
Handling Planning Failures with Virtual Actions

Jicheng Fu, Sijie Tian

Computer Science Department

University of Central Oklahoma

Edmond, OK, USA

jfu@uco.edu, stain@uco.edu

Vincent Ng, Farokh B. Bastani, and I-Ling Yen

Computer Science Department

University of Texas at Dallas

Richardson, TX, USA

vince@hlt.utdallas.edu, {bastani, ilyen}@utdallas.edu

Abstract— Artificial intelligence (AI) planners have been

widely used in many fields, such as intelligent agents,

autonomous robots, web service compositions, etc. However,

existing AI planners share a common problem: When given a

problem to solve, they either return a solution if one exists or

report that no solution is found. However, simply reporting

failure leaves no clues for people to trace the causes of the

planning failure. In this paper, we present a novel approach

that can propose virtual actions in the event of planning

failure. Virtual actions enable traditional planners to succeed

and hence return an incomplete plan instead of merely an

error message. More importantly, the specifications of the

virtual actions suggest what the missing parts may contain,

thus providing important clues to users as to the nature of the

failure. Experimental results show that our approach

constantly returns useful and comprehensible information for

humans, thus making AI planning more practical when solving

real-world problems.

Keywords-Artificial intelligence planning; Graphplan; Level

off; Genetic algorithm

I. INTRODUCTION

Artificial Intelligence (AI) planners, which seek to
generate a plan of actions that lead us from an initial state to
a goal condition, have been widely used in software
engineering fields to help automate various software
development tasks, such as test case generation [1], program
synthesis [2], automated web service composition [3], etc. AI
planning is declarative and goal-oriented, which enable users
to focus on high-level specifications (i.e., what to do) and let
AI planner automatically determine the low-level details
(i.e., how to get things done).

Although AI planning strives to solve real world
problems, its practicality depends heavily on the
completeness of the planning domains. However, in the real
world development processes, it is frequently noticed that not
all planning domains are complete, i.e., actions in the
planning domains may not be readily available for the
desired system goal. For example, web services are usually
modeled as planning actions and hence AI planning can be
applied to web service composition [4]. It is unrealistic,
however, to assume that all the necessary web services are
available in the Internet. Such an incomplete domain tends to
result in planning failures. In case that some web services are

missing, the planner will simply return an error message of
failing to find a plan. Since the planning failure does not
provide any useful information, the common practice is to
manually identify the usable as well as missing services. The
missing ones will be developed from scratch or adapted from
some existing services.

To our knowledge, when given a problem to solve,
existing AI planners either return a plan if one exists or
report that no solution is found. In the latter case, all the
efforts in the planning process are wasted. For example,
consider the popular travel reservation case study system [5].
Many actions (i.e., services), such as booking airline, hotel,
shuttle, processing credit card, etc., can be composed to
complete the desired trip. However, there is no guarantee that
all of these services are available on the Internet. If some
service is missing (e.g., the shuttle service can only be found
through the traditional yellow page book), the planner will
fail and no information will be provided regarding what is
missing. However, if the planner is “intelligent” enough to
generate an incomplete plan suggesting what the missing
actions might be, the user may still be able to obtain useful
information and can proceed to obtain the missing services
via alternative means.

In this paper, we propose a novel approach to the task of
generating incomplete plans when traditional planning
processes fail. Two challenges need to be addressed. First,
due to the missing information, a planner can neither reach
the goal from the initial state nor vice versa. In particular,
when employing bi-directional planning to generate plans
from both ends, the two planning processes will never meet
in the middle. We address this challenge by finding the gap
for the bi-directional planning and proposing a virtual action
to bridge this gap so that an incomplete plan can be returned.
However, proposing the virtual action is a challenging task.
The reason is that a large amount of information is usually
present in the bi-directional planning process and this makes
it impossible to enumerate all the possible virtual actions and
identify the best one. We address this second challenge by
using a genetic algorithm (GA) approach to mine useful
information.

As discussed above, an incomplete plan includes two
types of actions: real actions, which are actions defined in
the planning domain; and a virtual action, which does not

exist in the domain but is treated in the same way as real
actions as far as establishing an incomplete plan is
concerned. The virtual action serves as a bridge to link other
real actions together in an incomplete plan and identify
information that is potentially missing. In the travel
reservation example, a traditional planner can be used to
generate a plan for attending a conference: book air ticket =>
book hotel => rent car. However, it will fail if, for instance,
the booking hotel service is not available. In contrast, in this
situation our planner can generate an incomplete plan
consisting of real and virtual actions: book air ticket =>
virtual action => rent car. Therefore, our approach has
broader impacts: it stands to benefit both domain experts and
regular users. Specifically, it makes it easier for domain
experts to tune the planning domain, and it suggests to a
regular user not only what is available (i.e., the real actions in
the plan) but also what could be missing (i.e., the virtual
action).

In this feasibility study, we focus exclusively on
deterministic planning, in which each action produces a
single (i.e., deterministic) outcome, owing to the significant
role they play in AI planning, i.e., not only is deterministic
planning still an active research area in AI planning, it is still
widely used in state-of-the-art software engineering fields,
e.g., web service composition research [6, 7]. Moreover, the
proposed approach can be extended to nondeterministic
planning via techniques that enable the application of
deterministic planners to nondeterministic planning problems
[8]. To our knowledge, we are the first to provide a workable
approach that can propose virtual actions in the event of
planning failure, as well as metrics for evaluating the
proposed approach. We believe that this lays the groundwork
for researchers interested in exploring this new direction.

In the rest of the paper, we introduce the relevant
background concepts in Section II, describe our method for
returning incomplete plans in Section III, present
experimental results in Section IV, and conclude the paper
by identifying future research directions in Section V.

II. BACKGROUND

We first introduce the notations and definitions about
deterministic planning that we will rely on in the rest of the
paper. Then, we present two important AI concepts: planning
graphs [9] and genetic algorithms [10], based on which our
approach is built.

A. Deterministic Planning

Definition 1. A deterministic planning domain is a 4-tuple Σ

= 〈P, S, A, γ〉, where:

• P is a finite set of propositions;

• S ⊆ 2
P
 is a finite set of states in the system;

• A is a finite set of actions; and

• γ : S × A → S is the state-transition function.

An action a in Σ consists of a precondition, pre(a), and an
effect, eff(a). eff(a) is composed of two parts: the add effect
and the delete effect. The add effect will be added to the state

to which a is applied and the delete effect will be removed
from the state. For example, the action “move” can move a
robot from one place to another. Suppose that in the current
state the robot is at location A. Then, the action “move(A, B)”
will generate the add effect of the robot being at B and the
delete effect is the robot being at A.

Definition 2. A planning problem is a triple 〈s0, g, Σ〉, where

s0 is the initial state, g is the goal condition, and Σ is the
planning domain.

B. Planning Graph

A planning graph is a data structure that provides a
search space employed by many deterministic planners to
generate a plan. More specifically, a planning graph is a
directed and layered graph interleaved with proposition
levels and action levels. The first proposition level contains
the initial state and the first action level consists of actions
that are applicable to the first proposition level. The effects
of the actions in the action level together with the
propositions in the previous proposition level form the next
proposition level. This definition enables the planning graph
to be extended in the forward direction until it has achieved a
necessary (but perhaps insufficient) condition for plan
existence. This corresponds to the graph expansion phase
[9].

Due to the way of graph expansion, if a proposition
appears in the current proposition level, it will appear in the
rest of the proposition levels. In other words, every
proposition level contains all the propositions that appear in
the previous proposition levels. Thanks to this attribute, a
planning graph has a special feature, level-off, which we will
exploit in our approach. Level-off occurs when two adjacent
proposition levels are identical but the goal condition has not
been reached. Hence, level-off implies planning failure, since
a fixed point is reached before any path to the goal is
established. When level-off happens, the last proposition
level contains all the propositions reachable from the initial
proposition level (i.e., the initial state), thus representing the
farthest level from the initial state.

C. Genetic Algorithms

A genetic algorithm (GA) is a population-based
stochastic optimization search approach that has been widely
applied in various research areas to solve problems that may
not have polynomial time solutions [11]. Each state in its
search space is known as a chromosome. The algorithm
starts with an initial population of chromosomes. The aim is
to iteratively create better and better populations by applying
operators to “evolve” the chromosomes in a population so
that eventually it finds one that is good enough to be used as
a solution to the search problem.

 Figure 1 illustrates the major steps of a GA. As
mentioned, a population consists of a certain number of
chromosomes, each of which is represented as a string that
encodes a candidate solution to the given search problem.
GA begins with a randomly generated population (line 1). To
generate a new population, chromosomes are first selected
from the current population based on their fitness values
computed by a fitness function (line 2). Pairs of these

s0 g
P f Pb

missing

Book_Flight Reserve_Sh uttle Book_H otel

selected chromosomes are then randomly combined via the
crossover operation to create new “child” chromosomes.
Finally, each “child” chromosome is randomly “mutated” via
the mutation operation (line 3). The GA algorithm terminates
either when the maximum number of iterations has been
reached (line 4) or a satisfactory solution (chromosome) has
been found (lines 5 and 6). Otherwise, the new population is
used in the next iteration (line 7).

1. Create an initial population of randomly generated

chromosomes

2. Perform selection on the population based on the fitness

values evaluated by a fitness function

3. Perform crossover and mutation on the selected

chromosomes to produce the child population

4. If the max number of generations is exceeded, return the

fittest chromosome

5. If any chromosome has a fitness value greater than or equal

to the fitness threshold

6. return the chromosome

7. Otherwise, return to step 2

Figure 1. Outline of a Genetic Algorithm

III. METHOD

To help convey the proposed approach, we use a largely
simplified travel reservation example as our running
example. The three actions (services) in this domain are
listed in TABLE I. Assuming that the user knows the travel
dates and has the flight number provided by the travel agent,
he wants to book a flight, a hotel, and a shuttle bus to the
hotel, i.e., s0 = {has_flt_num, has_dates} and goal g
={flt_booked, ht_booked, st_booked}.

TABLE I ACTIONS

Action Precondition Effect

Book_Flight has_flt_num, has_dates
flt_booked,

has_flt_info

Book_Hotel has_flt_info, has_dates
ht_booked,

has_ht_info

Book_Shuttle
has_flt_info, has_ht_info,

has_dates
st_booked

It should not be difficult to see that a traditional planner
can generate a plan “Book_Flight, Book_Hotel,
Book_Shuttle”. Assuming that the action “Book_Hotel” is
missing from the domain, the traditional planning process
will fail. We illustrate the planning failure in Figure 2. The
missing action divides the correct plan into two halves. The
reason why existing planners cannot provide useful
information in case of planning failure is that they start from
either s0 or g, and plan toward the other end, but due to the
missing action, the planning process will never reach the
other end.

To overcome the above issue, in [12] we outlined a bi-
directional search algorithm. However, no solutions were
provided to implement the algorithm and no evaluations
were conducted to investigate its feasibility. In this study, we
intend to implement the algorithm and conduct experiments

to evaluate the feasibility of the proposed approach.
Specifically, the algorithm takes three major steps to return
an incomplete plan when the traditional planning fails on a

planning problem 〈s0, g, ∑〉.

(1) A forward planning process starts from the initial

state s0 and proceeds as far as possible toward the

goal condition g until it reaches the farthest place pf.

(2) The second step starts a backward planning process

from goal g to the initial state s0 until it reaches the

farthest place pb.

(3) Finally, the third step suggests a virtual action av

linking pf and pb together so that we can generate an

incomplete plan composed of both av and real actions

using a traditional planner.

Figure 2: Illustration of Planning Failure

Two questions naturally arise. First, how can we
determine the farthest places pf and pb? Second, how can we
create a virtual action to link pf and pb together?

A. Determining pf and pb

To address the first question, we use the planning graph’s
intrinsic feature, level-off, to determine the farthest levels pf
and pb. Recall that level-off occurs when all the possible
actions have been applied to the planning graph but the goal
condition still cannot be reached. Therefore, the proposition
level at which level-off occurs represents the farthest level

from the initial state. Given a planning problem 〈s0, g, ∑〉, pf
is simply the last proposition level when level-off happens.
To determine pb, the farthest level in the backward planning
process, we construct the planning graph based on the

reversed planning problem 〈g, s0, ∑
-1〉, in which g serves as

the initial state and s0 serves as the goal, and the

preconditions and effects of actions in ∑-1
 are the effects and

preconditions of the corresponding actions in ∑. In the rest of
the paper, we use pf and pb to denote the two proposition
levels in which the forward and backward planning processes
level off respectively.

In the travel reservation example, the forward planning
graph levels off after applying the action “Book_Flight” to
the initial state s0, and pf = {has_flt_num, has_dates,
flt_booked, has_flt_info}. Note that “Book_Shuttle” cannot
be applied because its precondition is not satisfied. Similarly,
the backward planning graph levels off after applying the
action Book_Shuttle

-1
, and pb = {flt_booked, ht_booked,

st_booked, has_ht_info, has_dates}. Here, the original goal g
becomes the initial state in the backward planning and the
only applicable action is Book_Shuttle

-1
, which is obtained

by switching the original precondition and effect of the
action Book_Shuttle.

B. Proposing a Virtual Action

We propose a virtual action av to link the two farthest
levels pf and pb. Proposing av amounts to specifying its
precondition, pre(av), and its effect, eff(av). We determine
pre(av) from pf, and eff(av) from pb. At first glance, it seems
that we can simply set pre(av) to pf, and eff(av) to pb.
However, this will not work. pf and pb normally contain a
large number of propositions. For example, it is not
uncommon for pf or pb to contain more than 100
propositions, most of which are irrelevant to the missing part,
and some of which are even mutually exclusive (e.g., a
proposition and its negation). Including irrelevant
propositions will make it difficult for a user to identify from
pre(av) and eff(av) what the missing information in the
domain is and understand why planning fails; and including
mutually exclusive propositions does not even result in a
valid action. Hence, we want to include only the relevant
subset of propositions that are not mutually exclusive.
However, for 100 propositions, there are 2

100
 ways to derive

the possible precondition or effect for action av. It is
therefore impractical to exhaustively enumerate them to find
the best fit.

To deal with the huge number of candidate solutions, we
first focus on propositions that are only available in the
forward planning or the backward planning but not both.

Specifically, let Ppre = pf − pb and Peff = pb − pf, where Ppre is
the set of propositions that can only be obtained in the
forward planning process and Peff is the set of propositions
that can only be obtained in the backward planning process.
The goal is to find pre(av) from Ppre and eff(av) from Peff.
Hence, av will contain the essential information that is
absolutely necessary to bridge the gap between pf and pb.

In our running example,

Ppre = pf − pb = {has_flt_num, has_dates, flt_booked,
fhas_flt_info} – {flt_booked, ht_booked, st_booked ,
has_ht_info, has_dates} = {has_flt_num}, and

Peff = pb − pf = {ht_booked, st_booked, has_ht_info}.

Let pre(av) = Ppre and eff(av) = Peff, then the virtual action has
recovered the missing information.

Since the running example is largely simplified, we also
used challenging and complex benchmark problems from
International Planning Competitions (IPCs)

1
 to evaluate the

above approach. Our results show that the size of Ppre is
about 10, which is reasonable for humans to comprehend.
However, the size of Peff may be still large (usually > 70), so
it is still impractical to exhaustively enumerate all subsets of
Peff to compute eff(av). Consequently, we propose to compute
eff(av) by using GA.

C. Using GA to Determine the Effect of the Virtual Action

As discussed in Figure 1, to use GA, we need to encode
the chromosomes, design the fitness function, and define
operators for selection, crossover, and mutation.

1 All the domains can be found from http://www.icaps-
conference.org/index.php/Main/Competitions.

1) Encoding a chromosome. We encode a chromosome

as a binary string. Each bit in the chromosome corresponds

to a proposition in Peff. Specifically, the propositions in Peff

are indexed such that the first proposition corresponds to the

first bit of the binary string, the second proposition

corresponds to the second bit, etc. If a proposition is

selected to be included in the effect of the virtual action av,

the corresponding bit of the binary string is set to 1;

otherwise, the bit is 0. To ensure that a chromosome does

not contain mutually exclusive propositions, we ensure that

a proposition and its negation cannot be both 1 in the binary

string. In our running example, assuming that Peff is indexed

as {ht_booked, has_ht_info, st_booked}, the chromosome

“110” denotes the subset {ht_booked, has_ht_info} because

the bit corresponding to “st_booked” is 0 and therefore is

excluded from the subset.

Given this encoding scheme, we can create an initial
population of chromosomes, where each chromosome
corresponds to a random subset of propositions in Peff. To
generate the next population, we need to compute fitness
value of each chromosome.

2) Designing a fitness function. We compute the fitness

value of a chromosome as follows. For each chromosome c,

we create a virtual action av(c), where pre(av(c)) is simply

Ppre, and eff(av(c)) is the subset of the propositions that c

contains. Using av(c) together with the real actions in the

given domain, we attempt to generate an incomplete plan

using a traditional planner. If the planner finds a plan, then

we compute the fitness value of c as the size of this plan.

Otherwise, we set its fitness value to -1. In essence, we

consider a chromosome fitter if it results in a longer plan.

Why does it make sense to consider a chromosome fitter
if it yields a longer plan? Note that a longer plan implies that
more real actions are used, and that the role played by the
virtual action is smaller. This is a greedy strategy, which
hopes to make small the gap bridged by the virtual action and
make easier for a human to pinpoint exactly what
information is missing from the domain. In other words,
chromosomes that yield longer plans correspond to virtual
actions that are potentially more informative for a human.
Note that we can conceive counter examples, in which
virtual actions leading to shorter plans are more informative
than those leading to longer plans. Nevertheless, our
experimental results showed that this strategy worked well in
most of the cases.

However, another issue arises: it may be time consuming
or even impractical to run a traditional planner to obtain a
plan for each chromosome, especially when the population
size or the number of GA iterations is large. To address this
issue, we use relaxed plans [13] to improve efficiency.
Relaxed actions and relaxed plans are widely used in
heuristic search. Relaxed actions ignore their delete effects.
Therefore, no two actions are mutually exclusive with each
other. As a result, a single forward planning graph expansion
process is enough to efficiently obtain a relaxed plan, if any.
Correspondingly, we redefine the size of a relaxed plan as

the number of relaxed actions minus the number of
occurrences of the virtual action. In other words, we compute
the fitness value of a chromosome as the number of real
actions in the relaxed plan. Note that we may still find cases
where a smaller sized relaxed plan contains more useful
information than the larger ones. However, our experimental
results show that this fitness function is very efficient and
works well in practice.

3) Specifying the GA operators. The operators we

employ for selection, crossover, and mutation are standard.

As the selection operator, we use roulette-wheel, which

probabilistically selects chromosomes according to their

fitness values. Specifically, each chromosome ci is selected

with probability pi, where pi is computed by dividing the

fitness value of ci by the sum of the fitness values of all the

chromosomes in the current population. As a result, the

diversity of the population can be maintained since the weak

chromosomes still have chances of being selected.

As the crossover operator, we employ one-point
crossover (see Goldberg 1989 [10]), where the crossover
point is created randomly. Finally, the mutation operator,
which is applied to the newly generated population to
maintain the genetic diversity, operates by flipping the values
of arbitrary bits according to a predefined mutation
probability.

2

Below we describe two improvements to our approach,
with the goal of enabling it to be effectively applied in
practice.

D. Improvement 1: Relaxing Precondition Matching in the

First Action Level of the Backward Planning

To motivate this improvement, let us make an
observation. If an action a can contribute to the goal

condition g (i.e., if eff(a) ∧ g ≠ φ) in the forward planning

process 〈s0, g, ∑〉, then it is natural for us to expect its
reversed action a

-1
 to be included in the plan for the

backward planning problem 〈g, s0, ∑
-1〉. However, as

discussed in the next paragraph, this is not guaranteed in
reality. What this implies is that some useful information
may be lost in the backward planning process.

The question, then, is: why is it not necessarily the case
that a

-1
 is included in the backward plan if a appears in the

forward plan? The reason is that the precondition matching
scheme leads to the information loss. More specifically, to
apply an action a to the initial state s0, we require that pre(a)

⊆ s0, where pre(a) denotes the precondition of action a.
However, such a precondition matching scheme is too strict
for backward planning. The following example illustrates
why this is the case. Assume that the goal condition is to
“hold a container”, i.e., (holding hand container), and that
there is an action, grasp-container, whose effect is “(holding

hand container) ∧ (not (handempty hand))”. Hence, action
grasp-container can be used to contribute to the goal.
However, in the backward planning problem, the original

2 Since we focus on demonstrating the feasibility of our approach, we do
not fine-tune the parameters to achieve optimal results. This means that our
approach could be improved with more sophisticated operators.

goal condition (holding hand container) becomes the initial
state. The effect of action grasp-container becomes the
precondition of its reversed action, i.e., grasp-container

-1
.

However, the state g cannot satisfy the precondition of grasp-
container

-1
 because it has an additional proposition, i.e., (not

(handempty hand)). Therefore, grasp-container
-1

 will not be
picked in the backward planning.

To prevent such information loss, we relax the
precondition matching condition in the first action level in
the backward planning process. Formally, given a backward

planning problem 〈g, s0, ∑
-1〉, an action a

-1
 can be selected in

the first action level if pre(a
-1

) ∧ g ≠ φ. Then, from the
second level, we resume the regular precondition matching
scheme.

E. Improvement 2: Recursive Use of GA

There are two issues involved in the proposed approach

that we have eluded so far. First, Peff is obtained by pb − pf.

We find that it is not unusual that some useful information is

removed by this deduction operation. Since we run GA

based on Peff, all the removed useful information will be

permanently lost. Second, GA can return a subset of

propositions, whose size is usually in the range of one third

to one half of the original proposition set. However, the

resulting subset can be still large. For example, if the size of

the proposition set is 120, then the size of the resulting

subset is still about 40 to 60.

To address the first issue, we employ two steps. First, we

run GA on Peff and obtain a subset Peff′ of propositions,

whose size is about half of the size of Peff. Second, we put

the removed propositions back in Peff′ , i.e., Peff′ = Peff′ ∪ (pb

∩ pf). Here, the first step makes room for the second step

because the planner we used (i.e., FF [13]) has a size

limitation on the number of propositions that an action can

have. Nevertheless, the problem with these two steps is that

the size of Peff′ can be large, which is the second issue listed

above.

To address the second issue, we recursively apply GA to

the resulting subset of propositions to return a sub-subset of

propositions. Specifically, the propositions in the resulting

subset are ordered. The chromosome encoding scheme

remains the same, i.e., if a bit is “1”, the corresponding

proposition is included in the sub subset. Otherwise, it is

excluded. Meanwhile, the selection, crossover, and mutation

operators remain the same as before.

The question, then, is: how many levels of recursive calls
of GA should we make? In our implementation, we limit the
depth of the recursive calls of GA to 3. The reasons are two-
fold. First, an excessive number of calls of GA may result in
loss of useful information because the probability of
selecting the right subset of propositions from a large set is
small. Each call of GA will result in the loss of useful
information. Second, the execution of GA is time
consuming. Hence, the excessive calls of GA may

significantly prolong running time, which may reduce the
practicality of our approach.

IV. EVALUATION

Next, we evaluate our approach. All the experiments
were conducted on a desktop computer with an Intel
Pentium-4 3GHz processor and 1 GB of memory. The
operating system is Linux.

A. Problem Domains

The problem domains, Barman [BM], PSR, ebookstore
[EB], and Openstacks [OS], are obtained from the
deterministic tracks of the international planning
competitions (IPCs). These domains were chosen because (1)
they are meaningful in the real-world; and (2) they do not
contain quantifiers, e.g., forall, exists, etc., since our system
does not support quantifiers at the moment. Specifically, in
Barman, a robot barman is responsible for manipulating
drink dispensers, glasses, and a shaker. The goal is to find a
plan of the robot's actions that serves a desired set of drinks.
PSR specifies an electricity network that may be faulty.
Depending on the states of the switches and electricity
supply devices, the flow of electricity through the network is
given by a transitive closure over the network connections at
any point in time. Openstacks describes an NP-hard problem.
A manufacturer may have many orders. Each order consists
of different products, which can only be made one at a time.
The goal is to have all the orders shipped with a minimum
number of stacks, which are the temporary space to hold
products. Ebookstore is even closer to reality. It depicts the
OWL [14] Web services for an ebookstore. The ebookstore
scenario includes the electronic purchase of a book. The user
provides a book title and author, credit card information and
the address that the book will be shipped to, and requires a
charge to credit card for the purchase, as well as information
about the shipping dates and the customs cost for the specific
item.

B. Evaluation of the Proposed Virtual Actions

To evaluate our approach, we removed one or two
action(s) at a time from the benchmark domains. The
removed actions were involved in the plans to the planning
problems. In other words, the removal of these actions will
result in planning failures. Although we can experiment with
removing even more actions, we do not know exactly how
many actions are missing in reality when a planning process
fails. In addition, assume that the solution to a planning
problem is a1, a2, …, am, am+1, …, an-1, an, an+1, …. If we
remove the actions am and an, then the actions in between am
and an are also indirectly removed. Hence, removing two
actions should be sufficient for us to mimic a realistic
planning failure situation.

TABLE II shows the number of actions we tested for
each domain. For example, for BM, 11 of the experiments
involve removing a single action, and 7 experiments involve
removing a randomly selected pair of actions. For PSR, there
are 50 domain-problem sets, each of which consists of a
domain and a problem. We used the first set, in which five
actions were used to solve the problem. Each of the 5 actions
was tested in the experiments for removing a single action

and 6 experiments involved removing randomly selected
action pairs. For openstacks, there are more than 100 actions,
which can be classified into 5 categories, namely, make
product, open new stacks, start order, set up machine to make
product, and ship the order. If we remove one action, the
planning will not fail because the planner can find an
alternative plan by using other actions in the same category.
Therefore, we removed the whole category each time to
perform our study and treated the whole category as a single
composite action. For ebookstore, 6 experiments were for
evaluating the removal of a single action and 4 experiments
were for removing two actions.

TABLE II NUMBER OF ACTIONS TESTED FOR EACH DOMAIN

 BM EB OS PSR

1 action 11 6 5 5

2 actions 7 4 3 6

As noted above, in each experiment we remove one or
two actions, and then run our algorithm to propose a virtual
action. Since our algorithm focused on determining the effect
eff(av) of a virtual action av, one way to evaluate av is to
determine how many propositions in the effects of the
action(s) being removed appear in eff(av). Note, however,
that some propositions in the effect of an action are more
important than the others. For example, the grasp container
action in barman aims to pick up the container from the
table. Hence, the proposition (holding hand container) is
important, whereas other propositions, such as (not
(handempty hand)), are less important because without
“holding the container” the rest of the propositions are
meaningless. We identify for each action the important
propositions and refer to them as key propositions. Since key
propositions are important, we first focus on evaluating for
each removed action (or action pair) whether eff(av) contains
all, some, or none of the key propositions appearing in its
effect.

The results are shown in TABLE III. The column
“Completely” shows the number of actions for which the key
propositions are completely recovered by the virtual actions;
“Partially” shows the number of actions where only some of
the key propositions are recovered; “missed” shows the
number of actions for which none of the key propositions are
found. For 57% of the cases, the virtual actions recovered all
of the key propositions; and for 21% of the actions, the
virtual actions recovered some of the key propositions.

TABLE III EXPERIMENTS WITH RECOVERING KEY PROPOSITIONS

Completely Partially Missed Total
Domain

1 act 2act 1act 2act 1act 2act 1act 2act

BM 7 2 2 3 2 2 11 7

EB 6 4 0 0 0 0 6 4

OS 3 1 0 2 2 0 5 3

PSR 3 1 0 3 2 2 5 6

While the non-key propositions are comparatively less
important, they may still help domain experts gain a better

understanding of the domain and should ideally be recovered
as well. As a result, we evaluate how well pre(av) and eff(av)
match the precondition and effect of the removed action (or
action pair), pre(ar) and eff(ar). We employ two evaluation
metrics, precision and recall. Taking eff(av) as an example,
the precision of eff(av) is the percentage of the propositions
in eff(av) that appears in eff(ar); and its recall is the
percentage of propositions in eff(ar) that appears in eff(av). In
other words, a low precision implies that av contains many
irrelevant propositions, and a low recall implies that av
misses many correct propositions. Hence, it is desirable that
both precision and recall are high. The precision/recall of
pre(av) can be computed similarly. For example, assume that
the action of picking up container is missing in the BM
domain. The effect of the corresponding virtual action
includes (holding hand container) and (clean shot).
Therefore, the virtual action recovers the key proposition
(holding hand container), but misses the other two
propositions, namely, (not (ontable container)) and (not
(handempty hand)). In addition, the virtual action contains an
irrelevant proposition, namely, (clean shot). Hence, the
precision is 1/2 = 0.5 and the recall is 1/3 = 0.3.

TABLE IV PRECISION AND RECALL

Precision Recall

Precond effect precond effect

1act 2act 1act 2act 1act 2act 1act 2act

BM 0.28 0.50 0.12 0.22 0.14 0.29 0.45 0.35

EB 0.67 0.50 0.58 0.67 0.67 0.67 1.00 1.00

OS 0.31 0.42 0.23 0.15 0.46 0.41 0.45 0.21

PSR 0 0.25 0.22 0.40 0 0.25 0.35 0.31

Avg 0.32 0.41 0.27 0.34 0.30 0.37 0.56 0.45

TABLE IV shows the precision and recall averaged over

the virtual actions. On average, the actions recalled ≥ 30% of

the preconditions and ≥ 45% of the effects, and have a

precision of ≥ 32% (preconditions) and ≥ 27% (effects).

C. Human Evaluations

While the values shown in TABLE IV are useful for
other researchers to compare against our results, it may not
be easy to tell whether these values can be considered good
or not. A more direct way to evaluate the usefulness of
virtual actions is to employ humans, since ultimately virtual
actions are meant to provide useful information for humans.
Here is the setup of our human experiment. First, we
educated 17 human participants consisting of 12
undergraduate students and 5 graduate students. All the
participants had few or no knowledge about AI planning
prior to enrolling in this study. For each domain, we prepared
an instruction document for them to read, including the
domain description, how to read the actions on the domain,
and the list of actions defined on the domain. Second, we
handed out 52 virtual actions to different human participants,
and for each virtual action av, we asked them to identify all
the real actions in the domain that they thought similar to av.
We did not tell the participants whether the virtual actions
were related to the removal of a single real action or two real

actions. If they considered more than one real action as
relevant to a virtual action, they were allowed to choose all
of them, but they needed to rank the real actions in terms of
relevance.

We score the human output as follows. If the evaluation
is for one action, the response has a score of 1/n with n being
the rank of the correct action. For example, the participant
identifies two actions, ar1 and ar2, that they think relevant to
the virtual action av. He or she ranks ar1 to be more relevant
than ar2. Assume that the true action being removed is ar2.
Then, the score of the response is 1/2 since the rank of the
correct action is 2 in the response. If the evaluation is for two
actions, the response has a score of 1 (i.e., completely
correct) if the first two actions are the right actions.
Otherwise, the score is 1/m + 1/n, where m and n are ranks of
the right actions. If the response only includes 1 right action,
the score is 1/2n, where n is the rank of the right action.

TABLE V shows the human evaluation results. As we
can see, the participants could easily locate the right actions
on ebookstore because the precision and recall on this
domain is the highest among the four domains (see TABLE
IV). In contrast, they did a poor job on PSR because they
lacked the knowledge of electricity network despite our
instruction document. As a result, they could only guess the
results. For BM and OS, they demonstrated good
understandings of the domains, but some of them were
overwhelmed by the large amount of information provided
by the virtual actions on BM (note from TABLE IV that BM
has a low precision). OS seemed to be a domain manageable
by humans given its reasonable precision and recall.

TABLE V HUMAN EVALUATION RESULTS

One Action Two Actions

Domain # of

judgments
avg. score

of

judgments
avg. score

BM 6 0.25 6 0.23

EB 8 1 7 0.51

OS 8 0.73 7 0.43

PSR 6 0.31 4 0.19

Avg --- 0.61 --- 0.36

Although the average score for evaluations of two actions
seem low, it is partly due to our rigorous scoring scheme. For
example, some participants simply provided a single action
as the answer. Even if the action is one of the right actions
(i.e., precision is 1), the score will only be 0.5 according to
our scoring scheme. We made a statistics on responses for
two actions as shown in TABLE VI. The precision of the
answers was 0.53 and 17 out of 24 answers (i.e., 71%)
included at least one of the right actions. In summary, these
encouraging results show the promise of our approach.

TABLE VI FURTHER ANALYSIS FOR EVALUATIONS OF TWO ACTIONS

Precision Percentage of identifying at

least one correct action

0.53 71%

D. Discussion

To evaluate the feasibility of our work, we proposed
three different evaluation methods, namely, key propositions
recovery, metrics of precision and recall, and human
evaluation.

The use of key proposition recovery is easy to
implement, but can be subjective since different people may
identify different key propositions for the same action. In
contrast, the metrics of precision and recall are objective.
These metrics evaluate precisely how much useful
information is recovered (i.e., recall) and the percentage of
the useful information (i.e., precision) against the entire
information including both relevant and irrelevant
information. The issue with precision and recall metrics is
that they did not tell us how well our approach did on the
benchmark domains (see TABLE IV) since there is no
related work to compare with. Our third evaluation method,
human evaluations, compensates for this issue. The
evaluation results directly showed how well humans could
comprehend the virtual actions.

If we compare the results of the three evaluation methods
(see TABLEs III, IV, and V), we can see that these results
are consistent. For example, human participants performed
well on the ebookstore (EB) domain, but did poorly on PSR.
The virtual actions on EB completely (i.e., 100%) recovered
the key propositions as shown in TABLE III, had the highest
precision and recall as shown in TABLE IV, and received
the highest evaluation scores as shown in TABLE V. In
comparison, virtual actions on PSR constantly missed key
propositions, suffered from low precision and recall, and
received low human evaluation scores. Interestingly, as
shown in TABLE IV, even though the precision and recall
are 0 for the preconditions of virtual actions (i.e., 1 act) on
PSR, human participants could still correctly figure out some
of the virtual actions through their effects (as shown in
TABLE V). This result can be explained by the fact that
humans tend to put their primary focus on what the action
can do rather than when the action can be applied.

V. CONCLUSION AND FUTURE DIRECTION

We have investigated a new task that can significantly
broaden the applicability of AI planning: generating an
incomplete plan when missing information is present in a
domain. We proposed the concept of virtual action, which
serves as the bridge to link real actions. Preliminary results
based on the IPC benchmark problems show that our
approach holds promise. The generated virtual actions are
human comprehensible. On average, 73% of the answers
from the 17 research participants are partially or completely
correct. In the next step, we intend to improve the fitness
function of GA so that the fitness value can better reflect the
useful information possessed by the virtual actions. We will
continue to improve the precision and recall of the virtual
actions to make our approach more practical to use.

ACKNOWLEDGMENT

This work was supported in part by Oklahoma Center for
the Advancement of Science & Technology (OCAST) under
grant HR12-036.

REFERENCES

[1] A. M. Memon, M. E. Pollack, and M. L. Soffa, "Hierarchical GUI

Test Case Generation Using Automated Planning," IEEE Trans.

Softw. Eng., vol. 27, pp. 144-155, 2001.

[2] J. Fu, F. Bastani, and I. Yen, Semantic-Driven Component-Based

Automated Code Synthesis, Semantic Computing: IEEE, Press/Wiley,

2010.

[3] L. A. Digiampietri, J. J. Pérez-Alcázar, and C. B. Medeiros, "AI

Planning in Web Services Composition: a review of current

approaches and a new solution," in SBC 2007, Rio de Janeiro, 2007,

pp. 983-992.

[4] J. Rao and X. Su, "A Survey of Automated Web Service Composition

Methods," in SWSWPC, ed, 2004, pp. 43-54.

[5] W3C. (2002). Web service use case: Travel reservation. Available:

http://www.w3.org/2002/06/ws-example

[6] A. Sirbu, A. Marconi, M. Pistore, H. Eberle, F. Leymann, and T.

Unger, "Dynamic Composition of Pervasive Process Fragments," in

Web Services (ICWS), 2011 IEEE International Conference on, 2011,

pp. 73-80.

[7] X. Song, W. Dou, and J. Chen, "A workflow framework for

intelligent service composition," Future Generation Computer

Systems, vol. 27, pp. 627-636, 2011.

[8] U. Kuter, D. Nau, E. Reisner, and R. P. Goldman, "Using classical

planners to solve nondeterministic planning problems," in 18th

International Conference on Automated Planning and Scheduling

(ICAPS), 2008.

[9] A. L. Blum and M. L. Furst, "Fast planning through planning graph

analysis," Artif. Intell., vol. 90, pp. 281-300, 1997.

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning. Mass.: Addison-Wesley, 1989.

[11] F. Pezzella, G. Morganti, and G. Ciaschetti, "A genetic algorithm for

the Flexible Job-shop Scheduling Problem," Computers & Operations

Research, vol. 35, pp. 3202-3212, 2008.

[12] J. Fu, W. Hao, M. Tu, B. Ma, J. Baldwin, and F. B. Bastani, "Virtual

Services in Cloud Computing," in IEEE 6th World Congress on

Services (SERVICES 2010), Mimai, FL, 2010, pp. 467- 472.

[13] J. Hoffmann and B. Nebel, "The FF Planning System: Fast Plan

Generation Through Heuristic Search," vol. 14, pp. 253-302, 2001.

[14] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S.

McIlraith, S. Narayanan, M. Paolucci, B. Parsia, and T. Payne,

"OWL-S: Semantic markup for web services," 2004.

