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Abstract

Recent research efforts have led to the de-
velopment of a state-of-the-art supervised
coreference model, the cluster-ranking
model. However, it is not clear whether the
features that have been shown to be useful
when employed in traditional coreference
models will fare similarly when used in
combination with this new model. Rather
than merely re-evaluate them using the
cluster-ranking model, we examine two in-
teresting types of features derived from
syntactic parses, tree-based features and
path-based features, and discuss the chal-
lenges involved in employing them in the
cluster-ranking model. Results on a set of
Switchboard dialogues show their effec-
tiveness in improving the cluster-ranking
model: using them to augment a baseline
coreference feature set yields a 8.6-11.7%
reduction in relative error.

1 Introduction

second component, the resolution system, which
identifies an antecedent for the NP. This resolver is
typically implemented by training enention-pair
(MP) model, which is a binary classifier that deter-
mines whether a pair of NPs are co-referring or not
(e.g., Soon et al. (2001), Ng and Cardie (2002b)).
While this architecture is popularly adopted
by coreference researchers and was implemented
even within recently developed coreference re-
solvers (e.g., Bengtson and Roth (2008), Stoy-
anov et al. (2009)), neither the architecture it-
self nor its aforementioned implementation is sat-
isfactory for at least two reasons. First, in this
pipeline architecture, anaphoricity determination
is performed prior to coreference resolution, so er-
rors in anaphoricity determination can propagate
to the downstream coreference component and ad-
versely affect its performance (Ng and Cardie,
2002a). Second, the MP coreference model is fun-
damentally weak in that (1) the information ex-
tracted from two NPs may not be sufficient for
making an informed coreference decision and (2)
since the model is trained to compare the NP to be
resolved (henceforth thective NP against a can-

Coreference resolution is the task of determiningflidate antecedent, it only determines how good the
which noun phrases (NPs) in a text or dialoguec@ndidate is relative to the active NP, not how good

Webber (1979), coreference resolution can be de- In light of the aforementioned problems, re-

identifying what a text potentially makes avail-
able for anaphoric reference and (2) constraining
the candidate set of a given anaphoric expression
down to one possible choice”. These two subtasks
are commonly known asnaphoricity determina-
tion andanaphora resolutionboth of which have
recently been tackled using machine learning tech-
niques. More specifically, anaphoricity determina-
tion is typically tackled by training aanaphoric-

ity classifier which determines whether an NP is
anaphoric or not (e.g., Poesio et al. (2004), Zhou
and Kong (2009)). If so, the NP is passed to the

e To address theerror propagation problem,

researchers have proposegoint inference
(Denis and Baldridge, 2007) aroint learn-
ing (Rahman and Ng, 2009) for anaphoricity
determination and coreference resolution.

To address theexpressivenesgroblem re-
sulting from making a coreference decision
based on only two NPs, researchers have pro-
posed theentity-mentiormodel, where coref-
erence decisions are made by determining
whether an NP belongs to a preceding coref-
erencecluster (e.g., Luo et al. (2004), Yang



et al. (2008)). tures in aranking model that employgoint learn-

e To address the failure to directly compareing' With the increasingly important roI_e struc-
candidate antecedents and determine the beg.{red features and ranking models play in natural
one, researchers have proposed tiention- Iangugge learning, we believe that a metho_d_for
ranking model, which imposes a ranking on combining flat and structu_red fe_atures for training

Igt_ ranker would be of particular interest to natural

tures the competition among them (e.qg., De_language processing (NLP) researctiers.

nis and Baldridge (2008), lida et al. (2009)). Second, motivated in part by lexical _semaptics
research (Lin and Pantel, 2001), we investigate

Recent research efforts have led to the developsaih-pasedeatures, which encode the contextual
ment of a state-of-the-art supervised coreferencg|ationship between an active NP and a candidate
model that can address| of the aforementioned yntecedent as the shortest path between the cor-
problems, namely thgpint cluster-ranking(CR)  regponding nodes in the parse tree. As with other
model (Rahman and Ng, 2009). However, othely p tasks, the effectiveness of a given type of fea-
than its superior empirical performance to competyres for coreference resolution depends in part on
ing coreference models (such as the MP model}qy the linguistic information it intends to capture
little is known about the joint CR model. In partic- js represented. We seek to investigate the extent to
ular, most of the linguistic features for coreferencenicn a joint CR model can benefit from this path-
resolution were developed and evaluated in thg,geq representation of context.
context of the MP model, and thus '_t IS not clear Unlike the vast majority of English coreference
whether these features would fare similarly Whenresolvers, which were evaluated using the MUC
used '_n comblnatlgn with the _Jomt CR mod(_al. . and ACE corpora, our resolver was evaluated on

Motivated by this observation, our goal in this 5 <ot of Switchboard dialogues. To our knowl-

paper is to examine the value of features derivedyqe e are among the first to report results for
from syntactic parses for the joint CR model. Notey, o || coreference task on this dataset. As a re-

that parse-based features have been investigatedit oyr work contributes to the establishment of a
extensively for the MP model. For example, theyj,qeine using a state-of-the-art supervised coref-

have been used to implement Binding Constraint%rence model against which future work can be

(€.g., Luo and Zitouni (2005)) and encode syn-.omnared. Our experimental results indicate that
tactic salience (e.g., Haghighi and Klein (2009)).

while both the tree-based and path-based features

Rather than re-evaluate them for the CR model, W1 ve coreference performance when applied to
investigate two types of parse-based features thaf g,seline feature set in isolation, the best perfor-
we believe are particularly interesting. mance is achieved when they are applied in com-
First, we employ parse trees directly $8UC-  pination. In particular, these two types of features
tured features for the joint CR model. The yielq an improvement of 2.2-3.7% in F-measure
main advantage of employing tree-based strucsyer the Baseline joint CR model, which corre-

tured features is simplicity: we no longer needgyqngs to a 8.6-11.7% reduction in relative error.
to design heuristics to extract the desired fea- The rest of the paper is organized as follows
tres (e.g., salience, Bir_\dir_19 Const_rai_nts) fromSection 2 discusses our implementation of the
the parse tr(_ees, as deS|gr?|ng he_u_rlst|cs can t18int CR model. Section 3 describes tree-based
time-consuming and sometimes difficult for cer- path-based features and how they can be in-

tain tasks. Note, however, that previous _attempt%grated into the CR model. We present evaluation
have employed structured features to train an Mpresults in Section 4 and conclude in Section 5.
model for anaphora resolution (Yang et al., 2006;

Versley et al., 2008) and an anaphoricity classifier2
in the aforementioned pipeline architecture (Zhou

and Kong, 2009). In both cases, the structured fearhjs section describes the Baseline CR model.
tures are Combined W|th thEir non'strUCtUrEd (i.e.Since the CR model is a natural extension Of the
flat) counterparts via a composite kernelandused

to train a classification model. What is interesting ' The dual form of Collins and Duffy’s (2002) ranking al-
orithm can also combine flat and structured features. Note

for us_ to investigate In th's paper, however, is thqqhat their algorithm employs online learning, whereas ours
guestion of how to combine flat and structured feaemploys batch learning in a maximum-margin fashion.

The Baseline Coreference Model



MP model, in order to understand the CR modeltive NP belongs to a preceding, possibly partially-

it helps to first understand the MP model. formed, coreference cluster. Its increased expres-
_ _ siveness stems from its ability to emplojuster-
2.1 The Mention-Pair Model level features (i.e., features that are defined over

As noted before, the MP model is a classifier tha@ny subset of NPs in a preceding cluster). Com-
determines whether two NPs are co-referring oPining the entity-mention model and the mention-
not. Each instancéNp;, NR,) corresponds to two ranking model yields the CR model, which ranks
NPs, NP andNR,, and is represented by 39 fea- the preceding clusters for an active NP so that
tures (see Table 1 of Rahman and Ng (2009) for ihe highest-ranked preceding cluster is the one to
description of these features). Linguistically, thesevhich the active NP should be linked.

features can be divided into four groups: string- sjnce the CR model ranks preceding clusters,
matching, grammatical, semantic, and positionalg trajning instancé(c;, NR,) represents a preced-
However, they can also be categorized based opg clusterc; and an anaphoric NRR,. Each in-
whether they areelational or non-relational re-  stance consists of two types of features: (1) fea-
lational features capture the relationship betweeRyres that are computed based solelynsp, and
NP andNR;, whereas non-relational features cap+(2) cluster-level features, which describe the rela-
ture the linguistic properties of one of them. tionship betweem; andNR,. Motivated in part by
We follow Soon et al.’s (2001) method for creat- Culotta et al. (2007), we create cluster-level fea-
ing training instances. Specifically, we create (1) gures from theelational features in our 39-feature
positive instance for each anaphoric NR and its  set using four logical predicatesioNE, MOST-
closest antecedentr; and (2) a negative instance paisg, MosT-TRUE, andALL. Specifically, for
for N, paired with each of the intervening NPs, each relational featurg, we first convertx into
NP1, NBt2, ..., NR_1. The classification as- an equivalent set of binary-valued features if it
sociated with a training instance is either positiveis multi-valued. Then, for each resulting binary-
or negative, depending on whether the two NPsjalued featurex,, we create four binary-valued
are coreferent. To train the MP model, we use the|uster-level features: (INONE-X, is true when
SVM learner from SVM¥" (Joachims, 1999).  x, is false betweemn, and each NP in;; (2)
After training, the classifier is used to identify mosT-FALSE-X, is true whenx, is true between
an antecedent for an NP in a test text. Each NRyp, and less than half (but at least one) of the NPs
NR;, is compared in turn to each preceding NPjn ¢;; (3) MOST-TRUE-X;, is true whenx, is true
NP;, from right to left, and\p is selected as its an- betweenng, and at least half (but not all) of the
tecedent if the pair is classified as coreferent. Theips inc;; and (4)ALL -Xy is true whenx, is true
process ends as soon as an antecedent is found igétweernn, and each NP in;.

N the beginni fthe text i hed.
A Or the beginning of the text s reache We follow Rahman and Ng’s (2009) method for

2.2 The Cluster-Ranking Model creating training instances. Specifically, for each
NP,NB;, we create a training instance betweap

The CR model addresses two weaknesses of the, eachpreceding cluster; using the features
MP model, one concerming expressiveness anGescribed above. Since we are training a model
the other conceming its failure to compare cantq jgintly learning anaphoricity determination and
d'd‘f"f[e antecedents directly and capture the COMeoreference resolution, we need to provide the
petition among them. It does so by combin-,ner with the option to start a new cluster by cre-
ing the st_rengths_of the entlty-mentlon model andating an additional training instance that contains
the mention-ranking model. As discussed beforefeatures that solely describes,. The rank value
the mention-ranking model addresses the failur%f a training instancé(c;, NR,) created fomg, is

to compare candidate antecedents by training fhe rank ofc; among the competing clusters. If
ranker to impose a ranking on the candidate aNYp. is anaphoric, the rank dfc;, NB,) is HIGH if
tecedents for an active NP. On the other handNF’C belongs tac;, and Low otherwise. However,
the entity-mention model addresses the eXpresy wp s non-anaphoric, the rank ofc;, NB,) is
siveness problem by determining whether an acp unlessc; corresponds to theuLL cluster, in

?For this and subsequent uses of the SVM learner in ouwhICh case its rank 'S_H;H' Given th_ese tr'alnlng
experiments, we set all parameters to their default values. instances, we can train a ranker using S¥Rt’s



ranker-learning algorithm. This yields approximately 512K paths. For effi-
After training, the cluster ranker processes theciency reasons, we reduce the number of paths be-
NPs in a test text in a left-to-right manner. Foring considered by removing those paths that oc-
each active NRyR,, we create test instances for it cur less than seven times in the training set. Af-
by pairing it with each of its preceding clusters. Toter this filtering process, only approximately 22K
allow for the possibility thap, is non-anaphoric, paths remain. Each resulting path is represented as
we create an additional test instance containing binary-valued feature for coreference resolution.
features that solely describe the active NP (as dur- Second, how can we compute the value of a
ing training). All these test instances are then prepath-based feature? If we were to train an MP
sented to the ranker. If the additional test instancenodel, its value is 1 if the path between the two
is assigned the highest rank value by the rankePs under consideration is the same as the path
thennp, is classified as non-anaphoric and will notrepresented by the feature. Otherwise, its value is
be resolved. Otherwisep; is linked to the cluster 0. Since we are training a joint CR model, where
that has the highest rank. each instance corresponds to an N#, and a pre-
ceding cluster¢;, rather than two NPs, we com-
3 Tree-Based and Path-Based Features  pute its feature value as follows: its value is 1 if
e path betweenm, and one of the NPs in; is
e same as the path represented by the feature;
herwise, its value is 0.
We hypothesize that by capturing shallow syn-
3.1 Path-Based Features tactic context, path-based features can improve the
. erformance of a coreference system. The reason
As mentioned before, a path-based feature er‘E that through these features, a learner can poten-

: _ Cﬁally learn to distinguish betweegpoodpaths (i.e.,
tive NP and a candidate antecedent as the shorte ths that are likely to connect coreferent NPs)

path between the corresponding nodes in the par %hdbad paths (i.e., paths that are likely to connect

tree. More formally, gpathbetween an active NP, non-coreferent NPs), thus improving the resulting

:‘H"” _andd ]fl cgmdlc:ﬁte ﬁntctacetdem%-, n a p;arsg model’s ability to identify the correct antecedent
ree 1s defined as e shortest sequence of no es¢]r|] preceding cluster for an active NP.

the tree that need to be traversed in order to reac
NP; from NF}€ and is represented as a sequence 0§.2 Tree-Based Features
non-terminal symbolss;ss ... s,,, wheres; (1 <
1 < m) is the non-terminal symbol associated withNot only can parse trees be exploited to identify
the :th node being traversed in the path, with coreference relations via the extraction of paths,
ands,, being the non-terminal symbol associatedbut they can be used to determine the anaphoric-
with the nodes spanningn, andNp;, respectively. ity of an NP. Specifically, we aim to identifiyon-
Given this representation, a path captures the shanaphoricNPs by employing parse trees as struc-
low syntactic context in which two NPs appear. tured features. While previous work has employed
There is a caveat, however. If the active NPparse trees as structured features (Zhou and Kong,
and a candidate antecedent appear in different sed009), it does so in a pipeline architecture where
tences, there will be no path between them. To enanaphoricity determination is performed prior to
able the application of path-based features to thesgoreference resolution. In contrast, we are faced
NPs, we create an additional “root” node with awith the challenge of integrating tree-based struc-
random label (e.g., R) that connects the root nodetired features with flat features in a model that in-
of the two trees containing these NPs. This allows/olves bothjoint learningandranking
a path to be established even if the two NPs appear To understand how this can be done, recall that
in different sentences. in the joint CR model, joint learning for anaphoric-
Now, to employ these paths for coreference resity determination and coreference resolution is
olution, two questions need to be answered. Firstachieved by introducing an additional training in-
which paths should be used? In our implemenstancej(NULL, NB;), which is formed between an
tation, we collect from each training text a pathactive NP,NR,, and aNULL preceding cluster, ef-
between each NP and each of its preceding NP$ectively providingNR, with an option to start a

In this section, we describe the tree-based anH:
path-based features in detail and show how the}gt
can be exploited by the joint CR model.



new cluster. Since we aim to use tree-based fea- vP

tures to identify non-anaphoric NPs, we augment/\ — T~
NP VP VBD NP PP
the set of features foi(NULL, NB;), which cur- | %\ | 2N
rently contains the flat features derived from., . vsp « v N NNP
with these (structured) tree-based features. | /\ /\ |
Of course, having an SVM learner learn arank- ~ spent CD IN NNP XX

ing model from both the flat and tree-based fea- | | _| |

tures requires more than just adding the tree-based one day i Dallas

features to the feature set. In particular, we needFigure 1: A parse tree (left) and the parse substruc-
to implement the three steps below. ture extracted for the NP “one day” (right).

Step 1: Specifying the Parse Substructure

While we want to use a parse tree directly as anining its anaphoricity, as a learner may learn
feature, we danot want to use theentire tree as from coreference-annotated data that “it” only has
a feature. The reason is that a complex tree mayg moderate probability of being anaphoric, and
make it difficult for the SVM learner to make gen- that “the contrary” from the phrase “on the con-
eralizations: the more complex the tree is, the lesgary” is never anaphoric. As a result, we augment
likely it is to find similar trees in other instances. the set of flat features iiNuULL, NR,) with the un-

To strike a better balance between having agrams extracted fromnp,.

rich representation of context and improving thestep 2: Recasting Ranking as Classification
learner’s ability to generalize, we extract a SUb'Existing implementations of SVMs, such as
structure from a parse tree and use it as the valug\/plisht_TK (Moschitti, 2004), allow us to com-
of the structured feature of an instance. This subpjne flat and (structured) tree-based features to
structure was previously shown to be useful whenyain a classifier by designing appropriate kernels.
used as a structured feature for training a classiyqence, if we were to train an SVM classifier, all
fier for determining the information status of an we need to do is to design a kernel. However, we
NP (Rahman and Ng, 2011). Given an instanceyre given a ranking problem, and it is not immedi-
i(NULL, NR,), we extract the substructure from the ately clear how an SVM can learn a ranking model
parse tree containingp; as follows. Let:(NR;) be i the presence of tree-based features.
the root of the subtree that spans all and only the gy approach to this problem is to reduce the
words inNR;, and letParent(n(NR;)) be itsimme-  given ranking problem to an equivalent classifica-
diate parent node. We (1) take the subtree rootelon problem. Once we have a classification prob-
at Parent(n(NR,)), (2) replace each leaf node in |em, all we need to do is to design a kernel for
this subtree with a node labeled (3) replace the training a classifier, as mentioned above. To re-
child nodes ofz(NR,) with a leaf node labelest,  duce a ranking problem to an equivalent classifi-
and (4) use the subtree rootedfairent(n(NR;))  cation problem, we need to convert the training set
as the structured feature foINULL, NR;). Fig-  for the joint CR model to an equivalent training set
ure 1 illustrates this substructure extraction procethat can be used to train a classifier.
dure via an example. Before describing the conversion process, let
Intuitively, the first three steps aim to provide us first recall how the training set for a joint CR
generalizations by simplifying the tree. For exam-model is created. Given a training teit we cre-
ple, step (1) allows us to focus on using a smallate fromD a set of training instances for a joint
window surrounding\p, as its context. Steps (2) CR model by taking the union &fy, T, ..., Ty,
and (3) help generalization by ignoring the wordswhere T}, (1 < k < n) is the set of training in-
within NRB, and its context. Note that using two la- stances generated frons, in D. If NB, has|C|
bels,x andy, helps distinguish the active NP from preceding clusterd;, will contain exactly|C|+ 1
its context within this substructure. Also note thattraining instances, since one training instance is
we simply use one noder) to represent the ac- generated fronng, and each of it§C| preced-
tive NP, since NP-internal information (e.g., gen-ing clusters, and one training instance is formed
der) has been captured by the flat features. betweennp, and theNuLL antecedent. Each in-
While this parse substructure ignores the wordstance is associated with a rank value, which is
in NR,, these unigrams could be useful for deter-eitherHIGH or Low. GivenT, the SVM ranker-



learning algorithm aims to learn how to rank pre-nel is not directly applicable. In this case, we need
ceding clusters for an active NP by learning howto (1) compute the similarity of their flat features
to rank the instances within eaéh. and the similarity of their tree-based features sep-

As noted before, to facilitate learning a rankerarately, and then (2) employ a composite kernel,
from both flat and tree-based features, we reford., to combine the two similarity values. Specifi-
mulate the given ranking problem as a set of paircally, we definek. as follows:
wise rank_mg problems_. The reason is that a pair- Ko(Fy, Fy) = Ki(F1, By) + aKa(F1, F),
wise ranking problem is essentiallybinary clas-
sification problem, since pairwise ranking merely whereF; andF; are the full set of features (con-
involves ranking two objects. Not surprisingly, taining both flat and structured features) that rep-
this reformulation requires that we convétinto ~ resent the two instances under consideratiai.
an equivalent training sef’, which consists of is a linear kernel, which operates on the flat fea-
pairwise ranking problems and can therefore bdures.K is a convolution tree kernel (Collins and
used to train a classifier (i.e., a pairwise ranker)Duffy, 2001), which operates on the tree-based
Below we describe how to convertto 7. features. Specificallyis computes the similarity

For eachl}, in T', we create a training instance of two parse trees by efficiently enumerating the
inst for T' from each pair of training instances number of common substructures in them. To pre-
in T}, that have different rank values. For exam-vent the kernel value returned Wy, from being
ple, if i(c;, NR,) andi(c;, NR,) in T} have ranks consistently dominated by one of the component
r1 andr, respectively where,; # ro, we create a kernels (i.e.,K; and K3), we normalize the ker-
training instance fofl” whose feature vector is ob- nel values returned bit; and K so that they falll
tained by subtracting(c;, NB;) fromi(c;, NR,). If ~ between 0 and 1« is as a weight parameter that
both feature vectors contain only flat features, thedllows the two kernel values to be combined lin-
subtraction is straightforward, since each flat feagarly, providing the flexibility to vary the relative
ture is real-valued. However, if one of the featureimportance of the component kernels. We will de-
vectors has a tree-based feafuf@hich happens terminea empirically on the development set.
wheng; or ¢; isNULL), we handle the flat features . o
and the treé-based feature separately. Specificall%‘3 Applying the Pairnwise Ranker
we first perform subtraction for the flat features asSO far, we have described a method for training
described above, and then append the tree-bas@d(pairwise) ranker when the feature set contains
feature to the feature set afst. If r; > ry, the both flat and tree-based features, which involves
class value ofnst is 1; otherwise, it is-1. converting training sef’ to training se”. A nat-

In sum, eacH}, in T constitutes a ranking prob- ural question, then, is: do we have to similarly per-
lem, and we described how to convert this rankindOfm this conversion on the test set so that the pair-
problem into a set of pairwise ranking problems inwise ranker can be applied to it?

T'. As noted before, a pairwise ranking prob|em is It turns out that the answer is no. Given a set of
a binary classification problem. Hence, the resultfest instance§}; to be ranked, all we need to do
ing training set”, can be used to train a (binary) iS to apply the pairwise ranker to each instance in

SVM classifier that minimizes the number of vio- 7. The ranker produces one real value for each
lations of pairwise rankings if”. instance. According to the values provided by the

ranker, these test instances can be ranked: the most

Step 3: Designing the Composite Kernel o .
positive value corresponds to the highest rank.

To train an SVM classifier ofi’, we need to define . ) )
a kernel function for computing the similarity be- It may not be |mm_ed|_ately clear_ why it makes

tween a pair of instances. If both instances contair?_ense to apply the pairwise rankgr in the aforemen-
only flat features, we simply employ a normalizedt'oned manner to rank the test instances. Space

linear kernel, which computes similarity as the CO_Iimitati_ons preclude a r_igorou_s mathematical ex-
sine of their feature vectors. However, if one orplanatlon. Here, we will provide a sketch of the

both of them has a tree-based feature, a linear kegxplanatlon. Recall_ that each instancelihwas
created by subtracting the feature vectors of two

*Note that at most one of these two feature vectors hasnstances. In addition, when SV¢' was ap-

a tree-based feature. The reason is that exactly one of thel. d to train th A k 7 it at
instances il has a tree-based feature, namely the one corP!i€d 10 Urain the pairwise ranker on, It at-

responding to theiuLL cluster. tempted to minimize the number of violations of



pairwise rankings. To do so, SVM" needs to The baseline joint cluster-ranking model. Our
position the hyperplane so that an instance with @econd baseline is the joint CR model, which is
higher rank inT" is assigned a more positive value trained using the method described in Section 2.2.
by the hyperplane than one with a lower rankin In particular, this baseline model does not employ
Consequently, we can apply the pairwise ranker t@ny tree-based or path-based features. Results are
each test instance to be ranked, and use the valshown in row 2 of Table 1. In comparison to the
returned by the ranker for each instance to impos&P model in row 1, we can see that B-measure

a ranking on the test instances. rises from 69.1 to 74.5 and CEAF F-measure rises
) from 62.8 and 68.5. These results are consistent
4 Evaluation with our hypothesis that the joint CR model is in-

In this section, we examine the effectiveness of thd€€d & stronger baseline than the MP model.

tree-based and path-based features in improvintncorporating path-based features. Next, we

the joint CR model. incorporate the path-based features into the Base-
. line joint CR model. Results are shown in row
4.1 Experimental Setup 3 of Table 1. In comparison to the results of the

Corpus. We employ in our evaluation a dataset Baseline joint CR model in row 2, we can see that
comprising 147 coreference-annotated Switchadding the path-based features into the feature set
board dialogues, which contain a total of 68,992improves the joint CR model according to both
NPs? We partition the dialogues into a training setscorers. In particular, Band CEAF F-measure
(117 dialogues) and a test set (30 dialogues). Wecores rise by 1.3% and 2.1%, respectively, sug-
extract the NPs and the parse trees directly frongesting the usefulness of the path-based features.
the gold-standard annotations, but the coreference In addition to the R, P and F columns, Table
features are computed entirely automatically. 1 has two columns labeled “% err. red.”, which

Scoring programs. We employ two commonly- show the error reduction of a system relative to
used coreference Scoring programsg’ Bagga the Baseline jOint CR model. Hel’e, we Compute
and Baldwin, 1998) and;-CEAF (Luo, 2005), the error of a system by subtracting its F-measure
both of which report results in terms of recall (R), Score from the perfect F-measure (i.e., 100). With

precision (P), and F-measure (F). the addition of path-based features, we can see that
relative error is reduced by 5.1 and 6.7 according
4.2 Results and Discussion to B2 and CEAF, respectively.

The baseline mention-pair model. We employ Incorporating tree-based features. Next, we
as our first baseline the MP model, which isincorporate the tree-based features into the Base-
trained using the procedure described in Sectioline joint CR model. Recall that from a tree, we
2.1. Given that our goal is to examine the ef-extract both flat features (i.e., unigrams) and struc-
fectiveness of the tree-based and path-based fegured features (i.e., parse substructures), so both
tures for the joint CR model, one may wonder whytypes of features are used to augment the Base-
the results of the MP model are relevant to ounine feature set. Because both types of features are
investigation. Recall from the introduction that involved, we need to tune in the composite ker-
we chose to improve the joint CR model with thenel. To ensure a fair comparison among different
two types of features derived from syntactic parsesystems, we daotemploy additional labeled data
because the joint CR model has been shown t¢or tuning «. Rather, we use 75% of the available
achieve state-of-the-art performance on the ACHraining data for training the joint CR model and
corpus. To ensure that the joint CR model also outreserve the remaining 25% for parameter tuning.
performs the MP model on our Switchboard cor- Results are shown in row 4 of Table 1. In com-
pus (and is therefore the strongest baseline we cafarison to the results of the Baseline joint CR
use), we show the results of the MP model in rowmodel in row 2, we can see that adding the trees
1 of Table 1. As we can see, it achieves F-measurgnd the unigrams into the feature set improves the
scores of 69.1 (B) and 62.8 (CEAFY. joint CR model according to both scorers. In par-
“This dataset is released by the LDC as part of the NXTticular, B> and CEAF F-measure scores rise by

corpus (Calhoun et al., 2010). o o .
®Since gold-standard NPs are used in our coreference ex]-"o % and 1.9%, respectively.

periments, CEAF recall, precision, and F-measure willall b the same. See Luo (2005) for details.



B® CEAF
System R P F %err.red| R P F % err. red.
1 | Baseline MP model 781 616 69.1 — 62.8 62.8 62.8 —
2 | Baseline CR model 711 782 745 — 68.5 68.5 68.5 —
3 | CR + paths 76.4 752 75.8 (5.10) || 70.6 70.6 70.6 (6.67)
4 | CR +unigrams + trees 75.1 76.0 755 (3.92) || 704 704 704 (6.03)
5 | CR + paths + unigrams +trees | 76.6 76.8 76.7 (8.63) 722 722 722 (11.74)
6 | CR + paths + unigrams 76.3 75.4 75.8 (5.10) || 715 715 715 (9.52)
7 | CR + paths + pipeline architecture 76.9 75.2 76.0 (5.88) || 71.4 714 714 (9.21)

Table 1: Coreference results on the test set obtained usiegm@CEAF.

Incorporating tree- and path-based features. coreference resolution? To answer this question,
Next, we incorporate both tree-based (i.e., unwe show in row 7 of Table 1 the results ob-
igrams and parse substructures) and path-basédined using the pipeline architecture, where (1)
features into the Baseline joint CR model. As inan anaphoricity classifier is trained with all the
the previous experiment, we reserve 25% of thdeatures used to represent an instance involving
available training data for tuning. Results are the NULL antecedent in the joint CR model in
shown in row 5 of Table 1. In comparison to therow 5 and (2) the joint CR model is trained using
results of the Baseline joint CR model in row 2, wethe Baseline and path-based features. This setup
can see that adding both types of features improvesould therefore allow us to determine whether the
F-measure by 2.2% (B and 3.7% (CEAF), which joint architecture or the pipeline architecture can
is equivalent to a relative error reduction of 8.6%better exploit the structured features. In compari-
(B3) and 11.7% (CEAF). son to the results in row 5, we see that F-measure
In comparison to the results in rows 3 and 4,drops by 0.6-0.8%. These results suggest that
we can see that better results can be obtained Kgint learning is indeed better than pipeline learn-
applying the two types of features in combinationing in terms of exploiting structured features.
than in isolation to the Baseline joint CR model. .
This suggests that although both types of feature® Conclusions

are derived from parse trees, they provide compleyye have examined the effectiveness of tree-based
mentary information for the CR model. and path-based features in improving a state-of-
Understanding the value of parse substruc- the-art supervised coreference model, the cluster-
tures. So far, we have always applied the uni-ranking model. Results on 147 Switchboard dia-
grams and the parse substructures in combinatiolegues, show that both types of features are effec-
in our experiments. To better understand the valugéive at improving the performance of the cluster-
of the parse substructures, we perform an ablatioranking model. In particular, when they are ap-
experiment in which we repeat the previous experplied in combination, we see a reduction in rela-
imentwithoutusing the parse substructures. tive error by 8.6-11.7%. One challenge that we
Results are shown in row 6 of Table 1. In addressed during the course of this investigation
comparison to the results in row 5, we can seénvolves enabling flat and structured features to be
that F-measure drops by 0.9% 3jBand 0.7% employed simultaneously in a ranking model that
(CEAF). Since the difference in results betweenemploys joint learning. With the increasingly im-
the two rows can be attributed entirely to the presfortant role structured features and ranking mod-
ence/absence of the parse substructures, the dréfs play in natural language learning, we believe
in F-measure suggests that the parse substructurtit our method for combining flat and structured

are indeed useful features for the joint CR model.features for training a ranker would appeal to re-

Pipeline vs. joint modeling. One challenge we searchers working in different areas of NLP.
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