Results on heterogeneous device mapping.

Models NVIDIA AMD
Acc Speedup Acc Speedup

CodeBERT 86.76 1.58 95.59 2.79
CodeT5 88.54 1.48 93.10 2.59
UnixCoder 89.71 1.50 94.12 2.76
ncc 84.67 1.44 88.09 3.47
IR2Vec 85.32 1.26 91.32 3.51
GNN-CDFG 87.93 1.39 89.16 3.37
ProGraML 88.13 1.41 92.60 2.98
OSCAR 89.52 1.49 94.11 3.34
IRGen 89.86 1.57 94.32 3.60
FAIR 91.61 1.62 96.52 3.63

Table 3: Results on optimal thread coarsening factor.

Models Cypress Tahiti Fermi Kepler

ncc 1.01 1.04 0.95 1.01
IR2Vec 1.18 1.21 1.1 1.08
GNN-CDFG 1.01 0.93 0.92 0.86
ProGraML 1.05 1.12 0.96 0.97
OSCAR 1.21 1.19 1.06 1.07
IRGen 1.22 1.17 1.11 1.08
FAIR 1.25 1.21 1.13 1.08

these tables, (1) the best results are boldfaced, and (2) the differ-
ences between the best result and the other results are statistically
significant at 𝑝 < 0.05.) Overall, FAIR achieves either new SOTA
performance or performance comparable to the current SOTA mod-
els on all four downstream tasks.

In addition to that FAIR achieves new SOTA for the code-to-code
retrieval task, Table 1 also shows that pre-trained models of both
source code (i.e., CodeBERT, CodeT5, and UnixCoder) and IR (i.e.,
OSCAR, IRGen, and FAIR) generally achieve higher performance
then non-pre-training approaches (i.e., ncc, IR2Vec, GNN-CDFG,

and ProGraML) on both of the two datasets. Comparing the perfor-
mance of each approach on different datasets, we find that the ncc
and IR2Vec that use lookup tables perform better on GCJ than on
POJ-104, while the others perform better on POJ-104 than on GCJ.

Examining the results in Table 2, we find that the pre-trained
models (i.e., the first group of models, OSCAR, IRGen, and FAIR)
tend to have better performance than their non-pre-trained counter-
parts. Since the dataset for this task is small (with only 680 examples
per subtask), we speculate that pre-training can help a model learn
more general features and more transferable representations from
large-scale data and subsequently improve its performance on a
downstream task that has insufficient data [1, 13, 35].

However, a much smaller amount of data occurs in the optimal
thread coarsening factor task in Figure 3, where each subtask has
only 17 examples. We find that the IR-based pre-trained model
continues to have better performance than the others. Note that
even a model as small and shallow as IR2VEC has remarkable
performance, possibly because small models require fewer data to
train and are also less likely to overfit the training data [4, 60]. We
do not show the results of the models of the first group in Table 3
because they always predict the same label for all examples. One
reason for this behavior is that the task is a multi-label classification
task, which has a large gap with the pre-training tasks used to pre-
train these models. Another reason is the data distribution gap:
these models are all pre-trained on CodeSearchNet [25] (or plus
C/C# from BigQuery [57]), which does not contain OpenCL kernel-
related code. Above all, having too little data prevents them from
effectively transferring the code representation to this task.

5.2 Model Ablation
RQ2: How do our input representation as well as pre-training
tasks contribute to FAIR’s performance?

For the input representation, we experiment with three variants
of FAIR: (1) FAIR w/o type: remove the type information from all
flows, i.e., only indicate whether the flow exists or not, (2) FAIR
w/o flow: remove the bias in Equation 4 when calculating attention
scores, and (3) FAIR w/ CDFG: replace the input with CDFG+call
graph with the typed flow. With respect to pre-training tasks, we
experiment with the following variants: (1) FAIR w/o MLM: re-
move the MLM pre-training task, (2) FAIR w/o xFT: remove the
CFT/DFT pre-training tasks, (3) FAIR w/o BVP: remove the BVP
pre-training task, (4) FAIR w/o CL: remove the contrastive learn-
ing pre-training task, and (5) FAIR w/o all: remove all pre-training
tasks. The results are shown in Table 4, where the worst results of
each group are underlined.

Several observations deserve mention. First, each part of the
input and each pre-training task can help FAIR to get better per-
formance on downstream tasks. Second, for code-to-code retrieval
and algorithm classification, changing the input to a CDFG has
the greatest impact on performance, especially for GCJ. However,
for heterogeneous device mapping, changing the input to a CDFG
seems to have a smaller impact on performance. As for the contribu-
tion of the pre-training tasks, removing contrastive learning from
the pre-training tasks has the biggest impact on the performance of
the first two tasks. It is because contrastive learning enhances the
model’s capability to identify semantically similar and dissimilar
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Table 4: Ablation results on downstream tasks. The best results in each column are boldfaced, and the worst results in each
group are underlined. In cases where the model predicts the same label for all examples, the result is replaced with a ’-’.

Methods
Retrieval Algorithm

Classification
Device Mapping Thread Coarsening Factor

POJ-104 GCJ AMD NVIDIA Cypress Tahiti Fermi Kepler
MAP@R MAP@R ER Acc Speedup Acc Speedup Speedup Speedup Speedup Speedup

FAIR 92.04 85.41 1.75 91.61 1.62 95.52 3.63 1.13 1.25 1.21 1.08
-w/o type 90.32 83.50 1.79 91.23 1.59 95.11 3.61 1.13 1.24 1.21 1.08
-w/o flow 88.95 81.83 1.94 90.66 1.48 94.43 3.47 1.12 1.22 1.20 1.08
-w/ CDFG 87.13 79.39 2.48 91.01 1.56 95.09 3.58 1.13 1.24 1.20 1.07
-w/o MLM 91.85 84.94 1.91 89.02 1.40 93.85 3.25 - 1.21 - -
-w/o xFT 91.14 84.86 2.03 91.38 1.56 95.16 3.34 1.11 1.18 1.19 1.08
-w/o BVP 91.25 85.19 1.99 91.6 1.59 95.52 3.64 1.12 1.21 1.21 1.08
-w/o CL 88.09 81.61 2.88 90.96 1.58 95.15 3.59 1.11 1.18 1.18 1.06
-w/o all 87.36 79.14 2.98 - - - - - - - -

Table 5: Results on zero-shot code-to-code retrieval.

Models CodeBERT CodeT5 UniXcoder OSCAR IRGen FAIR

MAP@R 8.70 7.41 21.19 22.72 24.83 27.22

IRs, which is what the model needs to perform well both down-
stream tasks. Finally, in most cases, for the last two tasks with very
limited data, model performance does not show any significant
change when we remove one of the pre-training tasks, but when
we remove all of them, performance deteriorates.

5.3 Transferability
RQ3:Howwell can FAIR transfer to IR compiled fromunseen
programming languages in the zero-shot setting?

We evaluate FAIR on the code-to-code retrieval tasks using a
dataset of unseen programming languages. This experiment will
also allow us to measure the ability of FAIR to represent the IR pro-
gram of low-resource programming languages. Specifically, there
are many niche or emerging languages that do not have the same
active community and large-scale data as popular languages needed
to effectively train a model. Although the source codes of program-
ming languages share some lexical similarity, and existing work
has demonstrated the ability of some source code-based models to
transfer between programming languages, we believe that an IR-
based approach is better suited to do this because IR can completely
eliminate the differences between programming languages.

We collect 10,751 Rust solutions to 59 online judge problems
from the CodeNet Corpus [47]. The Rust program is compiled to
LLVM IR by using Cargo 1.68.28. We only choose the pre-trained
models in Section 4.4 as baselines9. Other settings are the same as
those shown in Section 4.2.1.

Results are shown in Table 5. As can be seen, (1) FAIR achieves
state-of-the-art performance, (2) the IR-based models (i.e., OSCAR,
IRGen, and FAIR) are generally better than the source code-based
models, and (3) themodels with contrastive learning (i.e., UniXcoder,
OSCAR, IRGen, and FAIR) have a significant advantage.
8https://doc.rust-lang.org/stable/cargo/
9Only pre-trained models can be evaluated in the zero-shot setting.

5.4 Qualitative Error Analysis
To understand the strengths and weaknesses of FAIR, we conduct
a qualitative analysis of FAIR and two existing pre-trained mod-
els of IR (i.e., IRGen and OSCAR) and a method using CDFG (i.e.,
ProGraML). Specifically, we conduct an error analysis according to
three groups of test examples taken from the POJ-104 dataset of the
code-to-code retrieval task. The first group contains 50 examples
randomly selected from all of the test examples that all of the four
models handle correctly. The second group contains 50 examples
randomly selected from all of the test examples for which FAIR
is correct and the other three models are wrong. The third group
contains 50 examples randomly selected from all the test examples
for which none of the models handles correctly. We believe that
this last group contains some of the most challenging examples.

By examining the examples in the first and second groups, we
find that FAIR has strengths in handling IR programs with the
following characteristics:

(1) Longer IR programs: The average number of lines of IR pro-
grams in the first group is 243.26 (i.e., with 1083.34 tokens), while
that in the second group is 256.84 (i.e., with 1336.02 tokens). This
shows that FAIR performs better on longer IR programs, which
can likely be attributed to the fact that we have scaled down the
input size in FAIR. This also explains FAIR’s bigger advantage on
GCJ than on POJ-104 compared with the other models, and the
significant performance degradation of GNNs-based GNN-CDFG
and ProGraML on GCJ in Table 1. Recall that the IR of the code in
GCJ is seven times longer than that of the code in POJ-104 [32], but
FAIR is able to scale down the size of the input IR program to be
less affected by the increase in the size of the input.

(2) More functions: We find that in the first group, there is only
one example with five or more functions, while the second group
has eight. We speculate that our use of call graphs to connect the
independent functions in the CFG and the DFG enables FAIR to get
a better understanding of the relationships between functions.

(3) More diverse opcodes: the average number of opcode types
that a DFG has in each IR in the first group and second group are
12.68 and 16.32, respectively. This is because we explicitly assign the
opcode information to the flow type, then use the self-attention bias
and pre-training tasks to make the model learn this information.

https://doc.rust-lang.org/stable/cargo/
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A closer look at the third group of examples highlights FAIR’s
limitations in handling complex data types in IR, especially data
type-sensitive programs with multiple conversions. This may be
because we do not explicitly extract data types from the instruc-
tion nodes during DFG simplification, preventing the model from
learning type-related information easily.

6 THREATS TO VALIDITY
Construct Validity. We do not check for duplicates in the pre-

training data and the data on the downstream task, but we do
not think this is a concern because the pre-training data contains
neither algorithm-type data nor OpenCL programs, and therefore
we think the impact of the data overlap on the downstream task is
negligible. Prior studies follow the same setup [32, 46].

External Validity.We use the LLVM IR as the compiler intermedi-
ate representation since LLVM is one of the most popular compilers
and supports lots of programming languages. We are not sure if
our model has the same performance on other IRs such as the GCC
IR. Previous work has chosen to use LLVM IR as well [5, 14, 32, 55].

Besides, we evaluate the validity of FAIR on four tasks, including
retrieval and classification tasks, with datasets containing IR com-
piled from C/C++ and OpenCL using Clang. We are not sure if FAIR
will have different performance on other tasks, or on IR generated
with other compiler front-ends. We used another programming
language with a front-end in Section 5.3 to verify to some extent
the external validity of FAIR at this point. Moreover, we make more
choices of downstream tasks and datasets than in previous work, for
example, Li et al. [32] consider code-to-code retrieval on POJ-104
and GCJ, which is our first downstream task.

7 CONCLUSION AND FUTUREWORK
We proposed FAIR, a flow type-aware IR-based pre-trained model,
which (1) reduces the input size and adds more flow type informa-
tion by splitting the CDFG into a CFG and a DFG, simplifying the
DFG, adding flow type information and call graph to the two graphs,
and connecting a CFG and a DFG by adding flows to them; (2) uses
the Transformer Encoder andWord Embedding to embed the nodes
of a CFG and a DFG respectively and learn the flow information
in the graph; and (3) employs five pre-training tasks to pre-train
FAIR so that it can learn text semantics, flow information, and
the overall representation of an IR program. By fine-tuning FAIR
on four downstream tasks, we show that FAIR achieved state-of-
the-art performance on all tasks. Our ablation study and zero-shot
investigation experiment also demonstrated the advantages of the
different components of FAIR and its representation capability.

In future work, we expect to use IR for representation learning
at the project level since the compilation process can give more
cross-file information and project-level information in the IR.
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