
Abstract

We address a difficult, yet under-investigated class
of planning problems: fully-observable nondeter-
ministic (FOND) planning problems with strong
cyclic solutions. The difficulty of these strong cyc-
lic FOND planning problems stems from the large
size of the state space. Hence, to achieve efficient
planning, a planner has to cope with the explosion in
the size of the state space by planning along the
directions that allow the goal to be reached quickly.
A major challenge is: how would one know which
states and search directions are relevant before the
search for a solution has even begun? We first de-
scribe an NDP-motivated strong cyclic algorithm
that, without addressing the above challenge, can
already outperform state-of-the-art FOND planners,
and then extend this NDP-motivated planner with a
novel heuristic that addresses the challenge.

1 Introduction

Planning is the problem of generating a plan of actions that
lead us from an initial state to a goal state. While the problem
of deterministic planning has been extensively investigated,
the same is not true for planning in nondeterministic domains
[Levesque, 2005; Kissmann & Edelkamp, 2009], where the
outcomes of an action are uncertain. These nondeterministic
actions contribute to the exponential growth in the search
space and hence the difficulty of nondeterministic planning.
This difficulty remains even in fully-observable nondeter-
ministic (FOND) planning, where the states of the world are
fully observable [Kuter et al., 2008].
 We address an important yet under-investigated class of
planning problems: FOND planning problems with strong
cyclic solutions. The notion of strong cyclic solutions was
first introduced by Cimatti et al. [2003], who, for the purpose
of addressing nondeterministic planning problems, present a
three-way categorization of planning solutions: weak plan-
ning solutions have a chance to achieve the goal; strong
planning solutions are guaranteed to achieve the goal; and
strong cyclic planning solutions have a possibility to termi-
nate and if they terminate, then they are guaranteed to
achieve the goal.

Strong cyclic planning problems have been reported hard

to solve [Levesque, 2005]. In fact, we can get a better sense
of how difficult these problems are by observing the per-
formance of state-of-the-art planners on the FOND bench-
mark problems from the International Planning Competition
2008 (IPC2008): none of the participating planners can solve
more than ten of the 30 problems in the Blocksworld domain
[Bryce & Buffet, 2008b].

As mentioned above, a major challenge in strong cyclic
planning involves dealing with a very large state space. To
circumvent the state space explosion problem, a planner may
plan along the directions that allow the goal to be reached
quickly in a limited state space involving only the relevant
states. However, an interesting but challenging problem
arises: how would one know which states and search direc-
tions are relevant before the search for a solution has even
begun [Magnusson & Doherty, 2008]?

To address this question, we need a basic strong cyclic
planner to start with. Consequently, we first implemented an
idea motivated by NDP [Kuter et al., 2008]: we iteratively
expand a graph that only includes states reachable from the
initial state until one solves (i.e., establishes a path to the goal
from) each of its non-goal leaf states. We show for the first
time that an NDP-motivated algorithm outperforms
state-of-the-art planners such as MBP [Cimatti et al., 2003]
and Gamer [Kissmann & Edelkamp, 2009].

1
 In particular,

this “Basic” algorithm can solve all of the IPC2008 FOND
problems in the Blocksworld domain. In other words, we are
proposing extensions to a state-of-the-art planner.

Next, as it is common to encounter states that have been
previously solved in the course of strong cyclic planning, we
enhance the Basic algorithm with the capability to avoid
re-exploring a solved state. Note that the idea of “state reuse”
is not new: Mattmüller et al. [2010] have already imple-
mented this idea in their solve-labeling procedure. What is
new, however, is (1) we show that state reuse can be im-
plemented with little overhead, in contrast to Mattmüller et
al.‟s planner, where state reuse is implemented with sub-
stantial overhead; and (2) the little overhead incurred in our
implementation allows us to examine the benefits of state
reuse in strong cyclic planning, specifically by determining

1 The original NDP program was not set up to be easily run by

other people, so we cannot verify whether the original NDP im-
plementation also outperforms MBP and Gamer.

Simple and Fast Strong Cyclic Planning for

Fully-Observable Nondeterministic Planning Problems

Jicheng Fu
Computer Science Department

University of Central Oklahoma
jfu@uco.edu

Vincent Ng, Farokh B. Bastani, and I-Ling Yen
Computer Science Department
University of Texas at Dallas

vince@hlt.utdallas.edu,{bastani, ilyen}@utdallas.edu

the extent to which the efficiency of the Basic algorithm is
improved via state reuse, in contrast to Mattmüller et al., who
did not evaluate the benefits of state reuse. Our results sug-
gest that state reuse can improve our state-of-the-art Basic
algorithm. In contrast, even with state reuse, Mattmüller et
al.‟s planner cannot solve all the Blocksworld problems.

Finally, we address the aforementioned challenge by
proposing a novel heuristic, goal alternative. This heuristic
aims to improve planning efficiency by heuristically identi-
fying an alternative goal that is typically closer to a state to be
solved than the overall planning goal and hence can be
reached more quickly. Incorporating goal alternative into our
planner brings it to the next level of performance.
 The rest of the paper is organized as follows. Section 2
defines nondeterministic planning. In Section 3, we present
our NDP-motivated Basic algorithm for generating strong
cyclic plans. Section 4 introduces two extensions to the Basic
algorithm. We present evaluation results in Section 5, discuss
related work in Section 6, and conclude in Section 7.

2 Nondeterministic Planning

We introduce the definitions and notation in nondeterministic
planning that we will rely on in the rest of this paper.

Definition 1. A nondeterministic planning domain is a
4-tuple = (P, S, A,), where P is a finite set of propositions;
S 2

P
 is a finite set of states in the system; A is a finite set of

actions; and : S A 2
S
 is the state-transition function.

Definition 2. A planning problem is a triple s0, g, , where
s0 is the initial state, g is the goal condition, and is the
planning domain.

Definition 3. Given a planning problem s0, g, with = (P,
S, A,), a policy is a function : S A, where S S is the
set of states to which an action has been assigned. In other
words, s S : a A such that (s, a) . Given a state s
S, the applicable action in the solution is (s). Therefore,
defines how to act under a specific state. We use S(s) to
denote the set of states reachable from s using .

Definition 4 (taken from the rules of IPC2008 [Bryce &
Buffet, 2008a]). A policy is closed with respect to s iff S(s)
 S . is proper with respect to s iff the goal state can be
reached using from all s S(s). is a valid solution to the
non-deterministic problem iff is closed and proper with
respect to the initial state s0.

3 Basic Strong Cyclic Algorithm

In this section, we describe our NDP-motivated Basic strong
cyclic algorithm and illustrate how it works via an example.

3.1 Algorithm

Our Basic strong cyclic algorithm takes as input a planning
problem, s0, g, , and outputs a policy that is a valid
solution to the given problem. It starts with an empty and
iteratively augments it with state-action pairs.
 Before we describe the algorithm, it helps to realize that
defines (and hence can be equivalently represented as) a
digraph G = {V , E}, where V = S {(s, (s)) | s S} is

the set of nodes in G and E = {(s, s) | s S and s (s,
(s))} is the set of edges. Note that there are two types of
nodes in V : leaves and non-leaves. S are the non-leaves,
since according to Definition 3, an action has been assigned
to each state in S; on the other hand, {(s, (s)) | s S}
subsumes the set of leaves of G. Assume that G(s0)
represents a sub-graph of G rooted at s0. Since the algorithm
starts with an empty , G(s0) initially contains only the
initial state s0. Informally, this Basic algorithm aims to
augment (or, equivalently, expand G) so that each node in
G(s0) is solved (i.e., there are no non-goal leaf nodes).

Figure 1 outlines the Basic strong cyclic algorithm, which
is similar in spirit to NDP [Kuter et al., 2008], but otherwise
differs in various implementation details. As mentioned
before, the algorithm takes as input a planning problem s0, g,
 and initializes to be an empty policy (line 1). L stores the
set of non-goal leaf states in G(s0) (line 3), which initially
contains only the initial state s0. If L is empty (line 4), the
algorithm terminates and returns a solution. Note that this
solution, , is closed and proper (i.e., there are no non-goal
leaf states and all the non-goal states can reach the goal along
some paths) and is therefore a valid solution to the given
planning problem. If L is not empty, a non-goal leaf state s is
arbitrarily selected from L (line 5), and a SEARCH process
(line 6) is created to obtain a path from state s to the overall
planning goal g, which represents a weak plan. According to
Kuter et al. [2008], this weak plan can be converted into an
equivalent policy . In fact, the conversion is straightfor-
ward, since the path returned by SEARCH is a sequence that
alternates between states and actions. Hence, if a path is
found, the state-action pairs can be directly obtained from the
path and incorporated into (line 11).

Figure 1: Outline of the Basic Strong Cyclic Algorithm
However, if SEARCH fails to find a path from s to the goal,

then s is a dead-end (line 7), and any paths leading to state s
will be futile. In particular, if s is the initial state, then it is not
possible to establish a path from the initial state to the goal
state and hence there is no solution to the given planning
problem (line 8). On the other hand, if s is not the initial state,
we use the BACKTRACK procedure (line 9) to prune all the
paths in G(s0) that lead to s. Formally, s S(s0), a A
such that s (s, a), BACKTRACK will update: {(s,
a)}, L L { s}, and make action a inapplicable at s in .

Procedure Basic_Strong_Cyclic (s0, g,)

1.
2. loop

3. L {all non-goal leaf states in G(s0)}

4. if EMPTY(L) then RETURNSOL() ; endif

5. arbitrarily choose s L;

6. = SEARCH(s, g,);

7. if = FAILURE then
8. if s = s0 then return FAILURE; endif

9. BACKTRACK(s, , G(s0),);

10. else

11. {(s, a) | s S(s0)} ;

12. endif

13. endloop

Therefore, the non-goal leaf set L in line 3 is dynamic in the
planning process. This Basic strong cyclic algorithm is sound
and complete if the SEARCH procedure is sound and com-
plete [Kuter et al., 2008]. In our implementation of this Basic
algorithm, we use FF [Hoffmann & Nebel, 2001] to find a
weak plan in SEARCH.

An implementation detail deserves mention. While we
describe this Basic algorithm in terms of how G is expanded,
G is only a conceptual structure: all we need to keep track of
is and L, not G.

3.2 An Illustrative Example

To better understand this Basic algorithm, we apply it to
generate a strong cyclic plan for the following problem from
the Beam domain [Cimatti et al., 2003], which is shown in
Figure 2. Recall that in Beam, the goal is to have the agent
move from the beginning (down0) to the end (upn) of the
beam. There are three actions: Jump, Climb, and Moveback.
The action Jump is nondeterministic: if the agent is at upi-1, it
may successfully jump to upi or fall to downi. If it falls, it has
to move all the way back to the leftmost down position
(down0) via the Moveback action, after which the Climb
action will bring it to up0. Here, Moveback and Climb are
deterministic.

Figure 2: The Beam Problem

 When applying the basic algorithm to this problem, L is
initialized to {down0}, since the initial state is the only
non-goal leaf state (line 3). Next, the algorithm selects
{down0} from L (line 5), and uses SEARCH to find a weak
plan wp from down0 to the goal upn (line 6), where wp =
Climb(down0, up0); Jump(up0, up1); Jump(up1, up2); …;
Jump(upn-1, upn). The corresponding policy = {(down0,
Climb(down0, up0)), (up0, Jump(up0, up1)), …, (upn-1,
Jump(upn-1, upn))} (line 6) is then merged with (line 11).

Then, the algorithm proceeds to the next iteration. It be-
gins by updating L (line 3). At this point, L = {down1,
down2, …, downn}. For each non-goal leaf state downi in L,
the Basic algorithm will generate a weak plan in the form of
Moveback(downi, downi-1); …; Moveback(down1, down0);
Climb(down0, up0); Jump(up0, up1); …; Jump (upn-1, upn).
Note that many states (e.g., down0, up0, etc.) are repeatedly
explored.

4 Two Extensions to the Basic Algorithm

4.1 Goal-Alternative Heuristic

Recall that the Basic algorithm needs to solve every non-goal
leaf node by establishing a path from the node to the goal. For
many planning problems, the goal can be far away from a
non-goal leaf node. As a result, computing the heuristic dis-
tance between the two nodes needed for heuristic search
could be costly, thus causing planning to be inefficient. Our
first extension to the Basic algorithm, the goal alternative

heuristic, aims to improve planning efficiency by identifying
an alternative goal that is closer to a non-goal leaf node than
the overall goal, so that a path can be established between the
leaf node and this alternative goal more quickly.

Before describing the heuristic, let us motivate it using an
example. Recall from the beam example that the states down1
and up1 are both generated by the nondeterministic action
Jump(up0, up1). One effect of this action is the state up1,
which is included in the weak plan produced by SEARCH and
is called the intended effect [Kuter, 2004]. The other effect,
down1, is not included in the weak plan and is called a failed
effect. In the Basic algorithm, every failed effect of a non-
deterministic action is inserted into L (and therefore needs to
be solved at some point). We call the heuristic of setting the
intended effect as the goal when searching for a weak plan
for a failed effect goal alternative.

More formally, when given the planning problem s, g,
for some s L, instead of searching for g directly, a SEARCH
algorithm that exploits the goal alternative heuristic will first
try to search for , the intended effect of the nondeterministic
action that produces s. If a weak plan (path) is found, then the
SEARCH is done. Otherwise, the SEARCH will be restarted
to search for the original goal g. A special case deserves
mention, though. During the first iteration of the algorithm
when s0 (the initial state) is the only non-goal leaf node, s0
does not have an intended effect. Consequently, SEARCH
will directly search for the goal g when given the planning
problem s0, g, .

Correctness. It is easy to determine the correctness of goal
alternative for SEARCH(s, g,). By definition, an intended
effect must be included in some path wp to the goal g, while
the failed effect s is ignored in path wp. Since we have al-
ready found a path from to g, if we can find a path from s to
 , then the path from s to can be the solution to s, g, .
Thus, much effort is saved by avoiding repeating the search
from to g. However, if no path can be found from s to ,
then we will resort to establishing a path from s to g.

Rationale and completeness. An intended effect and its
corresponding failed effects are generated from the same
nondeterministic action. Heuristically, the distance between
a failed effect and the intended effect is shorter than that
between a failed effect and the overall planning goal.

Since goal alternative is a heuristic, there are situations
where the true distance to the intended effect is longer than
that to the overall planning goal or no paths exist at all to the
intended effect. In practice, however, the goal alternative
heuristic works well on most of the benchmark problems.

4.2 State Reuse

Our second extension aims to enhance the Basic algorithm
with the capability to avoid re-exploring a solved state. Spe-
cifically, during the SEARCH for a weak plan (line 6), if we
encounter a solved state, the search stops. Since this exten-
sion can be incorporated easily into the Basic algorithm,
there is almost no overhead in employing state reuse.

To see how state reuse helps improve planning efficiency,
consider again our running example. Assume without loss of

0

0

1

1

2

2

3

3

n-1

n-1

n

n

Up

Down

generality that L = {down1, down2, …, downn} and that the
states are selected from L in the same order as they are listed
(i.e., downi is selected before downi+1). If the Basic algorithm
also adopts the goal alternative heuristic, it will initiate
SEARCH(down1, up1,); otherwise, it will initiate
SEARCH(down1, upn,). Note that both searches will result
in the same weak plan that consists of the single action Mo-
veback(down1, down0), since down0 is a solved state and
hence the search stops. By the same token, for downi where
 1, SEARCH will generate the weak plan consisting of
only one action, Moveback(downi, downi-1). Note that the
effectiveness of the state reuse extension depends slightly on
the order in which the states are selected from L. For instance,
if downi+1 is selected before downi, then downi cannot be
reused for downi+1, even though downi can reuse the states
generated by the search for downi+1. In our implementation of
the state reuse extension, L is a queue, which allows the states
to be chosen in the order in which they are inserted. Perfor-
mance-wise, however, we found that this first-in-first-out
ordering of the states offers only marginal benefits over a
random ordering of the states.

5 Evaluation

In this section, we evaluate our planner, FIP (Fast Incre-
mental Planner), which consists of the Basic algorithm
augmented with the state reuse extension and the goal alter-
native heuristic. As baseline systems, we employ two
state-of-the-art planners for strong cyclic FOND planning
problems: MBP and Gamer (the winner of the FOND track at
IPC2008). To gauge the usefulness of our two extensions, we
also report the performance of the Basic algorithm. All
problem instances belong to the benchmark domains of the
IPC2008 FOND track (i.e., Blocksworld [bw], Forest, Faults,
and First-responders [f-r]). Our experiments were conducted
on a PC with an Intel Pentium-4 3GHz processor and 1 GB of
memory. The operating system is Linux. We set the cutoff
time to 1,200 seconds to prevent a planner from running
indefinitely.

5.1 Results

Table 1 shows the problem coverage (i.e., the number of
problems for which a strong cyclic plan was found) of four
planners: MBP, Gamer, the Basic algorithm, and FIP.

2
 As we

can see, FIP and Basic have the same problem coverage,
which is substantially higher than that of the two baselines.
FIP and Basic also solve more problems than LAO* with
PDB [Mattmüller et al., 2010], which can solve only 94
problems. For the notoriously difficult blocksworld bench-
mark problems [Bryce & Buffet, 2008b; Mattmüller et al.,
2010], no existing planners can solve more than ten problems
in this domain. In contrast, FIP and Basic can solve all of the
30 problems efficiently. As Basic is a state-of-the-art planner,
any improvements of FIP over Basic shown below can be

2 We use the original implementations of MBP and Gamer to

obtain the results for these two planners. We downloaded MBP

from http://mbp.fbk.eu/download/mbp_1.01.tar.gz, and obtained
Gamer directly from its authors.

interpreted as improvements over the state of the art.

Domain Gamer MBP Basic FIP

blocksworld (30) 10 1 30 30

faults (55) 38 16 55 55

first-responders (100) 21 11 75 75

forest(90) 7 0 7 7

Total (275) 76 28 167 167

Table 1: Problem Coverage
Table 2 includes a subset of the benchmark problems that

are hard to solve, i.e., at least one planner took 15 seconds to
search for a solution or at least one planner timed out on that
particular problem. To ensure a fair comparison of the
planners, the preprocessing time (e.g., reachability analysis)
and the plan output time are excluded. In other words, we
only compared the pure search time needed to find a solution.
The left half of Table 2 compares the performance of the four
planners. Each planner is evaluated in terms of (1) the search
time (expressed in seconds) needed to solve a problem (see
the columns marked „t‟); and (2) the plan size (expressed in
terms of the number of state-action pairs in the solution pol-
icy; see the columns marked „s‟). Note that “---” indicates
that the corresponding planner did not return a solution
within the time limit. In terms of planning time, FIP is on
average 3844 times faster than Gamer. While Basic performs
better than MBP and Gamer, FIP is 8.2 times faster than
Basic on average. Importantly, as the complexity of the
benchmark problems increases, FIP can be more than 100
times faster than Basic. In terms of solution size, FIP‟s plans
are 2.8 times smaller than Gamer‟s and 3.4 times smaller than
Basic‟s on average. Overall, FIP‟s results on these bench-
mark problems are very impressive.

5.2 Contributions Made by the Two Extensions

To measure the contributions of our two extensions to FIP‟s
performance, we conducted ablation experiments, where we
ran two versions of FIP. Each version contains exactly one of
the two extensions to the Basic algorithm. Specifically,
FIP-GA-only extends Basic with only goal alternative,
whereas FIP-SR-only extends Basic with only state reuse.
Results of these two ablation experiments are shown in the
two rightmost columns of Table 2.

First, we determine the extent to which state reuse reduces
planning time and solution size. Comparing Basic and
FIP-SR-only, we see that on average, the addition of state
reuse allows FIP-SR-only to run 1.4 times faster than Basic,
but it does not allow FIP-SR-only to generate significantly
smaller plans than those of Basic. Comparing FIP and
FIP-GA-only, we see that the absence of state reuse causes
FIP-GA-only to run 1.2 times slower than FIP, but again
FIP-GA-only‟s solutions have almost the same size as those
of FIP. Hence, these results suggest that while state reuse
plays an important role in improving planning efficiency, it
does not contribute significantly to generating compact so-
lutions.

Second, we determine the extent to which goal alternative
reduces planning time and solution size. Comparing Basic
and FIP-GA-only, we see that the addition of goal alternative
allows FIP-GA-only to run 7.5 times faster than Basic and

http://mbp.fbk.eu/download/mbp_1.01.tar.gz

generate plans that are 3.4 times smaller than those of Basic.
Comparing FIP and FIP-SR-only, we can see that in the
absence of goal alternative, FIP-SR-only runs 8 times slower
than FIP and generates solutions that are 3.4 times larger than
FIP‟s. Therefore, these results substantiate the claim that goal
alternative contributes to both faster planning time and
smaller solution size.

Next, we examine how well goal alternative performs on
different domains. Blocksworld and Faults are the domains
where goal alternative demonstrates substantial benefits. On
the other hand, the role played by goal alternative in
First-responders is comparatively less significant. To see the
reason, note that most of the nondeterministic actions in this
domain can generate one of two possible effects: (1) (s, a) =
s and s s, i.e., moving to another state s; or (2) (s, a) = s,
i.e., remaining in the current state. However, for the failed
effect of remaining in the current state (i.e., case 2), there is
no need to initiate a search for it because the current state s

has already been associated with the nondeterministic action
a, i.e., (s, a) . As a result, the first weak plan generated,
which is a plan from s0 to g, is almost the final solution as
most of the failed effects generated by the nondeterministic
actions are already solved. Finally, using goal alternative is
slightly harmful for Forest, where planning time was even a
little faster when goal alternative was not used (see
FIP-SR-only). However, the time difference between using
and not using goal alternative is fairly minor. Hence, even
when goal alternative provides the wrong direction to the
search, the overhead of failing to find a path to the intended
effect and resorting to the original planning goal is low.
 On average, FIP-GA-only runs more than 5 times faster
and creates plans that are 3.4 times smaller than FIP-SR-only.
These results provide suggestive evidence that goal alterna-
tive plays a more crucial role than state reuse in improving
planning efficiency and reducing plan size.

Problem
Gamer MBP3 Basic FIP FIP-SR-only FIP-GA-only

t s t t s t s t s t s

bw-1 38.748 10 3556.517 0.011 12 0.007 8 0.010 12 0.007 8

bw-2 29.215 16 --- 0.008 10 0.006 7 0.008 10 0.005 7

bw-3 32.742 21 --- 0.014 10 0.008 10 0.008 10 0.010 10

bw-4 37.186 26 --- 0.016 16 0.011 14 0.012 16 0.013 14

bw-5 37.506 13 --- 0.020 12 0.010 12 0.014 12 0.013 12

bw-6 30.847 19 --- 0.013 10 0.009 10 0.010 10 0.011 10

bw-7 32.249 28 --- 0.032 22 0.010 17 0.016 22 0.015 17

bw-8 37.944 19 --- 0.019 14 0.010 13 0.012 14 0.012 13

bw-9 28.632 10 --- 0.017 15 0.009 12 0.009 12 0.010 15

bw-10 28.650 13 --- 0.015 22 0.009 10 0.010 10 0.010 13

bw-12 --- --- --- 3.507 225 0.285 45 0.725 131 1.216 138

bw-22 --- --- --- 44.615 362 5.510 163 12.117 362 10.880 163

bw-24 --- --- --- 180.247 915 9.204 263 25.490 646 12.453 263

bw-25 --- --- --- 452.642 537 59.230 312 112.235 453 280.510 381

bw-27 --- --- --- 31.683 280 2.904 61 11.738 247 4.850 61

bw-30 --- --- --- 42.755 102 3.126 48 7.458 102 7.249 48

faults-4-3 0.251 18 64.290 0.006 37 0.003 14 0.006 37 0.003 14

faults-5-5 10.403 63 --- 0.010 66 0.004 17 0.011 66 0.004 17

faults-6-6 81.695 125 --- 0.020 130 0.005 20 0.021 130 0.005 20

faults-7-7 90.996 235 --- 0.043 258 0.005 23 0.045 258 0.006 23

faults-8-8 1106.105 325 --- 0.101 514 0.007 26 0.111 514 0.007 26

faults-9-9 830.272 511 --- 0.217 848 0.007 29 0.246 848 0.008 29

faults-10-7 --- --- --- 0.816 2140 0.007 32 0.960 2140 0.008 32

faults-10-10 --- --- --- 0.859 2050 0.009 32 1.101 2050 0.009 32

f-r-1-8 6.839 10 59.327 0.003 10 0.002 10 0.003 10 0.003 10

f-r-2-3 0.142 12 63.388 0.003 11 0.003 11 0.003 11 0.003 11

f-r-4-2 0.118 8 --- 0.003 6 0.003 6 0.003 6 0.003 6

f-r-6-2 1.016 7 --- 0.003 7 0.003 7 0.003 7 0.003 7

forest-2-2 3.164 44 --- 0.007 44 0.008 44 0.007 44 0.009 44

forest-2-5 0.661 56 --- 0.007 56 0.008 56 0.007 56 0.009 56

forest-2-6 4.769 50 --- 0.008 50 0.008 50 0.007 50 0.009 50

forest-2-7 8.122 44 --- 0.007 44 0.008 44 0.007 44 0.009 44

forest-2-8 0.638 56 --- 0.007 56 0.008 56 0.007 56 0.009 56

forest-2-9 0.607 42 --- 0.006 42 0.007 42 0.006 42 0.008 42

forest-2-10 0.927 44 --- 0.007 44 0.008 44 0.006 44 0.009 44

Table 2: Planning Time and Plan Size Comparison among Four Planners: Gamer, MBP, Basic, and FIP

3 MBP outputs too much information to enable easy counting of the number of meaningful state-action pairs.

6 Related Work

MBP [Cimatti et al., 2003] and Gamer [Kissmann & Edel-
kamp, 2009] are widely considered as the best known plan-
ners that are able to deal with strong cyclic planning. MBP
formulates planning as model-checking. It is built upon Bi-
nary Decision Diagrams (BDDs), which allow a compact
representation and can therefore explore a large state space. It
starts with a universal policy Uni that contains all the
possible state-action pairs, and iteratively eliminates from
Uni the state-action pairs leading to states not covered by
Uni and state-action pairs that are dead-ends. After the
iterative process terminates, if the initial state is defined in
the final policy, then a plan is found. The inherent weakness
of MBP is that it has to deal with a very large state space and
therefore its execution time grows exponentially with the
problem size [Kuter & Nau, 2004]. Gamer is also based on
BDDs. It transforms a nondeterministic planning problem
into a two-player turn-taking game so that tools can be ap-
plied to infer a minimized state encoding, which results in
smaller BDDs than MBP. As a result, Gamer is more effi-
cient and has better scalability than MBP. However, both
MBP and Gamer use uninformed symbolic regression search,
which may negatively impact planning efficiency.
 NDP [Kuter et al., 2008] uses classical AI planners to

solve nondeterministic problems without requiring internal

modifications to the classical planners. It calls a classical

planner to find a weak plan for each non-goal leaf node to the

goal. It does not maintain the intermediate search results and,

hence, unlike FIP, it cannot avoid exploring the same states

repeatedly, resulting in wasted efforts.
Mattmüller et al. [2010] use LAO* [Hansen & Zilberstein,

2001], an informed explicit state search algorithm on an
AND/OR graph, in combination with pattern database heu-
ristics [Edelkamp, 2001] to generate strong cyclic solutions.
LAO* explicitly constructs a graph during planning, but
maintaining this graph incurs much overhead because de-
termining whether a state is solved and checking whether a
solution is found are very expensive operations. More spe-
cifically, the solve labeling procedure in Mattmüller et al.
[2010] is a nested fixed point computation, in which an outer
loop and two inner nested loops compute a set of nodes
backwardly reachable from the goal. As a result, this method
does not scale very well.

7 Conclusions

We have examined an important class of nondeterministic
planning problems: FOND problems with strong cyclic so-
lutions. Our work makes two contributions to planning re-
search. First, we showed how the state reuse extension can
help avoid re-exploring a solved state with little overhead and
evaluated for the first time the benefits of state reuse for
strong cyclic FOND planning problems. Second, we propose
a novel heuristic, goal alternative, which aims to improve
planning efficiency by heuristically identifying an alternative
goal that is typically closer to the current state and can
therefore be expected to be reached more quickly. Experi-

mental results on the benchmark domains of the IPC2008
FOND track show that our planner, FIP, significantly out-
performs state-of-the-art planners in terms of problem cov-
erage, CPU time, and solution size. These results suggest that
our two extensions to the Basic algorithm are both very ef-
fective.

References

[Bryce & Buffet, 2008a] D. Bryce and O. Buffet. 6th Inter-

national Planning Competition: Uncertainty Part. In

Proceedings of IPC, 2008.

[Bryce & Buffet, 2008b] D. Bryce and O. Buffet. Interna-

tional Planning Competition Uncertainty Part: Bench-

marks and Results. In Proceedings of IPC, 2008.

[Cimatti et al., 2003] A. Cimatti, M. Pistore, M. Roveri, and

P. Traverso. Weak, strong, and strong cyclic planning via

symbolic model checking. Artificial Intelligence,

147(1-2):35–84, 2003.

[Edelkamp, 2001] S. Edelkamp. Planning with pattern data-

bases. In Proceedings of ECP, pages 13–24, 2001.

[Hansen & Zilberstein, 2001] E. A. Hansen and S. Zilberstein.

LAO*: A heuristic search algorithm that finds solutions

with loops. Artificial Intelligence 129(1–2):35–62, 2001.

[Hoffmann & Nebel, 2001] J. Hoffmann and B. Nebel. The

FF planning system: Fast plan generation through heu-

ristic search. Journal of Artificial Intelligence Research

14: 253–302, 2001.

[Kissmann & Edelkamp, 2009] P. Kissmann and S. Edel-

kamp. Solving fully-observable non-deterministic plan-

ning problems via translation into a general game. In

Proceedings of KI, Vol. 5803 of LNCS, pages 1–8,

Springer, 2009.

[Kuter, 2004] U. Kuter. Pushing the limits of AI planning. In

Proceedings of ICAPS Doctoral Consortium, 2004.

[Kuter & Nau, 2004] U. Kuter and D. Nau. Forward-chaining

planning in nondeterministic domains. In Proceedings of

AAAI, pages 513–518, 2004.

[Kuter et al., 2008] U. Kuter, D. Nau, E. Reisner, and R. P.

Goldman. Using classical planners to solve nondetermi-

nistic planning problems. In Proceedings of ICAPS, 2008.

[Levesque, 2005] H. Levesque. Planning with loops. In

Proceedings of IJCAI, 509–515, 2005.

[Magnusson & Doherty, 2008] M. Magnusson and P. Do-

herty. Deductive planning with inductive loops. In Pro-

ceedings of KR, pages 528–534, 2008.

[Mattmüller et al., 2010] R. Mattmüller, M. Ortlieb, M.

Helmert, and P. Bercher. Pattern database heuristics for

fully observable nondeterministic planning. In Proceed-

ings of ICAPS, pages 105–112, 2010.

