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Abstract

This paper focuses on the linguistic aspect of noun
phrase coreference, investigating the knowledge
sources that can potentially improve a learning-
based coreference resolution system. Unlike
traditional, knowledge-lean coreference resolvers,
which rely almost exclusively on morpho-syntactic
cues, we show how to induce features that encode
semantic knowledge from labeled and unlabeled
corpora. Experiments on the ACE data sets indicate
that the addition of these new semantic features to
a coreference system employing a fairly standard
feature set significantly improves its performance.

1 Introduction
Recent years have seen an intensifying interest in noun phrase
(NP) coreference — the problem of determining which NPs
refer to the same real-world entity in a document, owing in
part to the Automatic Content Extraction (ACE) evaluations
initiated by NIST as well as the surge of interest in structured
prediction in the machine learning community. As a result,
various new models and approaches to NP coreference are
developed. For instance, coreference has been recast as the
problem of finding the best path from the root to a leaf in a
Bell tree [Luo et al., 2004], and tackled both as a relational
learning task (see McCallum and Wellner [2004]) and as a
supervised clustering task (see Li and Roth [2005]).

Equally important to the development of new coreference
models is the investigation of new linguistic features for
the problem. However, until recently, research in anaphora
and coreference resolution has largely adopted a knowledge-
lean approach, in which resolvers operate by relying on a
set of morpho-syntactic cues. While these knowledge-lean
approaches have been reasonably successful (see Mitkov et
al. [2001]), Kehler et al. [2004] speculate that deeper linguis-
tic knowledge needs to be made available to resolution sys-
tems in order to reach the next level of performance. In fact,
it should not be surprising that certain coreference relations
cannot be identified by using string-matching facilities and
syntactic knowledge alone. For instance, semantic knowl-
edge is needed to determine the coreference relation between
two lexically dissimilar common nouns (e.g., talks and nego-
tiations), and world knowledge might be required to resolve

the president to George W. Bush if such background informa-
tion was not provided explicitly in the associated document.

Our goal in this paper is to improve the performance of
a learning-based coreference system by introducing features
that encode semantic knowledge as well as knowledge that
is potentially useful for identifying non-anaphoric NPs (i.e.,
NPs that do not have an antecedent and hence do not need
to be resolved). To evaluate the utility of the new linguistic
features, we augment a baseline feature set (which comprises
knowledge sources commonly employed by existing corefer-
ence engines) with these new features. In an evaluation on the
ACE datasets, the coreference system using the augmented
feature set yields a statistically significant improvement of
2.2-2.3% in F-measure over the baseline system.

Another contribution of our work lies in the use of corpus-
based methods for inducing features for coreference resolu-
tion. Although there have been a few attempts on inducing
gender [Ge et al., 1998], path coreference [Bergsma and Lin,
2006], NP anaphoricity [Bean and Riloff, 1999], and selec-
tional preferences [Dagan and Itai, 1990; Yang et al., 2005]
for coreference resolution, most of the existing coreference
resolvers rely on heuristic methods for feature computation.

2 New Features for Coreference Resolution
In this section we describe the new linguistic features for our
learning-based coreference resolution system.

2.1 Inducing a Semantic Agreement Feature
A feature commonly employed by coreference resolvers for
determining whether two NPs are coreferent is the semantic
class (SC) agreement feature, which has the value true if the
SCs of two NPs match and false otherwise. The accuracy
of the SC agreement feature, therefore, depends on whether
the SC values of the two NPs are computed correctly. For
a named entity (NE), the SC is typically determined using
an NE recognizer; on the other hand, determining the SC of
a common noun proves more difficult, in part because many
words are polysemous and it is non-trivial to determine which
sense corresponds to the intended meaning of the noun.

To determine the SC of a common noun, many existing
coreference systems use WordNet (e.g., Soon et al. [2001]),
simply assigning to the noun the first (i.e., most frequent)
WordNet sense as its SC. It is not easy to measure the ac-
curacy of this heuristic, but the fact that the SC agreement



PERSON, ORGANIZATION, TIME, DAY, MONEY, PERCENT,
MEASURE, ABSTRACTION, PSYCHOLOGICAL FEATURE, PHE-
NOMENON, STATE, GROUP, OBJECT, UNKNOWN

Table 1: List of the possible semantic class values of a com-
mon noun returned by the first-sense heuristic method.

feature was not used by Soon et al.’s decision tree corefer-
ence classifier seems to suggest that the SC values of the NPs
were not computed accurately by this “first-sense” heuristic.

Motivated by related work on semantic lexicon construc-
tion (e.g., Hearst [1992], Phillips and Riloff [2002]), we de-
velop the following method for learning the SC of a com-
mon noun, with the goal of improving the accuracy of the
SC agreement feature. Given a large, unannotated corpus1,
we use (1) an in-house NE recognizer (which achieves an F-
measure of 93% on the MUC-6 test set) to label each NE
with its semantic class, and (2) Lin’s [1998b] MINIPAR de-
pendency parser to extract all the appositive relations. An ex-
ample extraction would be <Eastern Airlines, the carrier>,
where the first entry is a proper noun labeled with either one
of the seven MUC-style NE types2 or OTHERS3 and the sec-
ond entry is a common noun. If the proper noun is not labeled
as OTHERS, we may infer the SC of the common noun from
that of the proper noun. However, since neither MINIPAR nor
the NE recognizer is perfect, we use a more robust method
for inferring the SC of a common noun: (1) we compute the
probability that the common noun co-occurs with each of the
eight NE types4 based on the extracted appositive relations,
and (2) if the most likely NE type has a co-occurrence prob-
ability above a certain threshold (we set the threshold to 0.7),
we label the common noun with the most likely NE type.

An examination of the induced SC values indicates that our
method fixes some of the errors commonly made by the first-
sense heuristic. For instance, common nouns such as carrier
and manufacturer are typically used to refer to organizations
in news articles, but were labeled as PERSON by the heuristic.

Nevertheless, our method has a potential weakness: com-
mon nouns that do not belong to any of the seven NE seman-
tic classes remain unlabeled. To address this problem, we will
set the SC of an unlabeled common noun to be the value re-
turned by the first-sense heuristic. (In our implementation of
the first-sense heuristic, we determine which of the 14 SCs
listed in Table 1 a common noun belongs to based on the first
WordNet sense.) However, we expect that our method will be
able to label most of the common nouns, because in ACE we
are primarily interested in nouns referring to a person, orga-
nization, or location, as we will see in the next subsection.

2.2 Inducing an ACE-Specific Semantic Feature
The SEM CLASS feature described in the previous subsection
was developed for use in a general-purpose coreference sys-
tem. However, because of the way the ACE coreference task

1We used (1) the BLLIP corpus (30M words), which consists of
Wall Street Journal articles from 1987 to 1989, and (2) the Reuters
Corpus (3.7GB data), which has 806,791 Reuters articles.

2Person, organization, location, date, time, money, and percent.
3This indicates the proper noun is not a MUC NE.
4For simplicity, OTHERS is viewed as an NE type here.

PERSON human
ORGANIZATION corporation, agency, government
FACILITY man-made structure (e.g., building)
GSP geo-political region (e.g., country, city)
LOCATION geographical area and landmass, body of

water, geological formation

Table 2: ACE semantic classes.

ORGANIZATION social group
FACILITY establishment, construction, building, facil-

ity, workplace
GSP country, province, government, town, city,

administration, society, island, community
LOCATION dry land, region, landmass, body of water,

geographical area, geological formation

Table 3: List of keywords used in WordNet search for deter-
mining the ACE semantic class of a common noun.

is defined, we may be able to improve system performance on
the ACE data if we develop another semantic class agreement
feature with the ACE guidelines in mind. Specifically, the
ACE coreference task is concerned with resolving references
to NPs belonging to one of the five ACE semantic classes
(ASCs), namely, PERSON, ORGANIZATION, FACILITY, GSP
(a geographical-social-political region), and LOCATION [see
Table 2 for a brief description of the ASCs]. In particular, ref-
erences to NPs belonging to other SCs are not to be marked
up. Hence, we desire an ACE SEM CLASS feature that con-
siders two NPs semantically compatible if and only if the two
NPs have a common ASC. The rest of this subsection de-
scribes how we determine the ASC of an NP. As we will see,
we allow an NP to possess more than one ASC in some cases.

Our method for determining the ASC of an NP is based
in part on its SC value as computed by the SEM CLASS fea-
ture. In particular, the method hinges on the observation
that (1) SEM CLASS’s ORGANIZATION class roughly corre-
sponds to two ASCs: FACILITY and ORGANIZATION, and (2)
SEM CLASS’s LOCATION class roughly corresponds to two
ASCs: GSP and LOCATION. Given this observation, we can
determine the ASC of an NP as follows:
• If its SEM CLASS value is not PERSON, ORGANIZATION,

or LOCATION, its ASC will be OTHERS.
• If its SEM CLASS is PERSON, its ASC will be PERSON.
• If its SEM CLASS is LOCATION, we will have to deter-

mine whether its ASC is LOCATION or GSP, according to
our observation above. Specifically, we first use Word-
Net to determine whether the head noun of the NP is a
hypernym of one of the GSP keywords listed in Table 3.5
We then repeat this WordNet lookup procedure using the
LOCATION keywords. If both lookups are successful, the
ASC of the NP will be both GSP and LOCATION; other-
wise the ASC will be one of these two classes.

• If its SEM CLASS is ORGANIZATION, we will have to
determine whether its ASC is ORGANIZATION or FA-

5The keywords are obtained via our experimentation with Word-
Net and the ASCs of the NPs in the training data.



CILITY. We can similarly use the procedure outlined in
the previous bullet to determine whether its ASC is OR-
GANIZATION, FACILITY, or both.

2.3 Inducing a Semantic Similarity Feature
Many reference resolvers use WordNet to compute the se-
mantic similarity between two common nouns (e.g., Poesio
et al. [2004] and Daumé and Marcu [2005]). However, this
approach to determining semantic similarity may not be ro-
bust, since its success depends to a large extent on the ability
to determine the correct WordNet sense of the given nouns.

Motivated by research in lexical semantics, we instead
adopt a distributional approach to computing the semantic
similarity between two common nouns: we capture the se-
mantics of a noun by counting how frequent it co-occurs with
other words, determining a pair of common nouns to be se-
mantically similar if their co-occurrence patterns are similar.

Instead of acquiring semantic similarity information from
scratch, we use the semantic similarity values provided by
Lin’s [1998a] dependency-based thesaurus, which is con-
structed using a distributional approach combined with an
information-theoretic definition of similarity. Each word w
in the thesaurus is associated with a list of words most simi-
lar to w together with the semantic similarity values.

Given the thesaurus, we can construct a semantic similarity
feature, SEM SIM, for coreference resolution, in which we use
a binary value to denote whether two NPs, NPx and NPy, are
semantically similar. Specifically, the feature has the value
true if and only if NPx is among the 5-nearest neighbors of
NPy according to the thesaurus or vice versa.

2.4 Inducing a Pattern-Based Feature
Next, we induce a PATTERN BASED feature using informa-
tion provided by an algorithm that learns patterns for extract-
ing coreferent NP pairs, each of which involves a pronoun and
its antecedent. Bean and Riloff [2004] also learn extraction
patterns for coreference resolution, but unlike our method,
their method is unsupervised and domain-specific.

Before showing how to compute our PATTERN BASED fea-
ture, let us describe the pattern learner, which operates as fol-
lows: (1) patterns are acquired from a corpus annotated with
coreference information, and (2) the accuracy of each learned
pattern is estimated. Below we elaborate these two steps.
Acquiring the patterns. Recall that a pattern is used to ex-
tract coreferent NP pairs; hence a good pattern should cap-
ture features of the two NPs involved as well as the context
in which they occur. To illustrate how to induce a pattern, let
us consider the following coreference segment (CS), which
we define as a text segment that starts with an NP, NPx, and
ends with a pronoun that co-refers with NPx: “John is study-
ing hard for the exam. He”. From this CS, we can induce a
pattern that simply comprises all the tokens in the segment. If
we see this sequence of tokens in a test text, we can apply this
pattern to determine that John and He are likely to co-refer.

The above pattern, however, may not be useful because it
is unlikely that we will see exactly the same text segment in
an unseen text. Hence, we desire a pattern learner that can
generalize from a CS and yet retain sufficient information to

extract coreferent NP pairs. Specifically, we design a pattern
learner that induces from each CS in a given annotated corpus
three extraction patterns, each of which represents a different
degree of generalization from the CS. In this work, we only
consider segments in which the antecedent and the anaphor
are fewer than three sentences apart.

Table 4 shows the three patterns that the learner will induce
for the example CS above. The first pattern (see row 1) is cre-
ated by (1) representing the antecedent and the anaphor as a
set of attribute values indicating its gender, number, semantic
class, grammatical role, and NP type6; (2) representing each
of the remaining NPs in the CS by the token NP; (3) repre-
senting each non-verbal and non-adverbial token that is not
enclosed by any NP by its part-of-speech tag; and (4) repre-
senting each verbal token as it is. The reason for retaining
the verbal tokens is motivated by the intuition that verbs can
sometimes play an important role in identifying coreferent
NP pairs. On the other hand, adverbs are not represented be-
cause they generally do not contain useful information as far
as identifying coreferent NP pairs is concerned.

The second pattern (shown in row 2 of Table 4) is created
via the same procedure as the first pattern, except that each
verbal token is replaced by its part-of-speech tag. The third
pattern (see row 3 of Table 4) is created via the same proce-
dure as the preceding two patterns, except that only the NPs
are retained. So, the three patterns represent three different
levels of generalizations from the CS, with the first one being
the most specific and the third one being the most general.

Note that some of the induced patterns may extract both
coreferent and non-coreferent NP pairs, thus having a low
extraction accuracy. The reason is that our pattern learner
does not capture evidence outside a CS segment, which in
some cases may be crucial for inducing high-precision rules.
Hence, we need to estimate the accuracy of each pattern, so
that a coreference system can decide whether it should dis-
card NP pairs extracted by patterns with a low accuracy.
Estimating pattern accuracy. After we acquire a list of
extraction patterns L (with the redundant patterns removed),
we can estimate the accuracy of each pattern on an anno-
tated corpus simply by counting the number of coreferent NP
pairs it extracts divided by the total number of NP pairs it ex-
tracts, as described below. First, we collect all the CS’s and
non-coreference segments (NCS’s) from the same annotated
corpus that we used to induce our patterns, where an NCS
is defined as a text segment beginning with an NP, NPx, and
ends with a pronoun, NPy, such that NPx is not coreferent with
NPy. (As before, we only consider CS’s and NCS’s where
the two enclosing NPs are separated by fewer than three sen-
tences.) From each CS/NCS, we use our pattern learner to
induce three patterns in the same way as before, but this time
we additionally label each pattern with a ’-’ if it was induced
from an NCS and a ’+’ otherwise. We then insert all these
labeled patterns into a list S, with the redundant patterns re-
tained. Finally, we compute the accuracy of a pattern l ∈ L as
the number of times l appears in S with the label ’+’ divided
by the total number of times l appears in S.

6The possible NP types are PRONOUN, PROPER NOUN, and
COMMON NOUN.



1. { GENDER:M, NUMBER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PN } is studying IN NP . { GEN-
DER:M, NUMBER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PRO }

2. { GENDER:M, NUMBER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PN } VBZ VBG IN NP . { GEN-
DER:M, NUMBER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PRO }

3. { GENDER:M, NUMBER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PN } NP { GENDER:M, NUM-
BER:SING, SEMCLASS:PERSON, GRAMROLE:SUBJ, NPTYPE:PRO }

Table 4: The three patterns induced for the coreference segment “John is studying hard for the exam. He”.

Using the list of extraction patterns L sorted in decreasing
order of accuracy, we can create our PATTERN BASED feature
as follows. Given a pair of NPs, we march down the pattern
list L and check if any of the patterns can extract the two NPs.
If so, the feature value is the accuracy of the first pattern that
extracts the two NPs; otherwise the feature value is 0.

2.5 Inducing an Anaphoricity Feature
Anaphoricity determination refers to the problem of deter-
mining whether an NP has an antecedent or not. Knowledge
of anaphoricity can potentially be used to identify and filter
non-anaphoric NPs prior to coreference resolution, thereby
improving the precision of a coreference system. There have
been attempts on identifying non-anaphoric phrases such
as pleonastic it (e.g., Lappin and Leass [1994]) and non-
anaphoric definite descriptions (e.g., Bean and Riloff [1999]).

Unlike previous work, our goal here is not to build a full-
fledged system for identifying and filtering non-anaphoric
NPs. Rather, we want to examine whether shallow anaphoric-
ity information, when encoded as a feature, could benefit a
learning-based coreference system. Specifically, we employ a
simple method for inducing anaphoricity information: given
a corpus labeled with coreference information, we compute
the anaphoricity value of an NP, NPx, as the probability that
NPx has an antecedent in the corpus. If NPx never occurs in
the annotated corpus, we assign to it the default anaphoric-
ity value of -1. Hence, unlike previous work, we represent
anaphoricity as a real value rather than a binary value.

Now we can encode anaphoricity information as a feature
for our learning-based coreference system as follows. Given
a coreference instance involving NPx and NPy, we create a fea-
ture whose value is simply NPy’s anaphoricity value.

Conceivably, data sparseness may render our ANAPHORIC-
ITY feature less useful than we desire. However, a glimpse at
the anaphoricity values computed by this feature shows that
it can capture some potentially useful information. For in-
stance, the feature encodes that it only has a moderate proba-
bility of being anaphoric, and the NP the contrary taken from
the phrase on the contrary is never anaphoric.

2.6 Inducing a Coreferentiality Feature
We can adapt the above method for generating the anaphoric-
ity feature to create a COREFERENTIALITY feature, which
encodes the probability that two NPs are coreferent. These
coreferentiality probabilities can again be estimated from
a corpus annotated with coreference information; in cases
where one or both of the given NPs do not appear in the cor-
pus, we set the coreferentiality value of the NP pair to -1.

Our method of inducing the COREFERENTIALITY feature
may also suffer from data sparseness. However, whether this

feature is useful at all for coreference resolution is an empiri-
cal question, and we will evaluate its utility in Section 4.

3 The Baseline Feature Set
The previous section introduced our new features for corefer-
ence resolution. As mentioned in the introduction, these fea-
tures will be used in combination with a set of baseline fea-
tures. This section describes our baseline feature set, which
comprises 34 selected features employed by high-performing
coreference systems such as Soon et al. [2001], Ng and
Cardie [2002], and Ponzetto and Strube [2006].
Lexical features. We use nine features to allow different
types of string matching operations to be performed on the
given pair of NPs, NPx and NPy7, including (1) exact string
match for pronouns, proper nouns, and non-pronominal NPs
(both before and after determiners are removed); (2) substring
match for proper nouns and non-pronominal NPs; and (3)
head noun match. In addition, a nationality matching feature
is used to match, for instance, British with Britain. Further-
more, we have a feature that tests whether all the words that
appear in one NP also appear in the other NP.
Grammatical features. 23 features test the grammatical
properties of one or both of the NPs. These include ten fea-
tures that test whether each of the two NPs is a pronoun, a def-
inite NP, an indefinite NP, a nested NP, and a clausal subject.
A similar set of five features is used to test whether both NPs
are pronouns, definite NPs, nested NPs, proper nouns, and
clausal subjects. In addition, five features determine whether
the two NPs are compatible with respect to gender, number,
animacy, and grammatical role. Furthermore, two features
test whether the two NPs are in apposition or participate in
a predicate nominal construction (i.e., the IS-A relation). Fi-
nally, motivated by Soon et al. [2001], we have a feature that
determines whether NPy is a demonstrative NP.
Semantic features. There are two semantic features, both
of which are employed by Soon et al.’s coreference system.
The first feature tests whether the two NPs have the same
semantic class. Here, the semantic class of a proper noun and
a common noun is computed using an NE finder and WordNet
(by choosing the first sense), respectively. The second feature
tests whether one NP is a name alias or acronym of the other.
Positional features. We have one positional feature that
measures the distance between the two NPs in sentences.

4 Evaluation
In this section, we evaluate the effectiveness of our newly pro-
posed features in improving the baseline coreference system.

7We assume that NPx precedes NPy in the associated text.



4.1 Experimental Setup
We use the ACE-2 (Version 1.0) coreference corpus for eval-
uation purposes. The corpus is composed of three data sets
taken from three different news sources: Broadcast News
(BR), Newspaper (PA), and Newswire (WI). Each data set
comprises a set of training texts for acquiring coreference
classifiers and a set of test sets for evaluating the output of
the coreference system. We report performance in terms of
recall, precision, and F-measure using two different scoring
programs: the commonly-used MUC scorer [Vilain et al.,
1995] and the recently-developed CEAF scorer [Luo, 2005].
According to Luo, CEAF is designed to address a potential
problem with the MUC scorer: partitions in which NPs are
over-clustered tend to be under-penalized. For all of the ex-
periments conducted in this paper, we use NPs automatically
extracted by an in-house NP chunker and an NE recognizer.

4.2 The Baseline Coreference System
Our baseline system uses the C4.5 decision tree learning al-
gorithm [Quinlan, 1993] in conjunction with the 34 baseline
features described in Section 3 to acquire a coreference clas-
sifier on the training texts for determining whether two NPs
are coreferent. To create training instances, we pair each NP
in a training text with each of its preceding NPs, labeling an
instance as positive if the two NPs are in the same coreference
chain in the associated text and negative otherwise.

After training, the decision tree classifier is used to select
an antecedent for each NP in a test text. Following Soon et
al. [2001], we select as the antecedent of each NP, NPj , the
closest preceding NP that is classified as coreferent with NPj .
If no such NP exists, no antecedent is selected for NPj .

Row 1 of Table 5 and Table 6 shows the results of the
baseline system obtained via the MUC scorer and the CEAF
scorer, respectively. Each row of the two tables corresponds
to an experiment evaluated on four different test sets: the en-
tire ACE test set (comprising all the BR, PA, and WI test
texts) and each of the BR, PA, and WI test sets. These four
sets of results are obtained by applying the same corefer-
ence classifier that is trained on the entire ACE training cor-
pus (comprising all the training texts from PA, WI, and BR).
Owing to space limitations, we will mainly discuss results
obtained on the entire test set. As we can see, the baseline
achieves an F-measure of 62.0 (MUC) and 60.0 (CEAF).

To get a better sense of how strong these baseline results
are, we repeat the above experiment except that we replace
the 34 features with the 12 features employed by Soon et
al.’s [2001] coreference resolver. Results of the Soon et al.
system, shown in row 2 of the two tables, indicates that our
baseline features yield significantly better results than Soon et
al.’s8: F-measure increases by 5.4 (MUC) and 3.7 (CEAF).

4.3 Coreference Using the Expanded Feature Set
Next, we train a coreference resolver using the baseline fea-
ture set augmented with the five new features described in
Sections 2.2–2.6, namely, ACE SEMCLASS, SEM SIM, PAT-
TERN BASED, ANAPHORICITY, and COREFERENTIALITY.

8Like the MUC organizers, we use Noreen’s [1989] Approximate
Randomization method for significance testing, with p set to 0.05.

In addition, we replace the heuristic-based SC agreement fea-
ture in the baseline feature set with our SEM CLASS feature
(see Section 2.1). We employ the same methods for training
instance creation and antecedent selection as in the baseline.

Recall that the PATTERN BASED, ANAPHORICITY, and
COREFERENTIALITY features are all computed using a data
set annotated with coreference information. Hence, we need
to reserve a portion of our training texts for the purpose of
computing these features. Specifically, we partition the avail-
able training texts into two sets of roughly the same size: the
training subset and the development subset. The development
subset will be used for computing those features that require
an annotated corpus, and the training subset will be used to
train the coreference classifier using the expanded feature set.

Results using the expanded feature set are shown in row 3
of the two tables. In comparison to the baseline results in row
1, we see that F-measure increases from 62.0 to 64.2 (MUC)
and 60.0 to 62.3 (CEAF). Although the gains may seem mod-
erate, the performance difference as measured by both scor-
ers is in fact highly statistically significant, with p=0.0004 for
MUC and p=0.0016 for CEAF.

4.4 Feature Analysis

To better understand which features are important for coref-
erence resolution, we examine the decision tree learned us-
ing the expanded feature set (not shown here due to space
limitations). At the top of the tree are the two lexical fea-
tures that test exact string match for proper nouns and for
non-pronominal NPs. This should not be surprising, since
these string matching features are generally strong indicators
of coreference. Looking further down the tree, we see the
SEM CLASS, ANAPHORICITY, and COREFERENTIALITY fea-
tures appearing in the third and fourth levels of the tree. This
indicates that these three features play a significant role in
determining whether two NPs are coreferent.

To further investigate the contribution of each of our new
features to overall performance, we remove each new feature
(one at a time) from the expanded feature set and re-train the
coreference classifier using the remaining features. Results
are shown in rows 4–9 of Tables 5 and 6, where an asterisk
(*) is used to indicate that the corresponding F-measure is
significantly different from that in row 3 (at p=0.05). From
these results, we make two observations. First, removing
ANAPHORICITY, COREFERENTIALITY or ACE SEM CLASS
precipitates a significant drop in F-measure, whichever scor-
ing program is used. Interestingly, even though we are faced
with data sparseness when computing ANAPHORICITY and
COREFERENTIALITY, both features turn out to be useful.
Second, although removing SEM CLASS does not result in
a significant drop in performance, it does not imply that
SEM CLASS is not useful. In fact, as mentioned at the be-
ginning of this subsection, SEM CLASS appears near the top
of the tree. An inspection of the relevant decision tree reveals
that the learner substitutes ACE SEM CLASS for SEM CLASS
when the latter feature is absent. This explains in part why
we do not see a large drop in F-measure. Hence, we can
only claim that SEM CLASS is not important in the presence
of ACE SEM CLASS, a feature with which it is correlated.



Entire Test Set Broadcast News (BR) Newspaper (PA) Newswire (WI)
Experiments R P F R P F R P F R P F

1 Using the baseline features only 53.7 73.4 62.0 53.6 72.7 61.7 55.3 74.7 63.5 52.2 72.9 60.8
2 Using Soon et al.’s features only 46.2 73.2 56.6 43.8 70.4 54.0 50.0 75.9 60.3 44.6 73.0 55.4
3 Using the expanded feature set 54.7 77.8 64.2 56.1 76.3 64.7 54.4 79.7 64.6 53.5 77.5 63.3
4 without SEM CLASS 55.1 77.5 64.4 56.1 75.7 64.5 55.3 79.5 65.3 53.6 77.3 63.3
5 without ACE SEM CLASS 53.4 77.1 63.1∗ 55.2 76.2 64.0 54.0 79.2 64.2 50.9 75.9 60.9∗

6 without SEM SIM 54.7 77.6 64.2 56.1 76.1 64.6 54.7 79.6 64.8 53.2 77.3 63.0
7 without PATTERN BASED 55.0 77.8 64.5 57.2 76.3 65.4∗ 54.6 80.0 65.0 53.2 76.7 62.8
8 without ANAPHORICITY 53.7 77.8 63.5∗ 54.0 76.6 63.4∗ 54.8 79.5 64.9 52.2 77.3 62.3
9 without COREFERENTIALITY 53.7 78.3 63.3∗ 54.3 76.5 63.5 53.7 80.9 64.6 51.2 77.7 61.7

Table 5: Results obtained via the MUC scorer by learning coreference classifiers from the entire ACE training corpus.

Entire Test Set Broadcast News (BR) Newspaper (PA) Newswire (WI)
Experiments R P F R P F R P F R P F

1 Using the baseline features only 55.4 65.4 60.0 56.8 66.0 61.1 53.9 63.5 58.3 55.5 66.8 60.7
2 Using Soon et al.’s features only 49.8 64.9 56.3 49.3 63.7 55.6 50.0 64.4 56.3 50.2 66.7 57.3
3 Using the expanded feature set 56.7 69.0 62.3 57.3 66.9 61.7 55.1 69.5 61.5 57.7 70.9 63.6
4 without SEM CLASS 56.1 67.9 61.4 57.1 66.3 61.4 53.7 67.2 59.8 57.2 70.4 63.1
5 without ACE SEM CLASS 54.6 67.2 60.2∗ 56.3 66.6 61.0 52.5 66.3 58.6∗ 55.9 68.9 61.1∗

6 without SEM SIM 56.4 68.1 61.7 57.1 66.5 61.5 55.4 69.7 61.8 57.2 70.1 63.0
7 without PATTERN BASED 56.2 68.2 61.6 58.0 67.5 62.4 53.4 67.6 59.7 57.0 69.7 62.7
8 without ANAPHORICITY 55.0 67.9 60.8∗ 55.6 66.6 60.6 54.8 69.1 61.1 54.6 68.0 60.6∗

9 without COREFERENTIALITY 55.0 68.5 61.0∗ 55.3 66.3 60.3 53.5 68.1 59.9 56.3 71.3 62.9

Table 6: Results obtained via the CEAF scorer by learning coreference classifiers from the entire ACE training corpus.

5 Conclusions
In this paper, we investigated the relative contribution of our
proposed features for learning-based coreference resolution.
While we obtained encouraging results on the ACE data sets,
we should note that performance gains are limited in part
by the difficulty in accurately computing these features given
current language technologies. We expect that these features
can provide further improvements if we increase the training
data and develop even better methods for computing them.
As noted before, there have been very few attempts on using
corpus-based methods for inducing features for coreference
resolution, and we believe our work contributes to the corpus-
based induction of semantic and other non-morpho-syntactic
features for coreference resolution.
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