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Abstract

We investigate new methods for creating and ap-
plying ensembles for coreference resolution. While
existing ensembles for coreference resolution are
typically created using different learning algo-
rithms, clustering algorithms or training sets, we
harness recent advances in coreference modeling
and propose to create our ensemble from a vari-
ety of supervised coreference models. However,
the presence of pairwise and non-pairwise corefer-
ence models in our ensemble presents a challenge
to its application: it is notimmediately clear how to
combine the coreference decisions made by these
models. We investigate different methods for ap-
plying a model-heterogeneous ensemble for coref-
erence resolution. Empirical results on the ACE
data sets demonstrate the promise of ensemble ap-
proaches: all ensemble-based systems significantly
outperform the best member of the ensemble.

I ntroduction

hybrid entity- and ranking-based model known asdluster-
rankingmodel[Rahman and Ng, 2011Employing different
coreference models to create ensembles bears resemblance
to Pang and Fan'’§2009 approach, where an ensemble of
pairwise models is applied to Chinese coreference resoluti
but contrasts with the vast majority of existing approaches
where an ensemble of coreference systems is typically cre-
ated by employing different learning algorithiiidunsonet

al., 2003 or clustering algorithm$Ng, 2003, or perturb-

ing the training set using meta-learning techniques such as
bagging and boostindNg and Cardie, 2003; Kouchnir, 2004;
Vemulapalliet al,, 2009.

Our second method for creating ensembles involves em-
ploying differentfeature set$o train coreference models. The
features used by the majority of existing coreference gyste
are derived primarily from Ng and Cardi¢2004 and Bengt-
son and Roth’'§200g’s feature sets, which comprise a fairly
large number of conventional features. In addition to em-
ploying a conventional feature set, we also experiment aith
feature set that abandons some of these conventionaldésatur
(e.g., gender and number agreement) and instead includes a
kind of features that is not exploited by the majority of é¢xis

Noun phrase (NP) coreference resolution is the task of detefd supervised coreference modeksrd pairsthat are com-
mining which NPs in a text refer to the same real-world entity Posed of the head nouns of the two NPs under consideration.
Recent years have seen the proposal of a number of supdftuitively, these word pairs contain useful informatidfor
vised coreference models. While recently-proposed model€xample, they may help improve tipeecisionof a model,

all report better performance than earlier ones, an iniiggu Py allowing a learner to learn that “it” only has a moderate
question is: is there a single model that is truly better then ~ Probability of being anaphoric, and that “the contrary"eak
others in that it addresses all the weaknesses inhereritén ot from the phrase “on the contrary” is never anaphoric. They
models, or do existing models have complementary strengti®ay also help improve its recall, by allowing the learner to
and weaknesses? We hypothesize that the latter is true, afigtermine, for instance, that “airline” and “carrier” cas b
this motivates our investigation of ensemble approaches tgoreferent. Hence, they offer a convenient means to attack
coreference resolution. More specifically, our goal in ffas
per is to investigate new methods fereatingandapplying
ensembles of supervised coreference systems.

one of the major problems in coreference research: identify
ing lexically dissimilar but semantically related pairscoim-
mon nouns. We believe that we can increase the diversity of

As far ascreating ensembles is Concerned, we will ex- the ensemble byinClUding models trained on different fieatu

plore two methods. The first method, as suggested abové&ets, including conventional features as well as these -word
involves employing different supervisedodelsof corefer-

ence resolution.

In addition to employing the influential

pair-based features.
Another contribution of our work lies in our investigation

mention-paimodel[Aone and Bennett, 1995; McCarthy and of different methods foapplyingensembles for coreference
Lehnert, 1995 which is a classifier that determines whetherresolution. The major challenge in applying ensemblegaris
two NPs are co-referring, we will consider two recently- from the heterogeneity of coreference models in our ensem-
developed models, a ranking-based model known as thiele. Specifically, since our ensemble comprises both psérwi
mention-rankingnodel[Denis and Baldridge, 2008and a

classifiers (e.g., the mention-pair model) and non-paéwis



models (e.g., the cluster-ranking model), it is not immedi-to learn how to handle unseen words in a test text, poteptiall
ately clear how to combine the coreference decisions madinproving generalizability.

by different models. This contrasts with existing ensemble Below are the four types of features in thexicalfeature
approaches, where all members of the ensemble employ paiet. Each feature is computed based on two NPsandNR, .
wise coreference models. The use of pairwise models acro$$nseen feature. If both NP, andNR, are UNSEEN, we de-

the board makes it easy to apply the resulting ensemble: thaymine whether they are the same string. If so, we create
ensemble determines whether two NPs are co-referring simgn ynseen-SaME feature: otherwise, we create GNSEEN-

ply by tallying the votes casted by its members. Experimentap e feature. If only one of them iSNSEEN, no feature will
results on the ACE 2005 data sets demonstrate the promig created from any of the four feature groups, since festure
of ensemble approaches to coreference resolution: alliof oynyelving an UnSEEN NP are likely to be misleading for a

ensemble-based systems significantly outperform theethust |earmer in the sense that they may yield incorrect generaliz
ranking model, the best-performing coreference modelén thjons from the training set.

ensemble; in particular, the best ensemble-based system oyl
performs the cluster-ranking model by 4 points in F-measure
The rest of the paper is organized as follows. Sections

exical feature. We create a lexical feature between and
R., which is an ordered pair comprising their heads. For a

and 3 describe our methods fmeatingandapplyingensem-  Pronoun or a common noun, the head is taken to be the last
bles for coreference resolution, respectively. We evaloat word of the NP; for a proper name, the head is the entire NP.

ensemble approaches in Section 4 and conclude in Section §emi-lexical features. These features aim to improve gen-
eralizability. Specifically, if exactly one ofip; andNB; is

2  Ensemble Creation ta}gged as a named entity (NE) by the Stz?\nford NE recog-
“nizer [Finkel et al, 2004, we create a semi-lexical feature

We create an ensemble of coreference systems by employingat is identical to the lexical feature described aboveepk

differentsupervised modetnd differenfeature setsBelow  that the NE is replaced with its NE label (i.2£RSON LO-

we provide the details of these models and feature sets.  cATION, ORGANIZATION). If both NPs are NEs, we check
whether they are the same string. If so, we create the feature

2.1 Feature Sets * NE*- SAME, Where *NE* is replaced with the corresponding
We use three feature sets to characterize a pair of 88s:  NE label. Otherwise, we check whether they have the same
ventional Lexical andCombined NE tagand a word-subset match (i.e., whether all word to-

The G ional F Set kens in one NP appears in the other’s list of tokens). If so, we
e Conventional Feature _ create the featureNE*- SUBSAME, where *NE* is replaced
Our Conventionafeature set consists of 39 commonly-usedyith their NE label. Otherwise, we create a feature thatés th
coreference features, which are described in Table 1 of Rahsyncatenation of the NE labels of the two NPs.

man and Ng2011. Linguistically, our features can be di-
vided into four categories: string-matching, grammatisat
mantic, and positional. These features can also be categ
rized based on whether they are relational or not. Specifi
cally, relational features capture the relationship betwhe
two NPs under consideration, whereas non-relational featu
are computed using exactly one of the two NPs. Since spacthe Combined Feature Set

limitations preclude a description of these features, ierre  The Combinedfeature set is the union of th@onventional
the reader to Rahman and 2011 for details. features and theexicalfeatures.

The Lexical Feature Set 22 Modds
Recall that we propose to use the word pairs collected fro
coreference-annotated documents as features for tramin
supervised model. Our second feature set| thécalfeature
set, comprises primarily features derived from these wordvention-Pair Model
pairs (henceforthexical features). The mention-pair (MP) model is a classifier that determines
For lexical features to be effective, we need to adddesa ~ whether two NPs are co-referring or not. Each insta(ee,
sparsenessas many word pairs in the training data may notNR,) corresponds toiF; andNR,, and is represented by one
appear in the test data. To improve generalization, we eixtra of three sets of features described in the previous subsecti
different kinds of lexical features from an annotated text. =~ We follow Soonet al’s [2001 method for creating training
Before computing these features, we first preprocess mstances. Specifically, we create (1) a positive instance f
training text by randomly replacing 10% of its common each anaphoric noun phras@, and its closest antecedent
nouns with the labeUNSEEN If an NPNR; is replaced with  NP;; and (2) a negative instance fiop, paired with each of the
UNSEEN, all NPs that have the same stringnag will also intervening NPSNP 1, NP42, ..., NR,_;. The class value of
be replaced witluNSEEN A testtext is preprocessed differ- a training instance is either positive or negative, depamdn
ently: we simply replace all NPs whose strings are not seewhether the two NPs are coreferent in the associated text. To
in the training data wittuNSEEN Hence, artificially creat- train the MP model, we use the SVM learner from SYaF
ing UNSEEN labels from a training text will allow a learner [Joachims, 2002

Old features. To further improve generalizability, we in-
gorporate two easy-to-compuBonventionafeatures:name
alias, which determines whether one NP is an acronym or
an abbreviation of the other, adistance which encodes the
distance between the two NPs in sentences.

e employ three supervised models: the mention-pair model,
Ythe mention-ranking model, and the cluster-ranking model.



After training, the classifier identifies an antecedent for a whether an active NP belongs to a preceding coreference clus
NP in a test text. Following Sooet al. [2001], an NPNR, ter. Hence, an EM model can emploluster-levelfeatures
selects as its antecedent the closest preceding NP thasis cl (i.e., features that are defined over any subset of the NPs in a
sified as coreferent with it. If no preceding NP is classifisd a preceding cluster), which makes them more expressive than
coreferent withNp,, no antecedent will be selected for,. MP and MR models. Recently, we have combined the EM

. : model’'s expressiveness with the MR model’s ability to rank
Mention-Ranking M odel

. . ., to create the cluster-ranking (CR) model, whiemks pre-
The MP model has a major weakness: since each Cand'd%%dingclustersfor an active NgF{(Ra%man and Ng, 2015

antecec.identfgr. ag NP tg be lres?l\r/]ed (f;}enceforlzhllcalge NP . We train a CR model to jointly learn anaphoricity determi-
Is considered independently of the others, it only deteesiin 1io and coreference resolution in the same way as we train
how good a candidate is relative to the active NP, but nothow, ;5int MR model, except that the CR model is trained to rank
good a candidate antecedent is relative to other candidates preceding clusters rather than candidate antecedentseHen

gther. words, it E,a"bsi toTans(\j/\(/jer the #uestlolil of Whlg:h ?and'c;each training instandéc;, NR,) represents a preceding cluster
ate is mosprobable To address this weakness, Denis and, “nd an anaphoric NRR,.

Baldridge[2004 propose to train anention-ranking(MR) If the Conventionafeature set is used to train the model,

mgrdel to rank allkc_:and|daées|s for an aCt'r‘]’ € Nﬁllgltalneou_sl.y ,the instance wil consist of features that are computeddase
0 train a ran Mg, noce’, We Use the ranker-leaming al-g,|qly onnp, as well as cluster-level features, which describe
gorithm from SVM?"." Like the MP model, each training the relationship betwees; andNp,. Motivated in part by

:ns]ctanceh(N?, NR.) reﬁresentsmc an?] a preceding Nﬂdii' Culottaet al. [2007, we create cluster-level features from
n fact, the features that represent the Instance as Welleas tyhq rg|ational features using four predicate®NE, MOST-

method for creating training instances are identical t®¢h0 ., < MoST-TRUE. and ALL Specifically, for each rela-
0}': tlh(t::) 'YIP model. The only d|fferAence lies in the ashs'gnmemtional featurex in the Conventionafeature set, we first con-
of labels to training instances. Assuming titis the set orty jnto an equivalent set of binary-valued features if it is

of training instances created for anaphoric Ni?, therank ) i yajued. Then, for each resulting binary-valued teat

value for an instancé(Np, NR,) in Sy is the rank ofNB "\ve create four binary-valued cluster-level features: (1)
among competing candidate antecedents, whichi@HHf NONE-X,, is true whenx,, is false betweemn, and each NP

NP; is the closest antecedentiof,, and Low otherwise. in c;; (2) MOST-FALSE-X, is true whenx, is true between

After training, the MR model can be applied to rank the yp 504 Jess than half (but at least one) of the NPs;in(3)
candidate antecedents for an active NP in a test text. TherﬁOST_TRUE_Xb is true whenx,, is true betweemp, and at

is a caveat, however: the ranker cannot determine whethgL,qt haf (but not all) of the NPs ify; and (4)ALL -Xy is true
an active NPNR; is anaphoric or not, since all it does is to whenx, is true betweemip, and each NP i
rank the candidate antecedents. To address this problem, weq ihe other hand. feature computationjié much simpler if

learn anaphoricity determination and coreference resolut o eyicalfeature set is used to train the model. Specifically,

joinlt(ly using the_é\/IR m%del. _Specifica_llill, vr\]/hen t_rainin%the the feature set will be composed of features created between
ranker, we provide each active N with the option to be NP, and each NP ir;, as described in Section 2.1, and the

non-anaphoric by creating an additional instance thatdv@s r | o1.e of a feature is the number of times it appears in the

HIGH if itis non-anaphoric and rankdw otherwise. Its féa- j\qance  Encoding feature values as frequency allows us to
twres are CO”?P“ted as follows: if twnventionafeature set capture cluster-level information in a shallow manner.

is used to train the model, the features are the non-relltion * ater training, we can apply the resulting cluster ranker to
features co_mputed based mR,; if the Lexical featurg setis . test text in essentially the same way as we apply the MR
used, we simply create one fealNeLL-X, wherex is .the model, except that the cluster ranker resolves an activeoNP t
head ofNR,, to help learn thak is likely non-anaphoric; and e highest-ranked preceding cluster rather than the ighe

if the Combinedeature set is used, we employ both @en- 5 a4 candidate antecedent. Note that the clusters pneced
ventionalfeatures and theexicalfeatures, as always. NP, are formed incrementally based on the predictions of the

Next, we apply the MR model to a test text. For each activganyer for the firsk — 1 NPs; no gold-standard coreference
NP NR;, we create test instances for it by pairing it with eaChinformation is used in their formation

of its preceding NPs. To allow for the possibility thab,
is non-anaphoric, we create an additional test instancsgho 2.3 The Ensemble

features are created in the same way as in training. All thesgjnce each of the three models can be trained in combination
test instances are then presented to the ranker. If the addjjith each of the three feature sets, we can create nine coref-

tional test instance is assigned thesH rank by the ranker,  grence systems, which will all be members of our ensemble.
thenNR; is classified as non-anaphoric. Otherwise, is

linked to the preceding NP that is assigned the#rank. 3 Ensemble Application

Cluster-Ranking Model Now that we have the ensemble, the next step is to describe
Both MP and MR models are limited in expressiveness: thdnow to apply it to resolve an NP in a test text. As mentioned
information extracted from two NPs alone may not be suffi-before, a major challenge in applying this ensemble stems
cient for making an informed coreference decision. To adfrom the fact that it contains both pairwise and clustereblas
dress this problem, thentity-mention(EM) model is pro- models. Below we address this challenge by describing four
posedLuo et al, 2004; Yanget al,, 2004, which determines methods that allow us to apply the ensemble.



3.1 Method 1. Applying Best Per-NP-Type M odel 3.3 Method 3: Cluster-Based Voting

This method is based on the hypothesis that different mode 0 M,V?It;rjognzd’ \Il\v/ﬁ?r_nake It possible to combine the votes casted

are good at resolving different types of NPs. Consequently, -

for each type of NPs, we identify the member of the ensemqiner than preceding clusters. A natural alternative doel
ble that is best at resolving NPs of this type using a held-ou

devel Wh Vi NP f {o force the MP- and MR-based members to select preceding
evelopmentset. When resolving an NP in a test text, we firs{|,siers so that their votes can be combined with thosedaste

identify its NP type, and then resolve it using the model thal,, he CR-based members. This is the idea behind Method 3.
was determined to be the best at handling this NP type. Method 3 relies crucially on the observation that each
Two questions naturally arise. First, how many NP typesmodel incrementally constructs coreference clustersm@sit
should be used? Rather than considering only the three majeesses the NPs in a test text in a left-to-right manner, degar
NP types (pronouns, proper nouns, and common nouns), Wess of whether it selects preceding antecedents or pregedi
follow Stoyanowet al.[2009 and subdivide each of the three clusters in the resolution process. Hence, when applyieg th
major NP types into three subtypes, which yields nine NPensemble to resolve an active NB, in a test text, each mem-
subtypes, but add another pronoun subtype to cover pronoupgr of the ensemble may have a different set of coreference
that do not belong to any of Stoyaneval’s categories. Due clusters constructed from the first— 1 NPs.
to space limitations, we refer to the reader to Rahman and Method 3 utilizes this observation to allow each MP- and
Ng [2011 for details on these ten NP subtypes. MR-based member to cast a vote for a preceding cluster.
Second, how can we determine which model performs th&pecifically, consider again the scenario where the engembl
best for an NP type on the development set? To computts applied to resolve an active N, in a test text. If a MP-
the score of a model for NP type C, we process the NPs in ar MR-based member seleat®; as the antecedent off;,
development text in a left-to-right manner. For each NP enwe will make it cast one vote for each NP that appears in the
countered, we check whether it belongs to C. If so, we use theame cluster asp;. Hence, this cluster-based voting scheme
model to decide how to resolve it. Otherwise, we use an oraallows each member to cast a vote for more than one NP. As
cle to make the correct resolution decision (so that in thie enbefore, the candidate antecedent that receives the largest
all the mistakes can be attributed to the incorrect resmiuaf ~ ber of votes will be selected as the antecedemtmf
the NPs belonging to C, thus allowing us to directly measure . .
its impact on overall performance). After all the test doc-3-4 Meéthod 4: Weighted Cluster-Based Voting
uments are processed, we compute the F-measure score lmnMethod 3, all the votes casted for a particular candidate
only the NPs that belong to C. We repeat this process to comantecedent have equal weights. In practice, some members of
pute the score of each model on NP type C, and the model séhe ensemble may be more important than the others, so the
lected for C is the one that achieves the best F-measure scoktes casted by these members should have higher weights.
To model this observation, we first learn the weights asso-
3.2 Method 2: Antecedent-Based Voting ciated with each membgr using a heI(_j-out de\_/elqp_merjt set.
To do so, we employ an iterative algorithm, which initiabze
In this method, when we apply the ensemble to resolve af€ weights of all the members to 1. In thh iteration, it
active NPNR, in a test text, each member of the ensembleOPtimizes the weight of exactly one member, namely mem-
independently selects an antecedentNgr. The candidate Per ¢ mod 9), while keeping the weights of the rest constant.

antecedent that receives the largest number of votes will bePecifically, it selects the weight from the det4, —3, -2,
selected as the antecedentef . -1, 0, 1, 2, 3, 4 that, when used in combination with the

weights associated with the other members, maximizes the F-
easure score on the development set. We run the algorithm
r 10 * (size of ensemble) = 1@ 9 = 90 iterations, keeping
ttrack of the F-measure achieved in each iteration. We use the
ector that achieves the highest F-measure score amorey thes
0 iterations as our final weight vector.

At first glance, it may not be immediately clear how to
apply this method to those members that employ the CF¥2
model, since they select preceding clusters, not precedting
tecedents. One simple fix to this problem would be to just le
a CR-based member cast a vote for each NP in the preceé

ing cluster it selects. However, this voting scheme mayeaus Testing proceeds in the same way as in Method 3, except

some unfairness to the MP- and MR-based members of th(—‘g* t for each candidate antecedent of an activeNRP we
ensemble, since the CR-based members can cast more vo{ g ’

than their MP- and MR-based counterparts. compute a weighted sum of the votes, where the weight of a
. . i _ vote is equal to the weight associated with the member that
We propose a simple solution to this problem: we force a:asted the vote. The candidate that receives the largest num

CR-based member to select an antecedent instead. Specifis; of weighted votes is chosen as the antecedemtdor
cally, we assume that the antecedent it selectsifpris the

last NP in the preceding cluster that it selects (i.e., thaiNP ;
this preceding cluster that is closesing,). 4 Eval ua_tlon

Note that each member has the option of casting a vote fof-1 Experimental Setup
theNuLL antecedent if it believes thaip, is hon-anaphoric. We use the ACE 2005 coreference corpus as released by the
If the NULL antecedent receives the largest number of voted,DC, which consists of the 599 training documents used
the ensemble will positiR, as non-anaphoric. in the official ACE evaluation. The corpus was created by



MP Models MR Models CR Models Ensembles
Source || conv | lex | comb | conv| lex | comb| conv | lex | comb M1 M2 M3 M4
bc 508 57.4| 557 | 529 | 56.5| 54.1 | 55.1| 57.7| 58.2 59.1 | 59.7 | 60.2 | 619
bn 534 | 62.3| 62.7 | 55.8 | 63.5| 63.7 | 62.7 | 63.3| 62.5 63.9 | 64.6 | 65.2 | 66.9
cts 570 | 61.1| 61.3 | 58.6 | 62.7| 61.7 | 625 | 61.1 | 64.1 66.0 | 67.0 | 67.6 | 69.7
nw 577|649 | 608 | 60.2 | 65.4| 61.3 | 61.5| 65.3| 64.6 65.1 | 66.2 | 66.5 | 68.3
un 53.7 | 54.8| 554 | 55.6 | 56.3 | 56.0 | 56.2 | 55.7 | 58.1 58.9 | 59.2 | 59.5 | 614
wb 63.3 | 65.2| 576 | 65.2 | 68.7| 545 | 67.0| 63.3| 67.9 69.0 | 69.5 | 69.9 | 715
Overall || 56.2 | 61.2| 58.8 | 58.2 | 62.4| 61.2 | 61.2 | 61.5| 62.8 || 63.7 | 64.4f | 64.8f | 66.8f

Table 1: B F-measure scores of the baselines and the ensemble apgsoE@hstrongest result for each data source is boldfaced.
A dagger is used whenever an ensemble method is signifidagitigr than CR-comb, the best baseline (patregst,p < 0.01).

selecting documents from six different sources: Broadcadbok at the results reveals that some of these conventieaal f
News (bn), Broadcast Conversations (bc), Newswire (nw)tures are in fact misguiding the learner. For instance, avhil
Webblog (wb), Usenet (un), and Conversational Telephonéhe learner correctly learns that two NPs should not be eoref
Speech (cts). For each data source, we partition the docerent when they have incompatible number, it also learrts tha
ments into five folds of roughly the same size, reserving on@umber compatibility contributes positively to corefecen
fold for testing and training on the remaining four folds. We believe that this is an instance of over-generalization,
We employ in our evaluation NPs automatically extractedsince numerous humber-compatible NPs are not coreferent.
using our in-house mention extractor, which achieves an Funlike a Conventionalfeature, which is typically applica-
score of 86.7% on our test set when trained on our trainindple to a large number of NP pairs,L&xical feature is typ-
texts (see Section 6.1.2 of Rahman andR@L1] for details). ically applicable to a small number of NP pairs. As a re-
All coreference models are trained using the default leayni sult, a learner that employsexical features is less likely to
parameters provided by SVM"*. For scoring, we employ over-generalize than one that empl@&snventionafeatures.
one of the commonly-used coreference scoring prograrhs, BWhen combining the&ConventionakndLexical features into

[Bagga and Baldwin, 1998 the Combinedfeature set, the performance of MP and MR

i i both drops, presumably due to the over-generalization con-
4.2 Resultsand Discussion tributed by theConventionafeatures. On the other hand, the
Baseline Systems CR model achieves similar performance using @anven-

Since the goal of our evaluation is to determine the effectional features and theexical features: the increased com-
tiveness of ensemble approaches, we employ as our basglexity of the CR model makes it more robust to the “noise”
lines non-ensemble approaches. Specifically, we emplay nin(i.e., features that are likely to cause over-generabpidtin
baseline systems, each of which corresponds to one of thbe Conventionafeatures than the other models, but at the
members of our 9-member ensemble. Each baseline is traineéme time its performance is limited in part by thexical
on the four training folds and tested on the test fold. features, which have data sparseness issues despite our at-
Results of the nine baseline systems on the test set, reporteempts to improve generalizability. Nevertheless, whengus
in terms of B F-measure, are shown in the first nine columnsthe Combinedfeatures, the CR model improves, suggesting
of Table 1. Note that the columns labeled 'conv’, 'lex’, and that it can exploit the useful information in both featuréesse
'comb’ correspond to th€onventional Lexical and Com-
binedfeature sets, respectively. Each row of the table correEnsemble Approaches
sponds to results from one of the six data sources. Result8esults of the ensemble approaches on the test set are shown
shown in the last row are aggregates of the results from thin the last four columns of Table 1, where M1, M2, M3, and
previous six rows, obtained by applying B score the test M4 correspond to the four methods for applying ensembles
documents from all six data sources. introduced in Section 3. Recall that M1 and M4 require a
As we can see from the last row of the table, the bestheld-out development set for parameter selection, whereas
performing baseline is CR-comb, which achieves an FM2 and M3 do not. To ensure a fair comparison, they all have
measure of 62.8. More interestingly, this baseline does naaccess to the same amount of coreference-annotated data. In
achieve the best performance on all six domains. In fact, itparticular, we tune the parameters of M1 and M4 on one train-
closest competitor, MR-lex, achieves the best performance ing fold, and train their models on the remaining three train
two domains (nw and wb), whereas MR-comb achieves théng folds; on the other hand, we train the models in M2 and
best performance on the bn domain. In other words, none df13 on all four training folds.
the baselines is consistently better than the others. Tigis s  Two points deserve mention. First, all four ensemble meth-
gests that it may be beneficial to apply an ensemble approacbds yield better performance than CR-comb, the best base-
It is interesting to see that for MP and MR, employing line. In particular, the best ensemble method, M4, achieves
the Lexical features yields substantially better results thanan F-measure of 66.8, significantly outperforming CR-comb
employing theConventionafeatures. In other words, these by 4 absolute F-measure points. One should bear in mind
models achieve better results when conventional featurehat CR-comb achieves one of the best published results on
such as gender and number agreement are not used. A clogke ACE 2005 data set, and hence the 4-point improvement



CR-comb MT M2 M3 N4
R P F|R P F|R P F|R P F|R P F
Overall [544 748 628|551 756 63.7 555 76.6 644 557 775 648 5/6 795 6638

Table 2: B recall, precision, and F-measure scores for the best basatid the ensemble methods.

we observe here is an improvement over the state of the artReferences
A closer look at the table reveals that each ensemble achieveaone and Bennett, 1995C. Aone and S. W. Bennett. Evaluating
better results on every domain than CR-comb. In fact, the per  automated and manual acquisition of anaphora resolutiatest
formance difference between CR-comb and each of the four gies. InACL
ensemble methods is highly statistically significant (gdir [Bagga and Baldwin, 1998A. Bagga and B. Baldwin.
test,p < 0.01). Overall, these results suggest that it is bene- based cross-document coreferencing using the vector space
ficial to apply ensemble methods to coreference resolution.  model. INCOLING/ACL

Second, unlike CR-comb (the best baseline), which doeB3engtson and Roth, 20D&. Bengtson and D. Roth. Understand-
not offer the best performance on each data source amo ing the values of features for coreference resolutiorEMNLP.
the baselines, M4 (the best ensemble method) achieves ;,L%ulpttaet al, 2007 A. Culotta, M. Wick, and A. McCallum.
best performance on each data source. In fact, each ensembIeF'rSt'Order probabilistic models for coreference resotut In
method performs better than the one immediately to its le NAACLHLT . . o
on each data source. These results seem to suggest that Heer:]us and Baldridge, 2008P. Denis and J. Baldridge. Specialized

. ' odels and ranking for coreference resolutionEMNLP.
ensemble methods can indeed combine the strengths of ﬂfﬁinkelet al, 2009 J gR Finkel, T. Grenager, and C. Manning
ensemble members. ; P - y X '

' . Incorporating non-local information into information exttion
While we showed that our ensemble approaches improve systems by Gibbs sampling. ACL

the best baseline in terms of F-measure, it would be interfyaghighi and Klein, 2010 A. Haghighi and D. Klein. Coreference

esting to see whether such improvement was contributed by resolution in an modular, entity-centered modelNIACL HLT.

improvements in recall, precision, or both. To answer thigJoachims, 2042 T. Joachims. Optimizing search engines using

question, we show in Table 2 the recall (R), precision (R), clickthrough data. IiKDD.

and F-measure (F) scores of the best baseline (CR-comb) afigouchnir, 2004 B. Kouchnir. A machine learning approach to

the four ensemble methods. As we move across the table, we German pronoun resolution. ACL Student Research Workshop

can see that the rise in F-measure is always accompanied byt0 et al, 2004 X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla,
a simultaneous rise in recall and precision. and S. Roukos. A mention-synchronous coreference respluti

algorithm based on the Bell tree. ACL.

[McCarthy and Lehnert, 1995J. McCarthy and W. Lehnert. Using
decision trees for coreference resolutionlJGAL.

[Munsonet al, 200§ A. Munson, C. Cardie, and R. Caruana. Op-
timizing to arbitrary NLP metrics using ensemble selectidm
EMNLP.

Entity-

5 Conclusions

We examined new methods foreatingandapplyingensem-
bles of learning-based coreference systems. To creatmense
bles, we proposed using differesupervised modelinclud- . ) ) )
ing pairwise and cluster-based models, and diffefeature ~ [Ng and Cardie, 20d2V. Ng and C. Cardie. Improving machine
sets which involve the under-studied word-pair-based fea- _l€arning approaches to coreference resolutiom@i. _
tures. Due to the presence of pairwise and cluster-based mof\d and Cardie, 2003V. Ng and C. Cardie. Weakly supervised
els in our ensemble, we need to address the non-trivial ques- &"eré‘ll_ language learning without redundant views. HIAT-
:;?n of hoa/v Ito \(/:&)mblnle thgfcorefert?]n%e ?ec's'ols. '.””a‘i'ﬁ b Ng, 2003 V. Ng. _l\_/lac_hine learning for_coreference resolution:
€S€ modaels. Ve exploredtour metnods for combiniNg tNeSe ",y o4 classification to global ranking. ACL.
decisions, all qf which are developed specifically for corefépang and Fan, 2009W. Pang and X. Fan. Chinese coreference
erence resolution. Experimental results on the ACE 2005 tesojution with ensemble learning. RACIIA
data set show that all four ensemble methods outperform thgzahman and Ng, 2011A. Rahman and V. Ng. Narrowing the
best baseline (i.e., the cluster-ranking model trainedhen t ~ modeling gap: A cluster-ranking approach to coreferense-re
Combinedeature set), which is a state-of-the-art supervised Iution. Journal of Artificial Intelligence Research0:469-521.
coreference model. In particular, the best ensemble metho&Soonet al, 2000 W. M. Soon, H. T. Ng, and D. C. Y. Lim. A
which involves casting weighted votes on preceding clsster ~ machine learning approach to coreference resolution ofnou
surpasses this state-of-the-art model by 4.03FBneasure. phrasesComputational Linguistic27(4):521-544.
[Stoyanowet al,, 2009 V. Stoyanov, N. Gilbert, C. Cardie, and
E. Riloff. Conundrums in noun phrase coreference resaiutio
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To be specific, Haghighi and Kleinf201d coreference model,
which achieves one of the best results on the ACE data spttse
a B® F-measure of 62.7 on our test set.



