
Tracing Requirements in So�ware Design
Zeheng Li

Southern Methodist University
Dallas, TX 75275-0122, USA

zehengl@smu.edu

Mingrui Chen
Southern Methodist University

Dallas, TX 75275-0122, USA
mingruic@smu.edu

LiGuo Huang
Southern Methodist University

Dallas, TX 75275-0122, USA
lghuang@smu.edu

Vincent Ng
University of Texas at Dallas

Richardson, TX 75083-0688, USA
vince@hlt.utdallas.edu

Ruili Geng
Spectral MD

Dallas, TX 75201, USA
rgeng@smu.edu

ABSTRACT
Software requirement analysis is an essential step in software de-
velopment process, which de�nes what is to be built in a project.
Requirements are mostly written in text and will later evolve to
�ne-grained and actionable artifacts with details about system con-
�gurations, technology stacks, etc. Tracing the evolution of re-
quirements enables stakeholders to determine the origin of each
requirement and understand how well the software’s design re-
�ects to its requirements. Reckoning requirements traceability is
not a trivial task, we focus on applying machine learning approach
to classify traceability between various associated requirements.
In particular, we investigate a 2-learner, ontology-based approach,
where we train two classi�ers to separately exploit two types of
features, lexical features and features derived from a hand-built
ontology. In comparison to a supervised baseline system that uses
only lexical features, our approach yields a relative error reduction
of 25.9%. Most interestingly, results do not deteriorate when the
hand-built ontology is replaced with its automatically constructed
counterpart.

CCS CONCEPTS
• Software and its engineering → Requirements analysis;
Software design engineering;

KEYWORDS
Requirements Traceability, Software Design, Machine Learning

ACM Reference format:
Zeheng Li, Mingrui Chen, LiGuo Huang, Vincent Ng, and Ruili Geng. 2017.
Tracing Requirements in Software Design. In Proceedings of 2017 Interna-
tional Conference on Software and Systems Process, Paris, France, July 5–7,
2017 (ICSSP’17), 5 pages.
DOI: 10.1145/3084100.3084102

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSSP’17, Paris, France
© 2017 ACM. 978-1-4503-5270-3/17/07. . . $15.00
DOI: 10.1145/3084100.3084102

1 INTRODUCTION
Evolution and re�nement of requirements is guiding the software
system development process. Requirement speci�cations, mostly
documented in natural language, are re�ned with additional details
of design and implementation information as a software project
move forwards in its development life cycle. An important task in
software development process is requirements traceability, which
is concerned with linking requirements in which one is a re�ne-
ment of the other. Being able to establish traceability links allows
stakeholders to �nd the origin of each requirement and track ev-
ery change that has been made to it, and ensures the continuous
understanding of the problem that needs to be solved so that the
right system is delivered.

In practice, one is given a set of high-level (coarse-grained) re-
quirements and a set of low-level (�ne-grained) requirements, and
requirements traceability aims to �nd for each high-level require-
ment all the low-level requirements that re�ne it. Note that the
resulting mapping between high- and low-level requirements is
many-to-many, because a low-level requirement can potentially
re�ne more than one high-level requirement.

As an example, consider the three high-level requirements and
two low-level requirements shown in Figure 1 about the well-
known Pine email system. In this example, three traceability links
should be established: (1) HR01 is re�ned by UC01 (because UC01
speci�es the shortcut key for saving an entry in the address book);
(2) HR02 is re�ned by UC01 (because UC01 speci�es how to store
contacts in the address book); and (3) HR03 is re�ned by UC02
(because both of them are concerned with the help system).

From a text mining perspective, requirements traceability is very
challenging task. First, there could be abundant information irrele-
vant to the establishment of a link in one or both of the requirements.
For instance, all the information under the Description section in
UC01 is irrelevant to the establishment of the link between UC01
and HR02. Worse still, as the goal is to induce a many-to-many
mapping, information irrelevant to the establishment of one link
could be relevant to the establishment of another link involving
the same requirement. For instance, while the Description section
is irrelevant to linking UC01 and UR02, it is crucial to linking UC01
and HR01. Above all, a link can exist between a pair of requirements
(HR01 and UC01) even if they do not possess any overlapping or
semantically similar content words.

Virtually all existing approaches to the requirements traceabil-
ity task were developed in the software engineering (SE) research

25

ICSSP’17, July 5–7, 2017, Paris, France Zeheng Li, Mingrui Chen, LiGuo Huang, Vincent Ng, and Ruili Geng

Figure 1: Samples of high- and low-level requirments.

community. Related work on this task can be broadly divided into
two categories. In manual approaches, requirements traceability
links are recovered manually by developers. Automated approaches,
on the other hand, have relied on information retrieval (IR) tech-
niques, which recover links based on computing the similarity
between a given pair of requirements. Hence, such similarity-based
approaches are unable to recover links between those pairs that do
not contain overlapping or semantically similar words or phrases.

In light of this weakness, we recast requirements traceability as
a supervised binary classi�cation task, where we classify each pair
of high- and low-level requirements as positive (having a link) or
negative (not having a link). We represent each pair of requirements
using two types of features. First, we employ word pairs, each of
which is composed of a word taken from each of the two require-
ments involved. These features will enable the learning algorithm
to identify both semantically similar and dissimilar word pairs
that are strongly indicative of a re�nement relation between the
two requirements, thus overcoming the aforementioned weakness
associated with similarity-based approaches.

Next, we employ features derived from an ontology hand-built
by a domain expert.1 The ontology contains only a verb clustering
and a noun clustering: the verbs are clustered by the function they
perform, whereas a noun cluster corresponds to a (domain-speci�c)
semantic type.

There are at least two reasons why the ontology might be use-
ful for identifying traceability links. First, since only those verbs
and nouns that (1) appear in the training data and (2) are deemed
relevant by the domain expert for link identi�cation are included
in the ontology, it provides guidance to the learner as to which
words/phrases in the requirements it should focus on in the learn-
ing process.2 Second, the verb and noun clusters provide a robust
generalization of the words/phrases in the requirements. For in-
stance, a word pair that is relevant for link identi�cation may still
be ignored by the learner due to its infrequency of occurrence. The
features that are computed based on these clusters, on the other

1The sample ontology built for the Pine dataset is available at http://lyle.smu.edu/
~zehengl/traceability/.
2These relevant words/phrases are reminiscent of annotator rationales [14]. However,
it is important to note that we are not using them to generate additional training
instances, unlike in the classical annotator rationales framework.

hand, will be more robust to the infrequency problem and therefore
potentially provide better generalizations.

Our main contribution in this paper lies in the proposal of a
2-learner, ontology-based approach to the task of traceability link
prediction, where, for the sake of robustness, we train two classi�ers
to separately exploit the word-pair features and the ontology-based
features. Results on a traceability dataset involving the Pine do-
main reveal that our use of two learners and the ontology-based
features are both key to the success of our approach: it signi�cantly
outperforms not only a supervised baseline system that uses only
word pairs features, but also a system that trains a single classi�er
over both the word pairs and the ontology-based features. Perhaps
most interestingly, results do not deteriorate when the hand-built
ontology is replaced with an automatically constructed ontology.

2 RELATEDWORK
Automated or semi-automated requirements traceability has been
exploited by many researchers . Pierce [11] designed a tool that
maintains a requirements database to aid automated requirements
tracing. Jackson [8] proposed a keyphrase-based approach for trac-
ing a large number of requirements of a large Surface Ship Com-
mand System. More advanced approaches relying on information
retrieval (IR) techniques, such as the tf-idf-based vector space model
[13], Latent Semantic Indexing [5, 6, 10], probabilistic networks
[3], and Latent Dirichlet Allocation [12], have been investigated,
where traceability links were generated by calculating the textual
similarity between requirements using similarity measures such
as Dice, Jaccard, and Cosine coe�cients [4]. All these methods
were developed based on either matching keywords or identifying
similar words across a pair of requirements. In recent years, Li
[9] has studied the feasibility of employing supervised learning to
accomplish this task.

3 DATASET
We employ the well known Pine system for evaluation. This dataset
consists of a set of 49 (high-level) requirements and a set of 51 (low-
level) use case speci�cations about Pine, an email system developed
at the University of Washington. Out of the 2499 pairs of require-
ment and use case speci�cation, only 10% (250) are considered
traceability links.

26

Tracing Requirements in So�ware Design ICSSP’17, July 5–7, 2017, Paris, France

4 APPROACH
In this section, we describe our supervised approach.
4.1 Classi�er Training
Each instance corresponds to a high-level requirement and a low-
level requirement. Hence, we create instances by pairing each high-
level requirement with each low-level requirement. The class value
of an instance is positive if the two requirements involved should
be linked; otherwise, it is negative. Since we conduct 5-fold cross-
validation experiments, we randomly partition the instances into
�ve folds of roughly the same size, training only four folds and eval-
uate on the remaining fold in each fold experiment. Each instance
is represented using seven types of features, as follows.

1. Same words. We create one binary feature for each word w
appearing in the training data. Its value is 1 if w appears in both
requirements in the pair under consideration. Hence, this feature
type contains the subset of the word pair features mentioned earlier
where the two words in the pair are the same.

2. Di�erent words. We create one binary feature for each word
pair (wi , w j) collected from the training instances, where wi and
w j are non-identical words appearing in a high-level requirement
and a low-level requirement respectively. Its value is 1 if wi and
w j appear in the high-level and low-level pair under consideration,
respectively. Hence, this feature type contains the subset of the
word pair features where the two words in the pair are di�erent.

3. Verb pairs. We create one binary feature for each verb pair
(vi , vj) collected from the training instances, where (1) vi and vj
appear in a high-level requirement and a low-level requirement
respectively, and (2) both verbs appear in the ontology. Its value
is 1 if vi and vj appear in the high-level and low-level pair under
consideration, respectively. Using these verb pairs as features may
allow the learner to focus on verbs that are relevant to traceability
prediction.

4. Verb group pairs. For each verb pair feature described above, we
create one binary feature by replacing each verb in the pair with its
cluster id in the ontology. Its value is 1 if the two verb groups in the
pair appear in the high-level and low-level pair under consideration,
respectively. These features may enable the resulting classi�er to
provide robust generalizations in cases where the learner chooses
to ignore certain useful verb pairs owing to their infrequency of
occurrence.

5. Noun pairs. We create one binary feature for each noun pair
(ni , nj) collected from the training instances, where (1) ni and nj
appear in a high-level requirement and a low-level requirement
respectively, and (2) both nouns appear in the ontology. Its value
is computed in the same manner as the verb pairs. These noun
pairs may help the learner to focus on verbs that are relevant to
traceability prediction.

6. Noun group pairs. For each noun pair feature described above,
we create one binary feature by replacing each noun in the pair
with its cluster id in the ontology. Its value is computed in the
same manner as the verb group pairs. These features may enable
the classi�er to provide robust generalizations in cases where the
learner chooses to ignore certain useful noun pairs owing to their
infrequency of occurrence.

7. Dependency pairs. In some cases, the noun/verb pairs may
not provide su�cient information for traceability prediction. For
example, the verb pair feature (delete, delete) is suggestive of a

positive instance, but the instance may turn out to be negative if
one requirement concerns deleting messages and the other concerns
deleting folders. As another example, the noun pair feature (folder,
folder) is suggestive of a positive instance, but the instance may
turn out to be negative if one requirement concerns creating folders
and the other concerns deleting folders.

In other words, we need features that encode the verbs and nouns
in isolation but the relationship between them. To do so, we �rst
parse each requirement using the Stanford dependency parser [7],
and collect each noun-verb pair (ni ,vj) connected by a dependency
relation. We then create binary features by pairing each related
noun-verb pair found in a high-level training requirement with each
related noun-verb pair found in a low-level training requirement.
The feature value is 1 if the two noun-verb pairs appear in the pair
of requirements under consideration. To enable the learner to focus
on learning from relevant verbs and nouns, only verbs and nouns
that appear in the ontology are used to create these features.

We employ LIBSVM [2] as the learning algorithm for training a
binary SVM classi�er on the training set. We use a linear kernel,
tuning the C value (the regularization parameter) to maximize F-
score on the development (dev) set. All other learning parameters
are set to their default values.

To improve performance, we perform feature selection (FS) using
the backward elimination algorithm [1]. Starting with all seven
feature types, the algorithm iteratively removes one feature type
at a time until only one feature type is left. Speci�cally, in each
iteration, it removes the feature type whose removal yields the
largest F-score on the dev set. We picked the feature subset that
achieving the largest F-score on the dev set over all iterations.

Note that tuning the C value (from libSVM) and selecting the
feature subset both require the use of a dev set. In each fold experi-
ment, we reserve one fold for development and use the remaining
three folds for training classi�ers. We jointly tune the C value and
select the feature subset to maximize F-score on the dev set.

4.2 Two Extensions
Next, we present two extensions to our supervised approach.

4.2.1 Employing Two Views. Our �rst extension involves split-
ting our feature sets into two views (i.e., disjoint subsets) and train-
ing one classi�er on each view. To motivate this extension, recall
that the ontology is composed of words and phrases that are deemed
relevant to traceability prediction according to a SE expert. In other
words, the (word- and cluster-based) features derived from the
ontology (i.e., features 3–7 in our feature set) are su�cient for trace-
ability prediction, and the remaining features (features 1 and 2)
are not needed according to the expert. While some of the word
pairs that appear in features 1 and 2 also appear in features 3–7,
most of them do not. If these expert-determined irrelevant features
are indeed irrelevant, then retaining them could be harmful for
classi�cation because they signi�cantly outnumber their relevant
counterparts. However, if some of these features are relevant (be-
cause some relevant words are missed by the expert, for instance),
then removing them would not be a good idea either.

Our solution to this dilemma is to divide the feature set into two
views. Given the above discussion, a natural feature split would
involve putting the ontology-based features (features 3–7) into one
view and the remaining ones (features 1–2) into the other view.

27

ICSSP’17, July 5–7, 2017, Paris, France Zeheng Li, Mingrui Chen, LiGuo Huang, Vincent Ng, and Ruili Geng

Then we train one SVM classi�er on each view as before. During
test time, we apply both classi�ers to a test instance, classifying it
using the prediction associated with the higher con�dence value.3
This setup would prevent the expert-determined irrelevant features
from a�ecting the relevant ones, and at the same time avoid totally
discarding them in case they do contain some relevant information.

A natural question is: why not simply use backward elimination
to identify the irrelevant features? While we believe FS can help, it
may not be as powerful as one would think because (1) backward
elimination is greedy; and (2) the features are selected using a fairly
small set of instances (i.e., the dev set) and may therefore be biased
towards the dev set.

In fact, we view our 2-learner setup and FS as complementary
rather than competing solutions to our dilemma. In particular, we
will employ FS in the 2-learner setup: when training the classi�ers
on the two views, we employ backward elimination in the same
way as before, removing the feature type (from one of the two
classi�ers) whose removal yields the highest F-score on the dev set
in each iteration.

4.2.2 Learning the Ontology. An interesting question is: can we
learn instead of hand-build the ontology? Not only is this question
interesting from a research perspective, it is of practical relevance:
even if a domain expert is available, hand-constructing the ontology
is a time-consuming and error-prone process. Below we describe the
steps we propose for ontology learning, which involves producing
a verb clustering and a noun clustering.

Step 1: Verb/Noun selection. We select the nouns, noun phrases
(NPs) and verbs in the training set to be clustered. Speci�cally, we
select a verb/noun/NP if (1) it appears more once in the training
data; (2) it contains at least three characters (thus avoiding verbs
such as be); and (3) it appears in the high-level but not the low-level
requirements and vice versa.

Step 2: Verb/Noun representation. We represent each noun/NP/verb
as a feature vector. Each verb v is represented using the set of
nouns/NPs collected in Step 1. The value of each feature is binary:
1 if the corresponding noun/NP occurs as the direct or indirect
object of v in the training data (as determined by the Stanford
dependency parser), and 0 otherwise. Similarly, each noun n is rep-
resented using the set of verbs collected in Step 1. The value of each
feature is binary: 1 if n serves as the direct or indirect object of the
corresponding verb in the training data, and 0 otherwise.

Step 3: Clustering. To produce a verb clustering and a noun clus-
tering, we cluster the verbs and the nouns/NPs separately. We
experiment with two clustering algorithms. The �rst one, which we
refer to as Simple, is the classical single-link algorithm. Single-link
is an agglomerative algorithm where each object to be clustered
is initially in its own cluster. In each iteration, it merges the two
most similar clusters and stops when the desired number of clusters
is reached. The second clustering algorithm is motivated by the
following observation. We could produce a better verb clustering
if each verb were represented using noun categories rather than
nouns/NPs, because there is no need to distinguish between the
nouns in the same category in order to produce the verb clusters
we desire. Similarly, we could produce a better noun clustering if
each noun were represented using verb categories.
3To compute the con�dence value associated with a prediction, we take the absolute
distance of the underlying test instance from the hyperplane.

In practice, we do not have the noun and verb categories (be-
cause they are what the clustering algorithm is trying to produce).
However, we can use the (partial) verb clusters produced during
the verb clustering process to improve noun clustering and vice
versa. This motivates our Interactive clustering algorithm. Like Sim-
ple, Interactive is also a single-link clustering algorithm. Unlike
Simple, which produces the two clusterings separately, Interactive
interleaves the verb and noun clustering processes, as described
below.

Initially, each verb and each noun is in its own cluster. In each
iteration, we (1) merge the two most similar verb clusters; (2) update
the noun’s feature representation by merging the two verb features
that correspond to the newly formed verb cluster4; (3) merge the
two most similar noun clusters using this updated feature repre-
sentation for nouns; (4) update the verb’s feature representation
by merging the two noun features that correspond to the newly
formed noun cluster. As in Simple, Interactive terminates when the
desired number of clusters is reached.

For both clustering algorithms, we compute the similarity be-
tween two objects by taking the dot product of their feature vectors.
Since we are using single-link clustering, the similarity between
two clusters is the similarity between the two most similar objects
in the two clusters.

Since we do not know the number of clusters to be produced a pri-
ori, we produced three noun clusterings and three verb clusterings
(with 10, 15, and 20 clusters each). We then select the combination
of noun clustering, verb clustering, the C value, and the feature sub-
set that maximizes F-score on the dev set, and apply the resulting
combination on the test set.

5 EVALUATION
5.1 Experimental Setup
We employ as our evaluation measure F-score, which is the un-
weighted harmonic mean of recall and precision. Recall is the per-
centage of links in the gold standard that are recovered by our
system. Precision is the percentage of links recovered by our sys-
tem that are correct. We preprocess each document by removing
stopwords and stemming the remaining words. All results are ob-
tained via 5-fold cross validation.
5.2 Results and Discussion

5.2.1 Baseline Systems. We present two unsupervised and two
supervised baselines.

Baseline 1: Tf.idf. Motivated by previous work, we employ tf.idf
as our �rst unsupervised baseline. Each document is represented
as a vector of unigrams. The value of each feature is its tf.idf value.
Cosine is used to compute the similarity between two documents.
Any pair of requirements whose similarity exceeds a given thresh-
old is labeled as positive. We tested thresholds from 0.1 to 0.9 with
an increment of 0.1 and report results using the best threshold, es-
sentially giving an advantage to it in the performance comparison.
As we can see in row 1 of Table 1, it achieves an F-score of 54.5%.

Baseline 2: LDA.. Also motivated by previous work, we employ
LDA as our second unsupervised baseline. We train an LDA on
our data to produce n topics (where n=10, 20, . . ., 60). We then use

4This will reduce the number of features by one. The value of the “merged” feature
will be the disjunction of the values of the original features.

28

Tracing Requirements in So�ware Design ICSSP’17, July 5–7, 2017, Paris, France

Table 1: Five-fold cross-validation results.
System Feature

Selection?
Recall Prec. F-score

Baseline Systems
1 Tf.idf N/A 73.6 43.3 54.5
2 LDA N/A 30.4 39.2 34.2

3 Features 1&2 No 50.0 66.5 57.1
Yes 62.4 73.9 67.7

4 Features 1&2 +
LDA

No 50.4 67.0 57.5
Yes 66.0 72.4 69.0

Our Approach

5 Single learner
+manual clusters

No 54.0 73.0 62.1
Yes 66.8 79.1 72.5

6 Single learner
+induced clusters

No 53.2 73.5 61.7
Yes 65.6 78.1 71.3

7 Two learners
+manual clusters

No 61.6 84.6 71.3
Yes 68.4 84.2 75.5

8 Two learners
+induced clusters

No 62.8 81.8 71.0
Yes 71.2 84.0 77.1

the n topics as features for representing each document, where the
value of a feature is the probability the document belongs to the
corresponding topic. Cosine is used as the similarity measure. Any
pair of requirements whose similarity exceeds a given threshold
is labeled as positive. We tested thresholds from 0.1 to 0.9 with
an increment of 0.1 and report results using the best threshold,
essentially giving an advantage to it in the performance comparison.
As we can see in row 2 of Table 1, it achieves an F-score of 34.2%.

Baseline 3: Features 1 and 2. As our �rst supervised baseline, we
train a SVM classi�er using only features 1 and 2 (all the word
pairs). As we can see from row 3 of Table 1, it achieves F-scores of
57.1% (without FS) and 67.7% (with FS). These results suggest that
FS is indeed useful.

Baseline 4: Features 1, 2, and LDA.. As our second supervised
baseline, we augment the feature set used in Baseline 3 with the LDA
features used in Baseline 2 and then train a SVM classi�er. We select
the best n (number of topics) using the dev set. As we can see in
row 4 of Table 1, this is the best of the four baselines: it signi�cantly
outperforms Baseline 3 regardless of whether feature selection is
performed5, suggesting the usefulness of the LDA features.

5.2.2 Our Approach. Next, we evaluate our 2-learner, ontology-
based approach. In the single-learner experiments, a classi�er is
trained on the seven features described in Section 4.1, whereas in
the 2-learner experiments, these seven features are split as described
in Section 4.2.

Setting 1: Single learner, manual clusters. As we can see in row 5
of Table 1, this classi�er signi�cantly outperforms the best baseline
(Baseline 4): F-scores increase by 4.6% (without FS) and 3.5% (with
FS). Since the only di�erence between this and Baseline 4 lies in
whether the LDA features or the ontology-based features are used,
these results seem to suggest that features formed from the clusters
in our hand-built ontology are more useful than the LDA features.

Setting 2: Single learner, induced clusters. As we can see from
row 6 of Table 1, this classi�er performs statistically indistinguish-
ably from the one in Setting 1. This is an encouraging result: it
shows that even when features are created from induced rather
than manual clusters, performance does not signi�cantly drop re-
gardless of whether FS is performed.
5All signi�cance tests are two-tailed paired t -tests (p < 0.05).

Setting 3: Two learners, manual clusters. As we can see from
row 7 of Table 1, this classi�er performs signi�cantly better than
the one in Setting 1: F-scores increase by 9.2% (without FS) and 3.0%
(with FS). As the two settings di�er only w.r.t. whether one or two
learners are used, the improvements suggest the e�ectiveness of
our 2-learner framework.

Setting 4: Two learners, induced clusters. As we can see from
row 8 of Table 1, this classi�er performs signi�cantly better than
the one in Setting 2: F-scores increase by 9.3% (without FS) and
5.8% (with FS). It also performs indistinguishably from the one in
Setting 3. Taken together, these results suggest that (1) our 2-learner
framework is e�ective in improving performance, and (2) features
derived from induced clusters are as e�ective as those from manual
clusters.

Overall, these results show that (1) our 2-learner, ontology-based
approach is e�ective, and (2) feature selection consistently improves
performance.
6 CONCLUSIONS
We investigated a 2-learner, ontology-based approach to supervised
traceability prediction. Results showed that (1) our approach is
e�ective: in comparison to the best baseline, relative error reduces
by 25.9%; and (2) results obtained via induced clusters were as
competitive as those obtained via manual clusters.

REFERENCES
[1] Avrim Blum and Pat Langley. 1997. Selection of Relevant Features and Examples

in Machine Learning. Arti�cial Intelligence 97, 1–2 (1997), 245–271.
[2] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2, 3
(2011), 27.

[3] Jane Cleland-Huang, Ra�aella Settimi, Chuan Duan, and Xuchang Zou. 2005.
Utilizing supporting evidence to improve dynamic requirements traceability. In
Requirements Engineering, 2005. Proceedings. 13th IEEE International Conference
on. IEEE, 135–144.

[4] Johan Natt Dag, Björn Regnell, Pär Carlshamre, Michael Andersson, and Joachim
Karlsson. 2002. A feasibility study of automated natural language requirements
analysis in market-driven development. Requirements Engineering 7, 1 (2002),
20–33.

[5] Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genove�a Tortora. 2007.
Recovering traceability links in software artifact management systems using
information retrieval methods. ACM Transactions on Software Engineering and
Methodology (TOSEM) 16, 4 (2007), 13.

[6] Andrea De Lucia, Rocco Oliveto, and Genove�a Tortora. 2009. Assessing IR-based
traceability recovery tools through controlled experiments. Empirical Software
Engineering 14, 1 (2009), 57–92.

[7] Marie-Catherine de Marne�e, Bill MacCartney, and Christopher D. Manning.
2006. Generating Typed Dependency Parses from Phrase Structure Parses. In Pro-
ceedings of the 5th International Conference on Language Resources and Evaluation.
449–454.

[8] Justin Jackson. 1991. A keyphrase based traceability scheme. In Tools and Tech-
niques for Maintaining Traceability During Design, IEE Colloquium on. IET, 2–1.

[9] Zeheng Li, Mingrui Chen, LiGuo Huang, and Vincent Ng. 2015. Recovering
Traceability Links in Requirements Documents. In Proceedings of the Nineteenth
Conference on Computational Natural Language Learning. 237–246.

[10] Marco Lormans and Arie Van Deursen. 2006. Can LSI help reconstructing require-
ments traceability in design and test?. In Software Maintenance and Reengineering,
2006. CSMR 2006. Proceedings of the 10th European Conference on. IEEE, 10–pp.

[11] Robert A Pierce. 1978. A requirements tracing tool. ACM SIGSOFT Software
Engineering Notes 3, 5 (1978), 53–60.

[12] Daniel Port, Allen Nikora, Jane Hu�man Hayes, and LiGuo Huang. 2011. Text
mining support for software requirements: Traceability assurance. In System
Sciences (HICSS), 2011 44th Hawaii International Conference on. IEEE, 1–11.

[13] Senthil Karthikeyan Sundaram, Jane Hu�man Hayes, and Alexander Dekhtyar.
2005. Baselines in requirements tracing. ACM SIGSOFT Software Engineering
Notes 30, 4 (2005), 1–6.

[14] Omar Zaidan, Jason Eisner, and Christine Piatko. 2007. Using “Annotator Ratio-
nales” to Improve Machine Learning for Text Categorization. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association
for Computational Linguistics; Proceedings of the Main Conference. 260–267.

29

