
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI), 
Barcelona, Spain, July 2011, pp. 1884--1889.

Ensemble-Based Coreference Resolution

Altaf Rahman and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{altaf,vince}@hlt.utdallas.edu

Abstract

We investigate new methods for creating and ap-
plying ensembles for coreference resolution. While
existing ensembles for coreference resolution are
typically created using different learning algo-
rithms, clustering algorithms or training sets, we
harness recent advances in coreference modeling
and propose to create our ensemble from a vari-
ety of supervised coreference models. However,
the presence of pairwise and non-pairwise corefer-
ence models in our ensemble presents a challenge
to its application: it is not immediately clear how to
combine the coreference decisions made by these
models. We investigate different methods for ap-
plying a model-heterogeneous ensemble for coref-
erence resolution. Empirical results on the ACE
data sets demonstrate the promise of ensemble ap-
proaches: all ensemble-based systems significantly
outperform the best member of the ensemble.

1 Introduction
Noun phrase (NP) coreference resolution is the task of deter-
mining which NPs in a text refer to the same real-world entity.
Recent years have seen the proposal of a number of super-
vised coreference models. While recently-proposed models
all report better performance than earlier ones, an intriguing
question is: is there a single model that is truly better thanthe
others in that it addresses all the weaknesses inherent in other
models, or do existing models have complementary strengths
and weaknesses? We hypothesize that the latter is true, and
this motivates our investigation of ensemble approaches to
coreference resolution. More specifically, our goal in thispa-
per is to investigate new methods forcreatingandapplying
ensembles of supervised coreference systems.

As far ascreating ensembles is concerned, we will ex-
plore two methods. The first method, as suggested above,
involves employing different supervisedmodelsof corefer-
ence resolution. In addition to employing the influential
mention-pairmodel[Aone and Bennett, 1995; McCarthy and
Lehnert, 1995], which is a classifier that determines whether
two NPs are co-referring, we will consider two recently-
developed models, a ranking-based model known as the
mention-rankingmodel[Denis and Baldridge, 2008], and a

hybrid entity- and ranking-based model known as thecluster-
rankingmodel[Rahman and Ng, 2011]. Employing different
coreference models to create ensembles bears resemblance
to Pang and Fan’s[2009] approach, where an ensemble of
pairwise models is applied to Chinese coreference resolution,
but contrasts with the vast majority of existing approaches,
where an ensemble of coreference systems is typically cre-
ated by employing different learning algorithms[Munsonet
al., 2005] or clustering algorithms[Ng, 2005], or perturb-
ing the training set using meta-learning techniques such as
bagging and boosting[Ng and Cardie, 2003; Kouchnir, 2004;
Vemulapalliet al., 2009].

Our second method for creating ensembles involves em-
ploying differentfeature setsto train coreference models. The
features used by the majority of existing coreference systems
are derived primarily from Ng and Cardie’s[2002] and Bengt-
son and Roth’s[2008]’s feature sets, which comprise a fairly
large number of conventional features. In addition to em-
ploying a conventional feature set, we also experiment witha
feature set that abandons some of these conventional features
(e.g., gender and number agreement) and instead includes a
kind of features that is not exploited by the majority of exist-
ing supervised coreference models:word pairsthat are com-
posed of the head nouns of the two NPs under consideration.
Intuitively, these word pairs contain useful information.For
example, they may help improve theprecisionof a model,
by allowing a learner to learn that “it” only has a moderate
probability of being anaphoric, and that “the contrary” taken
from the phrase “on the contrary” is never anaphoric. They
may also help improve its recall, by allowing the learner to
determine, for instance, that “airline” and “carrier” can be
coreferent. Hence, they offer a convenient means to attack
one of the major problems in coreference research: identify-
ing lexically dissimilar but semantically related pairs ofcom-
mon nouns. We believe that we can increase the diversity of
the ensemble by including models trained on different feature
sets, including conventional features as well as these word-
pair-based features.

Another contribution of our work lies in our investigation
of different methods forapplyingensembles for coreference
resolution. The major challenge in applying ensembles arises
from the heterogeneity of coreference models in our ensem-
ble. Specifically, since our ensemble comprises both pairwise
classifiers (e.g., the mention-pair model) and non-pairwise



models (e.g., the cluster-ranking model), it is not immedi-
ately clear how to combine the coreference decisions made
by different models. This contrasts with existing ensemble
approaches, where all members of the ensemble employ pair-
wise coreference models. The use of pairwise models across
the board makes it easy to apply the resulting ensemble: the
ensemble determines whether two NPs are co-referring sim-
ply by tallying the votes casted by its members. Experimental
results on the ACE 2005 data sets demonstrate the promise
of ensemble approaches to coreference resolution: all of our
ensemble-based systems significantly outperform the cluster-
ranking model, the best-performing coreference model in the
ensemble; in particular, the best ensemble-based system out-
performs the cluster-ranking model by 4 points in F-measure.

The rest of the paper is organized as follows. Sections 2
and 3 describe our methods forcreatingandapplyingensem-
bles for coreference resolution, respectively. We evaluate our
ensemble approaches in Section 4 and conclude in Section 5.

2 Ensemble Creation
We create an ensemble of coreference systems by employing
differentsupervised modelsand differentfeature sets. Below
we provide the details of these models and feature sets.

2.1 Feature Sets
We use three feature sets to characterize a pair of NPs:Con-
ventional, Lexical, andCombined.

The Conventional Feature Set
Our Conventionalfeature set consists of 39 commonly-used
coreference features, which are described in Table 1 of Rah-
man and Ng[2011]. Linguistically, our features can be di-
vided into four categories: string-matching, grammatical, se-
mantic, and positional. These features can also be catego-
rized based on whether they are relational or not. Specifi-
cally, relational features capture the relationship between the
two NPs under consideration, whereas non-relational features
are computed using exactly one of the two NPs. Since space
limitations preclude a description of these features, we refer
the reader to Rahman and Ng[2011] for details.

The Lexical Feature Set
Recall that we propose to use the word pairs collected from
coreference-annotated documents as features for traininga
supervised model. Our second feature set, theLexicalfeature
set, comprises primarily features derived from these word
pairs (henceforthlexical features).

For lexical features to be effective, we need to addressdata
sparseness, as many word pairs in the training data may not
appear in the test data. To improve generalization, we extract
different kinds of lexical features from an annotated text.

Before computing these features, we first preprocess a
training text by randomly replacing 10% of its common
nouns with the labelUNSEEN. If an NPNPk is replaced with
UNSEEN, all NPs that have the same string asNPk will also
be replaced withUNSEEN. A testtext is preprocessed differ-
ently: we simply replace all NPs whose strings are not seen
in the training data withUNSEEN. Hence, artificially creat-
ing UNSEEN labels from a training text will allow a learner

to learn how to handle unseen words in a test text, potentially
improving generalizability.

Below are the four types of features in theLexical feature
set. Each feature is computed based on two NPs,NPj andNPk.
Unseen feature. If both NPj and NPk are UNSEEN, we de-
termine whether they are the same string. If so, we create
anUNSEEN-SAME feature; otherwise, we create anUNSEEN-
DIFF feature. If only one of them isUNSEEN, no feature will
be created from any of the four feature groups, since features
involving an UNSEEN NP are likely to be misleading for a
learner in the sense that they may yield incorrect generaliza-
tions from the training set.
Lexical feature. We create a lexical feature betweenNPj and
NPk, which is an ordered pair comprising their heads. For a
pronoun or a common noun, the head is taken to be the last
word of the NP; for a proper name, the head is the entire NP.
Semi-lexical features. These features aim to improve gen-
eralizability. Specifically, if exactly one ofNPj and NPk is
tagged as a named entity (NE) by the Stanford NE recog-
nizer [Finkel et al., 2005], we create a semi-lexical feature
that is identical to the lexical feature described above, except
that the NE is replaced with its NE label (i.e.,PERSON, LO-
CATION, ORGANIZATION). If both NPs are NEs, we check
whether they are the same string. If so, we create the feature
* NE*- SAME, where *NE* is replaced with the corresponding
NE label. Otherwise, we check whether they have the same
NE tagand a word-subset match (i.e., whether all word to-
kens in one NP appears in the other’s list of tokens). If so, we
create the feature *NE*- SUBSAME, where *NE* is replaced
with their NE label. Otherwise, we create a feature that is the
concatenation of the NE labels of the two NPs.
Old features. To further improve generalizability, we in-
corporate two easy-to-computeConventionalfeatures:name
alias, which determines whether one NP is an acronym or
an abbreviation of the other, anddistance, which encodes the
distance between the two NPs in sentences.

The Combined Feature Set
The Combinedfeature set is the union of theConventional
features and theLexicalfeatures.

2.2 Models
We employ three supervised models: the mention-pair model,
the mention-ranking model, and the cluster-ranking model.

Mention-Pair Model
The mention-pair (MP) model is a classifier that determines
whether two NPs are co-referring or not. Each instancei(NPj ,
NPk) corresponds toNPj andNPk, and is represented by one
of three sets of features described in the previous subsection.
We follow Soonet al.’s [2001] method for creating training
instances. Specifically, we create (1) a positive instance for
each anaphoric noun phraseNPk and its closest antecedent
NPj ; and (2) a negative instance forNPk paired with each of the
intervening NPs,NPj+1, NPj+2, . . ., NPk−1. The class value of
a training instance is either positive or negative, depending on
whether the two NPs are coreferent in the associated text. To
train the MP model, we use the SVM learner from SVMlight

[Joachims, 2002].



After training, the classifier identifies an antecedent for an
NP in a test text. Following Soonet al. [2001], an NPNPk
selects as its antecedent the closest preceding NP that is clas-
sified as coreferent with it. If no preceding NP is classified as
coreferent withNPk, no antecedent will be selected forNPk.

Mention-Ranking Model
The MP model has a major weakness: since each candidate
antecedent for an NP to be resolved (henceforth anactive NP)
is considered independently of the others, it only determines
how good a candidate is relative to the active NP, but not how
good a candidate antecedent is relative to other candidates. In
other words, it fails to answer the question of which candi-
date is mostprobable. To address this weakness, Denis and
Baldridge[2008] propose to train amention-ranking(MR)
model to rank all candidates for an active NPsimultaneously.

To train a ranking model, we use the ranker-learning al-
gorithm from SVMlight. Like the MP model, each training
instancei(NPj , NPk) representsNPk and a preceding NPNPj .
In fact, the features that represent the instance as well as the
method for creating training instances are identical to those
of the MP model. The only difference lies in the assignment
of labels to training instances. Assuming thatSk is the set
of training instances created for anaphoric NPNPk, the rank
value for an instancei(NPj , NPk) in Sk is the rank ofNPj
among competing candidate antecedents, which is HIGH if
NPj is the closest antecedent ofNPk, and LOW otherwise.

After training, the MR model can be applied to rank the
candidate antecedents for an active NP in a test text. There
is a caveat, however: the ranker cannot determine whether
an active NPNPk is anaphoric or not, since all it does is to
rank the candidate antecedents. To address this problem, we
learn anaphoricity determination and coreference resolution
jointly using the MR model. Specifically, when training the
ranker, we provide each active NPNPk with the option to be
non-anaphoric by creating an additional instance that has rank
HIGH if it is non-anaphoric and rank LOW otherwise. Its fea-
tures are computed as follows: if theConventionalfeature set
is used to train the model, the features are the non-relational
features computed based onNPk; if the Lexical feature set is
used, we simply create one featureNULL -X, whereX is the
head ofNPk, to help learn thatX is likely non-anaphoric; and
if the Combinedfeature set is used, we employ both theCon-
ventionalfeatures and theLexicalfeatures, as always.

Next, we apply the MR model to a test text. For each active
NP NPk, we create test instances for it by pairing it with each
of its preceding NPs. To allow for the possibility thatNPk
is non-anaphoric, we create an additional test instance whose
features are created in the same way as in training. All these
test instances are then presented to the ranker. If the addi-
tional test instance is assigned the HIGH rank by the ranker,
then NPk is classified as non-anaphoric. Otherwise,NPk is
linked to the preceding NP that is assigned the HIGH rank.

Cluster-Ranking Model
Both MP and MR models are limited in expressiveness: the
information extracted from two NPs alone may not be suffi-
cient for making an informed coreference decision. To ad-
dress this problem, theentity-mention(EM) model is pro-
posed[Luo et al., 2004; Yanget al., 2008], which determines

whether an active NP belongs to a preceding coreference clus-
ter. Hence, an EM model can employcluster-levelfeatures
(i.e., features that are defined over any subset of the NPs in a
preceding cluster), which makes them more expressive than
MP and MR models. Recently, we have combined the EM
model’s expressiveness with the MR model’s ability to rank
to create the cluster-ranking (CR) model, whichrankspre-
cedingclustersfor an active NP[Rahman and Ng, 2011].

We train a CR model to jointly learn anaphoricity determi-
nation and coreference resolution in the same way as we train
a joint MR model, except that the CR model is trained to rank
preceding clusters rather than candidate antecedents. Hence,
each training instancei(cj , NPk) represents a preceding cluster
cj and an anaphoric NPNPk.

If the Conventionalfeature set is used to train the model,
the instance will consist of features that are computed based
solely onNPk as well as cluster-level features, which describe
the relationship betweencj and NPk. Motivated in part by
Culotta et al. [2007], we create cluster-level features from
the relational features using four predicates:NONE, MOST-
FALSE, MOST-TRUE, and ALL . Specifically, for each rela-
tional featureX in theConventionalfeature set, we first con-
vert X into an equivalent set of binary-valued features if it is
multi-valued. Then, for each resulting binary-valued feature
Xb, we create four binary-valued cluster-level features: (1)
NONE-Xb is true whenXb is false betweenNPk and each NP
in cj ; (2) MOST-FALSE-Xb is true whenXb is true between
NPk and less than half (but at least one) of the NPs incj ; (3)
MOST-TRUE-Xb is true whenXb is true betweenNPk and at
least half (but not all) of the NPs incj ; and (4)ALL -Xb is true
whenXb is true betweenNPk and each NP incj .

On the other hand, feature computation is much simpler if
theLexicalfeature set is used to train the model. Specifically,
the feature set will be composed of features created between
NPk and each NP incj , as described in Section 2.1, and the
value of a feature is the number of times it appears in the
instance. Encoding feature values as frequency allows us to
capture cluster-level information in a shallow manner.

After training, we can apply the resulting cluster ranker to
a test text in essentially the same way as we apply the MR
model, except that the cluster ranker resolves an active NP to
the highest-ranked preceding cluster rather than the highest-
ranked candidate antecedent. Note that the clusters preceding
NPk are formed incrementally based on the predictions of the
ranker for the firstk − 1 NPs; no gold-standard coreference
information is used in their formation.

2.3 The Ensemble
Since each of the three models can be trained in combination
with each of the three feature sets, we can create nine coref-
erence systems, which will all be members of our ensemble.

3 Ensemble Application
Now that we have the ensemble, the next step is to describe
how to apply it to resolve an NP in a test text. As mentioned
before, a major challenge in applying this ensemble stems
from the fact that it contains both pairwise and cluster-based
models. Below we address this challenge by describing four
methods that allow us to apply the ensemble.



3.1 Method 1: Applying Best Per-NP-Type Model

This method is based on the hypothesis that different models
are good at resolving different types of NPs. Consequently,
for each type of NPs, we identify the member of the ensem-
ble that is best at resolving NPs of this type using a held-out
development set. When resolving an NP in a test text, we first
identify its NP type, and then resolve it using the model that
was determined to be the best at handling this NP type.

Two questions naturally arise. First, how many NP types
should be used? Rather than considering only the three major
NP types (pronouns, proper nouns, and common nouns), we
follow Stoyanovet al. [2009] and subdivide each of the three
major NP types into three subtypes, which yields nine NP
subtypes, but add another pronoun subtype to cover pronouns
that do not belong to any of Stoyanovet al.’s categories. Due
to space limitations, we refer to the reader to Rahman and
Ng [2011] for details on these ten NP subtypes.

Second, how can we determine which model performs the
best for an NP type on the development set? To compute
the score of a model for NP type C, we process the NPs in a
development text in a left-to-right manner. For each NP en-
countered, we check whether it belongs to C. If so, we use the
model to decide how to resolve it. Otherwise, we use an ora-
cle to make the correct resolution decision (so that in the end
all the mistakes can be attributed to the incorrect resolution of
the NPs belonging to C, thus allowing us to directly measure
its impact on overall performance). After all the test doc-
uments are processed, we compute the F-measure score on
only the NPs that belong to C. We repeat this process to com-
pute the score of each model on NP type C, and the model se-
lected for C is the one that achieves the best F-measure score.

3.2 Method 2: Antecedent-Based Voting

In this method, when we apply the ensemble to resolve an
active NPNPk in a test text, each member of the ensemble
independently selects an antecedent forNPk. The candidate
antecedent that receives the largest number of votes will be
selected as the antecedent ofNPk.

At first glance, it may not be immediately clear how to
apply this method to those members that employ the CR
model, since they select preceding clusters, not precedingan-
tecedents. One simple fix to this problem would be to just let
a CR-based member cast a vote for each NP in the preced-
ing cluster it selects. However, this voting scheme may cause
some unfairness to the MP- and MR-based members of the
ensemble, since the CR-based members can cast more votes
than their MP- and MR-based counterparts.

We propose a simple solution to this problem: we force a
CR-based member to select an antecedent instead. Specifi-
cally, we assume that the antecedent it selects forNPk is the
last NP in the preceding cluster that it selects (i.e., the NPin
this preceding cluster that is closest toNPk).

Note that each member has the option of casting a vote for
the NULL antecedent if it believes thatNPk is non-anaphoric.
If the NULL antecedent receives the largest number of votes,
the ensemble will positNPk as non-anaphoric.

3.3 Method 3: Cluster-Based Voting
In Method 2, we make it possible to combine the votes casted
by MP- and MR-based members and those casted by CR-
based members by forcing the latter to select antecedents
rather than preceding clusters. A natural alternative would be
to force the MP- and MR-based members to select preceding
clusters so that their votes can be combined with those casted
by the CR-based members. This is the idea behind Method 3.

Method 3 relies crucially on the observation that each
model incrementally constructs coreference clusters as itpro-
cesses the NPs in a test text in a left-to-right manner, regard-
less of whether it selects preceding antecedents or preceding
clusters in the resolution process. Hence, when applying the
ensemble to resolve an active NPNPk in a test text, each mem-
ber of the ensemble may have a different set of coreference
clusters constructed from the firstk − 1 NPs.

Method 3 utilizes this observation to allow each MP- and
MR-based member to cast a vote for a preceding cluster.
Specifically, consider again the scenario where the ensemble
is applied to resolve an active NPNPk in a test text. If a MP-
or MR-based member selectsNPj as the antecedent ofNPk,
we will make it cast one vote for each NP that appears in the
same cluster asNPj . Hence, this cluster-based voting scheme
allows each member to cast a vote for more than one NP. As
before, the candidate antecedent that receives the largestnum-
ber of votes will be selected as the antecedent ofNPk.

3.4 Method 4: Weighted Cluster-Based Voting
In Method 3, all the votes casted for a particular candidate
antecedent have equal weights. In practice, some members of
the ensemble may be more important than the others, so the
votes casted by these members should have higher weights.

To model this observation, we first learn the weights asso-
ciated with each member using a held-out development set.
To do so, we employ an iterative algorithm, which initializes
the weights of all the members to 1. In theith iteration, it
optimizes the weight of exactly one member, namely mem-
ber (i mod 9), while keeping the weights of the rest constant.
Specifically, it selects the weight from the set{−4, −3, −2,
−1, 0, 1, 2, 3, 4} that, when used in combination with the
weights associated with the other members, maximizes the F-
measure score on the development set. We run the algorithm
for 10 * (size of ensemble) = 10× 9 = 90 iterations, keeping
track of the F-measure achieved in each iteration. We use the
vector that achieves the highest F-measure score among these
90 iterations as our final weight vector.

Testing proceeds in the same way as in Method 3, except
that for each candidate antecedent of an active NPNPk, we
compute a weighted sum of the votes, where the weight of a
vote is equal to the weight associated with the member that
casted the vote. The candidate that receives the largest num-
ber of weighted votes is chosen as the antecedent forNPk.

4 Evaluation
4.1 Experimental Setup
We use the ACE 2005 coreference corpus as released by the
LDC, which consists of the 599 training documents used
in the official ACE evaluation. The corpus was created by



MP Models MR Models CR Models Ensembles
Source conv lex comb conv lex comb conv lex comb M1 M2 M3 M4
bc 50.8 57.4 55.7 52.9 56.5 54.1 55.1 57.7 58.2 59.1 59.7 60.2 61.9
bn 53.4 62.3 62.7 55.8 63.5 63.7 62.7 63.3 62.5 63.9 64.6 65.2 66.9
cts 57.0 61.1 61.3 58.6 62.7 61.7 62.5 61.1 64.1 66.0 67.0 67.6 69.7
nw 57.7 64.9 60.8 60.2 65.4 61.3 61.5 65.3 64.6 65.1 66.2 66.5 68.3
un 53.7 54.8 55.4 55.6 56.3 56.0 56.2 55.7 58.1 58.9 59.2 59.5 61.4
wb 63.3 65.2 57.6 65.2 68.7 54.5 67.0 63.3 67.9 69.0 69.5 69.9 71.5
Overall 56.2 61.2 58.8 58.2 62.4 61.2 61.2 61.5 62.8 63.7† 64.4† 64.8† 66.8†

Table 1: B3 F-measure scores of the baselines and the ensemble approaches.The strongest result for each data source is boldfaced.
A dagger is used whenever an ensemble method is significantlybetter than CR-comb, the best baseline (pairedt-test,p < 0.01).

selecting documents from six different sources: Broadcast
News (bn), Broadcast Conversations (bc), Newswire (nw),
Webblog (wb), Usenet (un), and Conversational Telephone
Speech (cts). For each data source, we partition the docu-
ments into five folds of roughly the same size, reserving one
fold for testing and training on the remaining four folds.

We employ in our evaluation NPs automatically extracted
using our in-house mention extractor, which achieves an F-
score of 86.7% on our test set when trained on our training
texts (see Section 6.1.2 of Rahman and Ng[2011] for details).
All coreference models are trained using the default learning
parameters provided by SVMlight. For scoring, we employ
one of the commonly-used coreference scoring programs, B3

[Bagga and Baldwin, 1998].

4.2 Results and Discussion
Baseline Systems
Since the goal of our evaluation is to determine the effec-
tiveness of ensemble approaches, we employ as our base-
lines non-ensemble approaches. Specifically, we employ nine
baseline systems, each of which corresponds to one of the
members of our 9-member ensemble. Each baseline is trained
on the four training folds and tested on the test fold.

Results of the nine baseline systems on the test set, reported
in terms of B3 F-measure, are shown in the first nine columns
of Table 1. Note that the columns labeled ’conv’, ’lex’, and
’comb’ correspond to theConventional, Lexical, andCom-
binedfeature sets, respectively. Each row of the table corre-
sponds to results from one of the six data sources. Results
shown in the last row are aggregates of the results from the
previous six rows, obtained by applying B3 to score the test
documents from all six data sources.

As we can see from the last row of the table, the best-
performing baseline is CR-comb, which achieves an F-
measure of 62.8. More interestingly, this baseline does not
achieve the best performance on all six domains. In fact, its
closest competitor, MR-lex, achieves the best performanceon
two domains (nw and wb), whereas MR-comb achieves the
best performance on the bn domain. In other words, none of
the baselines is consistently better than the others. This sug-
gests that it may be beneficial to apply an ensemble approach.

It is interesting to see that for MP and MR, employing
the Lexical features yields substantially better results than
employing theConventionalfeatures. In other words, these
models achieve better results when conventional features
such as gender and number agreement are not used. A closer

look at the results reveals that some of these conventional fea-
tures are in fact misguiding the learner. For instance, while
the learner correctly learns that two NPs should not be coref-
erent when they have incompatible number, it also learns that
number compatibility contributes positively to coreference.
We believe that this is an instance of over-generalization,
since numerous number-compatible NPs are not coreferent.
Unlike a Conventionalfeature, which is typically applica-
ble to a large number of NP pairs, aLexical feature is typ-
ically applicable to a small number of NP pairs. As a re-
sult, a learner that employsLexical features is less likely to
over-generalize than one that employsConventionalfeatures.
When combining theConventionalandLexical features into
the Combinedfeature set, the performance of MP and MR
both drops, presumably due to the over-generalization con-
tributed by theConventionalfeatures. On the other hand, the
CR model achieves similar performance using theConven-
tional features and theLexical features: the increased com-
plexity of the CR model makes it more robust to the “noise”
(i.e., features that are likely to cause over-generalization) in
the Conventionalfeatures than the other models, but at the
same time its performance is limited in part by theLexical
features, which have data sparseness issues despite our at-
tempts to improve generalizability. Nevertheless, when using
the Combinedfeatures, the CR model improves, suggesting
that it can exploit the useful information in both feature sets.

Ensemble Approaches
Results of the ensemble approaches on the test set are shown
in the last four columns of Table 1, where M1, M2, M3, and
M4 correspond to the four methods for applying ensembles
introduced in Section 3. Recall that M1 and M4 require a
held-out development set for parameter selection, whereas
M2 and M3 do not. To ensure a fair comparison, they all have
access to the same amount of coreference-annotated data. In
particular, we tune the parameters of M1 and M4 on one train-
ing fold, and train their models on the remaining three train-
ing folds; on the other hand, we train the models in M2 and
M3 on all four training folds.

Two points deserve mention. First, all four ensemble meth-
ods yield better performance than CR-comb, the best base-
line. In particular, the best ensemble method, M4, achieves
an F-measure of 66.8, significantly outperforming CR-comb
by 4 absolute F-measure points. One should bear in mind
that CR-comb achieves one of the best published results on
the ACE 2005 data set, and hence the 4-point improvement



CR-comb M1 M2 M3 M4
R P F R P F R P F R P F R P F

Overall 54.4 74.8 62.8 55.1 75.6 63.7 55.5 76.6 64.4 55.7 77.5 64.8 57.6 79.5 66.8

Table 2: B3 recall, precision, and F-measure scores for the best baseline and the ensemble methods.

we observe here is an improvement over the state of the art.1

A closer look at the table reveals that each ensemble achieves
better results on every domain than CR-comb. In fact, the per-
formance difference between CR-comb and each of the four
ensemble methods is highly statistically significant (pairedt-
test,p < 0.01). Overall, these results suggest that it is bene-
ficial to apply ensemble methods to coreference resolution.

Second, unlike CR-comb (the best baseline), which does
not offer the best performance on each data source among
the baselines, M4 (the best ensemble method) achieves the
best performance on each data source. In fact, each ensemble
method performs better than the one immediately to its left
on each data source. These results seem to suggest that the
ensemble methods can indeed combine the strengths of the
ensemble members.

While we showed that our ensemble approaches improve
the best baseline in terms of F-measure, it would be inter-
esting to see whether such improvement was contributed by
improvements in recall, precision, or both. To answer this
question, we show in Table 2 the recall (R), precision (R),
and F-measure (F) scores of the best baseline (CR-comb) and
the four ensemble methods. As we move across the table, we
can see that the rise in F-measure is always accompanied by
a simultaneous rise in recall and precision.

5 Conclusions
We examined new methods forcreatingandapplyingensem-
bles of learning-based coreference systems. To create ensem-
bles, we proposed using differentsupervised models, includ-
ing pairwise and cluster-based models, and differentfeature
sets, which involve the under-studied word-pair-based fea-
tures. Due to the presence of pairwise and cluster-based mod-
els in our ensemble, we need to address the non-trivial ques-
tion of how to combine the coreference decisions made by
these models. We explored four methods for combining these
decisions, all of which are developed specifically for coref-
erence resolution. Experimental results on the ACE 2005
data set show that all four ensemble methods outperform the
best baseline (i.e., the cluster-ranking model trained on the
Combinedfeature set), which is a state-of-the-art supervised
coreference model. In particular, the best ensemble method,
which involves casting weighted votes on preceding clusters,
surpasses this state-of-the-art model by 4.0 in B3 F-measure.

Acknowledgments
We thank the three anonymous reviewers for their invaluable
comments on an earlier draft of the paper. This work was
supported in part by NSF Grant IIS-0812261.

1To be specific, Haghighi and Klein’s[2010] coreference model,
which achieves one of the best results on the ACE data sets, reports
a B3 F-measure of 62.7 on our test set.

References
[Aone and Bennett, 1995] C. Aone and S. W. Bennett. Evaluating

automated and manual acquisition of anaphora resolution strate-
gies. InACL.

[Bagga and Baldwin, 1998] A. Bagga and B. Baldwin. Entity-
based cross-document coreferencing using the vector space
model. InCOLING/ACL.

[Bengtson and Roth, 2008] E. Bengtson and D. Roth. Understand-
ing the values of features for coreference resolution. InEMNLP.

[Culottaet al., 2007] A. Culotta, M. Wick, and A. McCallum.
First-order probabilistic models for coreference resolution. In
NAACL HLT.

[Denis and Baldridge, 2008] P. Denis and J. Baldridge. Specialized
models and ranking for coreference resolution. InEMNLP.

[Finkel et al., 2005] J. R. Finkel, T. Grenager, and C. Manning.
Incorporating non-local information into information extraction
systems by Gibbs sampling. InACL.

[Haghighi and Klein, 2010] A. Haghighi and D. Klein. Coreference
resolution in an modular, entity-centered model. InNAACL HLT.

[Joachims, 2002] T. Joachims. Optimizing search engines using
clickthrough data. InKDD.

[Kouchnir, 2004] B. Kouchnir. A machine learning approach to
German pronoun resolution. InACL Student Research Workshop.

[Luo et al., 2004] X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla,
and S. Roukos. A mention-synchronous coreference resolution
algorithm based on the Bell tree. InACL.

[McCarthy and Lehnert, 1995] J. McCarthy and W. Lehnert. Using
decision trees for coreference resolution. InIJCAI.

[Munsonet al., 2005] A. Munson, C. Cardie, and R. Caruana. Op-
timizing to arbitrary NLP metrics using ensemble selection. In
EMNLP.

[Ng and Cardie, 2002] V. Ng and C. Cardie. Improving machine
learning approaches to coreference resolution. InACL.

[Ng and Cardie, 2003] V. Ng and C. Cardie. Weakly supervised
natural language learning without redundant views. InHLT-
NAACL.

[Ng, 2005] V. Ng. Machine learning for coreference resolution:
From local classification to global ranking. InACL.

[Pang and Fan, 2009] W. Pang and X. Fan. Chinese coreference
resolution with ensemble learning. InPACIIA.

[Rahman and Ng, 2011] A. Rahman and V. Ng. Narrowing the
modeling gap: A cluster-ranking approach to coreference reso-
lution. Journal of Artificial Intelligence Research, 40:469–521.

[Soonet al., 2001] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A
machine learning approach to coreference resolution of noun
phrases.Computational Linguistics, 27(4):521–544.

[Stoyanovet al., 2009] V. Stoyanov, N. Gilbert, C. Cardie, and
E. Riloff. Conundrums in noun phrase coreference resolution:
Making sense of the state-of-the-art. InACL-IJCNLP.

[Vemulapalliet al., 2009] S. Vemulapalli, X. Luo, J. F. Pitrelli, and
I. Zitouni. Classifier combination techniques applied to coref-
erence resolution. InNAACL HLT Student Research Workshop.

[Yanget al., 2008] X. Yang, J. Su, J. Lang, C. L. Tan, and S. Li. An
entity-mention model for coreference resolution with inductive
logic programming. InACL.


