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Abstract

Virtually all the commonly-used evalua-
tion metrics for entity coreference reso-
lution are linguistically agnostic, treating
the mentions to be clustered as generic
rather than linguistic objects. We argue
that the performance of an entity coref-
erence resolver cannot be accurately re-
flected when it is evaluated using linguis-
tically agnostic metrics. Consequently,
we propose a framework for incorporating
linguistic awareness into commonly-used
coreference evaluation metrics.

1 Introduction

Coreference resolution is the task of determin-
ing which mentions in a text or dialogue refer
to the same real-world entity. Designing appro-
priate evaluation metrics for coreference resolu-
tion is an important and challenging task. Since
there is no consensus on which existing corefer-
ence evaluation metric is the best, the organizers of
the CoNLL-2011 and CoNLL-2012 shared tasks
on unrestricted coreference (Pradhan et al., 2011,
2012) decided to take the average of the scores
computed by three coreference evaluation metrics,
MUC (Vilain et al., 1995), B3 (Bagga and Bald-
win, 1998), and CEAFe (Luo, 2005), as the official
score of a participating coreference resolver.

One weakness shared by virtually all exist-
ing coreference evaluation metrics is that they
are linguistically agnostic, treating the mentions
to be clustered as generic rather than linguistic
objects. In other words, while MUC, B3, and
CEAF were designed for evaluating coreference
resolvers, their linguistic agnosticity implies that
they can be used to evaluateany clustering task,
including those that are not linguistic in nature.1

1This statement is also true for BLANC (Recasens and
Hovy, 2011), a Rand Index-based coreference evaluation
metric we will not focus on in this paper.

To understand why linguistic agnosticity is a
potential weakness of existing scoring metrics,
consider a document in which there are three
coreferent mentions,Hillary Clinton, she, andshe,
appearing in this order in the document. Assume
that two coreference resolvers,R1 and R2, are
applied to these three mentions, whereR1 only
positsHillary Clinton andsheas coreferent, and
R2 only posits the two occurrences ofsheas coref-
erent. Being linguistically agnostic, existing scor-
ing metrics will assign thesamescore to both re-
solvers after seeing that both of them correctly as-
sign two of the three objects to the same cluster.
Intuitively, however,R1 should receive a higher
score thanR2: R1 has facilitated automated text
understanding by successfully finding the referent
of one of the pronouns, whereas fromR2’s output
we know nothing about the referent of the two pro-
nouns. Failure to rankR1 higher thanR2 implies
that existing scoring metrics fail to adequately re-
flect the performance of a resolver.2

Our goal in this paper is to address the afore-
mentioned weakness by proposing a framework
for incorporating linguistic awareness into the
most commonly-used coreference scoring metrics,
including MUC, B3, and CEAF. Rather than mak-
ing different modifications to different metrics,
one of the contributions of our work lies in the
proposal of aunifiedframework that enables us to
employ thesameset of modifications to create lin-
guistically aware versions of all these metrics.

2 Existing Evaluation Metrics

In this section, we review four scoring metrics,
MUC, B3, and the two versions of CEAF, namely,

2One may disagree thatR1 should be ranked higher than
R2 by arguing that successful identification of two corefer-
ential pronouns is not necessarily easier than resolving an
anaphoric pronoun to a non-pronominal antecedent. Our ar-
gument, however, is based on the view traditionally adopted
in pronoun resolution research that resolving an anaphoric
pronoun entails finding a non-pronominal antecedent for it.



CEAFm and CEAFe. As F-score is always com-
puted as the unweighted harmonic mean of recall
and precision, we will only show how recall and
precision are computed. Note that unlike previous
discussion of these metrics, we present them in a
way that reveals their common elements.

2.1 Notation and Terminology

In the rest of this paper, we use the termscorefer-
ence chainsandcoreference clustersinterchange-
ably. For a coreference chainC, we define|C|
as the number of mentions inC. Key chains
andsystem chainsrefer to gold coreference chains
and system-generated coreference chains, respec-
tively. In addition, K(d) and S(d) refer to the
set of gold chains and the set of system-generated
chains in documentd, respectively. Specifically,

K(d) = {Ki : i = 1, 2, · · · , |K(d)|},

S(d) = {Sj : j = 1, 2, · · · , |S(d)|},

whereKi is a chain inK(d) andSj is a chain in
S(d). |K(d)| and|S(d)| are the number of chains
in K(d) andS(d), respectively.

2.2 MUC (Vilain et al., 1995)

MUC is a link-based metric. Given a documentd,
recall is computed as the number of common links
between the key chains and the system chains ind

divided by the number of links in the key chains.
Precision is computed as the number of common
links divided by the number of links in the system
chains. Below we show how to compute (1) the
number of common links, (2) the number of key
links, and (3) the number of system links.

To compute the number of common links, a par-
tition P (Sj) is created for each system chainSj

using the key chains. Specifically,

P (Sj) = {Ci
j : i = 1, 2, · · · , |K(d)|} (1)

Each subsetCi
j in P (Sj) is formed by intersect-

ing Sj with Ki. Note that|Ci
j | = 0 if Sj and

Ki have no mentions in common. Since there are
|K(d)|∗|S(d)| subsets in total, the number of com-
mon links is

c(K(d),S(d)) =

|S(d)|
∑

j=1

|K(d)|
∑

i=1

wc(C
i
j),

wherewc(C
i
j) =

{

0 if |Ci
j| = 0;

|Ci
j| − 1 if |Ci

j| > 0.

(2)

Intuitively, wc(C
i
j) can be interpreted as the

“weight” of Ci
j. In MUC, the weight of a cluster is

defined as theminimumnumber oflinks needed
to create the cluster, sowc(C

i
j) = |Ci

j| − 1 if
|Ci

j| > 0.
The number of links in the key chains,K(d), is

calculated as:

k(K(d)) =

|K(d)|
∑

i=1

wk(Ki), (3)

wherewk(Ki) = |Ki|−1. The number of links in
the system chains,s(S(d)), is calculated as:

s(S(d)) =

|S(d)|
∑

j=1

ws(Sj), (4)

wherews(Sj) = |Sj | − 1.

2.3 B3 (Bagga and Baldwin, 1998)

One of MUC’s shortcoming is that it fails to re-
ward successful identification of singleton clus-
ters. To address this weakness,B3 first computes
the recall and precision for each mention, and then
averages these per-mention values to obtain the
overall recall and precision.

Let mn be thenth mention in documentd. Its
recall, R(mn), and precision,P (mn), are com-
puted as follows. LetKi andSj be the key chain
and the system chain that containmn, respec-
tively, and letCi

j be the set of mentions appearing
in bothSj andKi.

R(mn) =
wc(C

i
j)

wk(Ki)
, P (mn) =

wc(C
i
j)

ws(Sj)
, (5)

where wc(C
i
j) = |Ci

j|, wk(Ki) = |Ki|, and
ws(Sj) = |Sj|.

2.4 CEAF (Luo, 2005)

While B3 addresses the shortcoming of MUC, Luo
presents counter-intuitive results produced by B3,
which it attributes to the fact that B3 may use
a key/system chain more than once when com-
puting recall and precision. To ensure that each
key/system chain will be used at most once in the
scoring process, his CEAF scoring metric scores
a coreference partition by finding an optimalone-
to-one mapping(or alignment) between the chains
in K(d) and those inS(d).

Since the mapping is one-to-one, not all key
chains and system chains will be involved in it. Let



Kmin(d) andSmin(d) be the set of key chains and
the set of system chains involved in the alignment,
respectively. The alignment can be represented as
a one-to-one mapping functiong, where

g(Ki) = Sj,Ki ∈ Kmin(d) andSj ∈ Smin(d).

The score ofg, Φ(g), is defined as

Φ(g) =
∑

Ki∈Kmin(D)

φ(Ki, g(Ki)),

whereφ is a function that computes thesimilar-
ity between a gold chain and a system chain. The
optimal alignment,g∗, is the alignment whoseΦ
value is the largest among all possible alignments,
and can be computed efficiently using the Kuhn-
Munkres algorithm (Kuhn, 1955).

Given g∗, the recall (R) and precision (P) of a
system partition can be computed as follows:

R =
Φ(g∗)

∑|K(d))|
i=1 φ(Ki,Ki)

, P =
Φ(g∗)

∑|S(d))|
j=1 φ(Sj , Sj)

.

As we can see, at the core of CEAF is the simi-
larity functionφ. Luo defines two differentφ func-
tions,φ3 andφ4:

φ3(Ki, Sj) = |Ki ∩ Sj| = wc(C
i
j) (6)

φ4(Ki, Sj) =
2|Ki ∩ Sj|

|Ki| + |Sj|
=

2 ∗ wc(C
i
j)

wk(Ki) + ws(Sj)
(7)

φ3 andφ4 result in mention-based CEAF (a.k.a.
CEAFm) and entity-based CEAF (a.k.a. CEAFe),
respectively.

2.5 Common functions

Recall that the three weight functions,wc, wk, and
ws, are involved in all the scoring metrics we have
discussed so far. To summarize:

• wc(C
i
j) is the weight of the common subset

betweenKi andSj. For MUC, its value is 0
if Ci

j is empty and|Ci
j |−1 otherwise; for B3,

CEAFm and CEAFe, its value is|Ci
j|.

• wk(Ki) is the weight of key chainKi. For
MUC, its value is|Ki| − 1, while for B3,
CEAFm and CEAFe, its value is|Ki|.

• ws(Sj) is the weight of system chainSj. For
MUC, its value is |Sj | − 1, while for B3,
CEAFm and CEAFe, its value is|Sj|.

Next, we will show that simply by redefin-
ing these three functions appropriately, we can
create linguistically aware versions of MUC, B3,
CEAFm, and CEAFe.3 For convenience, we will
refer to their linguistically aware counterparts as
LMUC, LB3, LCEAFm, and LCEAFe.4

3 Incorporating Linguistic Awareness

As mentioned in the introduction, one of the con-
tributions of our work lies in identifying the three
weight functions that are common to MUC, B3,
CEAFm, and CEAFe (see Section 2.5). To see
why these weight functions are important, note
thatany interaction between a scoring metric and
a coreference chain is mediated by one of these
weight functions. In other words, if these weight
functions are linguistically agnostic (i.e., they treat
the mentions as generic rather than linguistic ob-
jects when assigning weights), the scoring metric
that employs them will be linguistically agnostic.
On the other hand, if these weight functions are
linguistically aware, the scoring metric that em-
ploys them will be linguistically aware.

This observation makes it possible for us to de-
sign a unified framework for incorporating lin-
guistic awareness into existing coreference scor-
ing metrics. Specifically, rather than making dif-
ferent modifications to different scoring metrics to
incorporate linguistic awareness, we can simply
incorporate linguistic awareness into these three
weight functions. So when they are being used
in different scoring metrics, we can handily obtain
the linguistically aware versions of these metrics.

In the rest of this section, we will suggest one
way of implementing linguistic awareness. This is
by no means the only way to implement linguis-
tic awareness, but we believe that this is a good
starting point, which hopefully will initiate further
discussions in the coreference community.

3.1 Formalizing Linguistic Awareness

Other than illustrating the notion of linguistic
awareness via a simple example in the introduc-
tion, we have thus far been vague about what ex-

3Note that for a given scoring metric,wc(C) = wk(C) =
ws(C) for any non-empty chainC. The reason why we de-
fine three weight functions as opposed to one is that they are
defined differently in the linguistically aware scoring metrics,
as we will see.

4Our implementation of the linguistically aware eval-
uation metrics is available fromhttp://www.hlt.
utdallas.edu/ ˜ yzcchen/coreference .



actly it is. In this section, we will make this notion
more concrete.

Recall that the goal of (co)reference resolution
is to facilitate automated text understanding by
finding the referent for each referring expression
in a text. Hence, when resolving a mention, a
resolver should be rewarded more if the selected
antecedent allows the underlyingentity to be in-
ferred than if it doesn’t, because the former con-
tributes more to understanding the corresponding
text than the latter. Note that the moreinformative
the selected antecedent is, the easier it will be for
the reader to infer the underlying entity. Here, we
adopt a simple notion of linguistic informativeness
based on the mention type: a name is more infor-
mative than a nominal, which in turn is more infor-
mative than a pronoun.5 Hence, a coreference link
involving a name should be given a higher weight
than one that doesn’t, and a coreference link in-
volving a nominal should be given a higher weight
than one that involves only pronouns.

We implement this observation by assigning to
each linkel a weight ofwl(el), wherewl(el) is
defined using the first rule applicable toel below:
Rule 1: If el involves a name,wl(el) = wnam.
Rule 2: If el involves a nominal,wl(el) = wnom.
Rule 3: wl(el) = wpro.

There is a caveat, however. By assigning
weights to coreferencelinks rather than mentions,
we will be unable to reward successful identi-
fication of singleton clusters, since they contain
no links (and hence they carry no weights). To
address this problem, we introduce a singleton
weightwsing, which will be assigned to any chain
that contains exactly one mention.

So far, we have introduced four weights,W =
(wnam, wnom, wpro, wsing), which encode our
(somewhat simplistic) notion of linguistic aware-
ness. Below we show how these four weights are
incorporated into the three weight functions,wc,
wk, and andws, to create their linguistically aware
counterparts,wL

c , wL
k , andwL

s .

3.2 DefiningwL
c

Recall thatCi
j represents the set of mentions com-

mon to key chainKi and system chainSj. To
define the linguistically aware weight function
wL

c (Ci
j), there are three cases to consider:

5Different notions of linguistic informativeness might be
appropriate for different natural language applications.In our
framework, a different notion of linguistic informativeness
can be implemented simply by altering the weight functions.

Case 1:|Ci
j | ≥ 2

Recall that the linguistically agnosticwc function
returns a weight of|Ci

j| − 1. This makes sense,
because in a linguistically agnostic situation, all
the links have the same weight, and hence the
weight assigned toCi

j will be the same regardless
of which |Ci

j | − 1 links in Ci
j are chosen. How-

ever, the same is no longer true in a linguistically
aware setting: since the links may not necessar-
ily have the same weight, the weight assigned to
Ci

j depends on which|Ci
j | − 1 links are chosen.

In this case, it makes sense for our linguistically
awarewL

c function to find the|Ci
j | − 1 links that

have the largest weights and assign towL
c the sum

of these weights, since they reflect how well a re-
solver managed to find informative antecedents for
the mentions. Note that the sum of the|Ci

j | − 1
links that have the largest weights is equal the
weight of the maximum spanning tree defined over
the mentions inCi

j.

Case 2:|Ci
j | = 0

In this caseCi
j is empty, meaning thatKi andSj

do not have any mention in common.wL
c simply

returns a weight of 0 when applied toCi
j .

Case 3:|Ci
j | = 1

In this case,Ki andSj have one mention in com-
mon. The question, then, is: can we simply re-
turn wsing, the weight associated with a single-
ton cluster? The answer is no: sincewsing was
created to rewardsuccessfulidentification of sin-
gleton clusters, a resolver should be rewarded by
wsing only if it correctly identifies a singleton clus-
ter. In other words,wL

c returnswsing if all of Ci
j ,

Ki andSj contain exactly one mention (which im-
plies that the singleton clusterCi

j is correctly iden-
tified); otherwise,wL

c returns 0.
The definition ofwL

c is summarized as follows,
whereE is the set of edges in the maximum span-
ning tree defined over the mentions inCi

j .

wL
c (Ci

j) =











∑

el∈E

wl(el) if |Ci
j| > 1;

wsing if |Ci
j|, |Ki|, |Sj | = 1;

0 otherwise.
(8)

3.3 DefiningwL
k

Recall thatwL
k aims to compute the weight of key

chainKi. Given the definition ofwL
c , in order to

ensure that the maximum recall is 1, it is natural to
definewL

K as follows, whereE is the set of edges



appearing in the maximum spanning tree defined
over the mentions inKi.

wL
k (Ki) =

{
∑

el∈E

wl(el) if |Ki| > 1;

wsing if |Ki| = 1.
(9)

3.4 DefiningwL
s

Finally, we definewL
s , the function for computing

the weight of system chainSj. To better under-
stand how we might want to definewL

s , recall that
in MUC, B3, and both versions of CEAF, precision
and recall play a symmetric role. In other words,
precision is computed by reversing the roles of the
key partitionK(d) and the system partitionS(d)
used to compute recall for documentd. If we
wanted precision and recall to also play a symmet-
ric role in the linguistically aware versions of these
scoring metrics, it would be natural to definewL

s in
the same way aswL

k , whereE is the set of edges
appearing in the maximum spanning tree defined
over the mentions inSj.

wL
s (Sj) =

{
∑

el∈E

wl(el) if |Sj | > 1;

wsing if |Sj | = 1.
(10)

However, there is a reason why it is undesirable
for us to definewL

s in this manner. Consider the
special case in which a system partitionS(d) con-
tains only correct links, some of which are subop-
timal.6 AlthoughS(d) contains only correct links,
the precision computed by any scoring metric that
employswL

s with the above definition will be less
than one simply because it contains suboptimal
links. In other words, if a scoring metric employs
wL

s with the above definition, it will penalize a re-
solver for choosing suboptimal links twice, once
in recall and once in precision.

To avoid penalizing a resolver for the same mis-
take twice,wL

s cannot be defined in the same way
as wL

k .7 In particular, only spurious links (i.e.,
links between two non-coreferent mentions), not
suboptimal links, should be counted as precision
errors. To avoid this problem, recall thatP (Sj) is
defined as a partition of system chainSj created
by intersectingSj with all key chains inK(d).

P (Sj) = {Ci
j : i = 1, 2, · · · , |K(d)|}

6Suboptimal links are links that are correct but do not ap-
pear in a maximum spanning tree for any of its chains.

7This implies that precision and recall will no longer play
a symmetric role in our linguistically aware scoring metrics.

Note that a link is spurious if it links a men-
tion in Ci1

j with a mention inCi2
j , where1 ≤ i1 6=

i2 ≤ K(d). Without loss of generality, assume that
there arenej non-empty clusters inP (Sj). Note
that we neednej−1 spurious links in order to con-
nect thenej non-empty clusters. To adequately
reflect the damage created by these spurious links,
among the different sets ofnej−1 spurious links
that connect thenej non-empty clusters inP (Sj),
we choose the set where the sum of the weights of
the links is the largest and count the edges in it as
precision errors. We denote this set asEt(Sj).

Now we are ready to definewL
s . There are two

cases to consider.
Case 1:|Sj | > 1
In this case,wL

s (Sj) is computed as follows:

wL
s (Sj) =

∑

Ci
j∈P (Sj)

wL
c (Ci

j) +
∑

e∈Et(Sj)

wl(e).

(11)
Note that the second term corresponds to the pre-
cision errors discussed in the previous paragraph,
whereas the first term corresponds to the sum of
the values returned bywL

c when applied to each
cluster inP (Sj). The first term guarantees that a
resolver is penalized for precision errors because
of spurious links, not suboptimal links.
Case 2:|Sj | = 1
In this case,Sj only contains one mention. We set
wL

s (Sj) to wsing.

4 Evaluation

In this section, we design experiments to better un-
derstand our linguistically aware metrics (hence-
forth LMetrics). Specifically, our evaluation is
driven by two questions. First, given that the
LMetrics are parameterized by a vector of four
weightsW , how do their behaviors change as we
alterW? Second, how do theLMetricsdiffer from
the existing metrics (henceforthOMetrics)?

4.1 Experimental Setup

We use as our running example the paragraph
shown in Figure 1, which is adapted from the Bible
domain of the English portion of the OntoNotes
v5.0 corpus. There are 19 mentions in the para-
graph, each of which is enclosed in parentheses
and annotated asmy

x, wherey is the ID of the
chain to which this mention belongs, andx is the
mention ID.

Figure 2 shows five system responses (a–e) for
our running example along with the key chains.



(Jesus)1a came near (Jerusalem)2

d. Looking at (the city)2e, (he)1b began to cry for (it)2f and said, (I)1c wish (you)2g knew what
would bring (you)2h (peace)4p. But it is hidden from (you)2i (now)5q . (A time)6r is coming when ((your)2j enemies)3n will hold
(you)2k in on (all sides)7s. (They)3o will destroy (you)2l and (all (your)2m people)8t .

Figure 1: A paragraph adapted from the Bible domain of the OntoNotes 5.0 corpus.

For conciseness, a mention is denoted by its men-
tion ID, and each connected sub-graph forms one
coreference chain. Moreover, the type of a men-
tion is denoted by its shape: asquaredenotes a
NAME mention; atriangle denotes aNOMINAL

mention, and acircle denotes aPRONOUN men-
tion. Note thatSyou, the set of coreferent “you”
mentions consisting of{m2

g,m
2
h, · · · ,m2

m}, ap-
pears in all system responses.

Figure 2: Key and system coreference chains.

Let us begin by describing the five system re-
sponses. Response (a) is produced by a simple
and conservative resolver. Besides formingSyou,
this resolver also correctly linksm1

b with m1
c . Re-

sponses (b), (c) and (d) each improves upon re-
sponse (a) by linkingSyou to one of three pre-
ceding mentions, namely, onePRONOUNmention,
one NOMINAL mention, and oneNAME mention
respectively. Response (e) is produced by an ag-
gressive resolver that tries to resolve all the pro-

nouns to a non-pronominal antecedent, but unfor-
tunately, it wrongly connectsSyou to m1

a, m1
b and

m1
c .
Next, we investigate the two questions posed

at the beginning of Section 4.1. To determine
how the LMetrics behave when used in com-
bination with different weight vectorsW =
(wnam, wnom, wpro, wsing), we experiment with:

W1 = (1.0, 1.0, 1.0, 10−20 );8

W2 = (1.0, 1.0, 1.0, 0.5);
W3 = (1.0, 1.0, 1.0, 1.0);
W4 = (1.0, 0.75, 0.5, 1.0);
W5 = (1.0, 0.5, 0.25, 1.0).

Note thatW1, W2, andW3 differ only with respect
to wsing, so comparing the results obtained us-
ing these weight vectors will reveal the impact of
wsing on theLMetrics. On the other hand,W4 and
W5 differ with respect to the gap of the weights
associated with the three types of mentions. Ex-
amining theLMetricswhen they are used in com-
bination with W4 and W5 will reveal the differ-
ence between having “relatively similar” weights
versus having “relatively different” weights on the
three mention types.

Figure 3 shows four graphs, one for each of the
four LMetrics. Each graph contains six curves,
five of which correspond to curves generated by
using the aforementioned five weight vectors, and
the remaining one corresponds to theOMetric
curve that we include for comparison purposes.
Each curve is plotted using five points that corre-
spond to the five system responses.

4.2 Impact of wsing

We first investigate the impact ofwsing. We will
determine how theLMetricsbehave in response to
W1, W2 andW3.

The first graph in Figure 3 shows the LMUC
and MUC F-scores. As we can see, the scores of
MUC and LMUC(W1) are almost the same. This
is understandable: the uniform edge weights and
a very smallwsing in W1 imply that LMUC will

8We setwsing to a very small value other than 0, because
settingwsing to 0 may cause the denominator of the expres-
sions in (5) and (7) to be 0.
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Figure 3: Comparison of theLMetricsscores under different weight settings and theOMetricsscores.

essentially ignore correct identification of single
clusters and consider all errors to be equal, just
like MUC. When we replaceW1 with W2 and
W3, the two weight vectors with a largerwsing

value, and rescore the five responses, we see that
the LMUC scores for responses (a), (b), (c) and
(d) decrease. This is because LMUC useswsing

to penalize these four responses for identifying
wrong singleton clusters. On the other hand, the
LMUC score for response (e) is higher than the
corresponding MUC score, because LMUC addi-
tionally rewards response (e) for correctly classi-
fying all singleton clusters without introducing er-
roneous singleton clusters.

The second graph in Figure 3 shows the LB3

and B3 F-scores. Here, we see that the scores
for LB3(W1), LB3(W2) and LB3(W3) are iden-
tical. These results suggest that the value ofwsing

does not affect the LB3 score, despite the fact
that LB3 does take into account singleton clusters
when scoring, a property that it inherits from B3.
The reason is that regardless of whatwsing is, if
a mentionm is correctly classified as a singleton
mention, both ofR(m) andP (m) will be 1, other-
wise, both will be 0 (see formula (5)). Note, how-
ever, that there is a difference between LB3 and
B3: for an erroneously identified singleton cluster
containing mentionm, LB3 setsP (m) to 0 while
B3 setsP (m) to 1. In other words, LB3 puts a
higher penalty on precision given erroneous sin-
gleton clusters. This difference causes LB3 and B3

to evaluate responses (a) and (e) differently. Recall
that responses (a) and (e) are quite different: re-
sponse (e) correctly finds informative antecedents
for m1

b , m1
c , m2

e, m2
f andm3

o, whereas response (a)

contains many erroneous singleton clusters. De-
spite the large differences in these responses, B3

only gives 0.7% more points to response (e) than
response (a). On the other hand, LB3 assigns a
much lower score to response (a) owing to the nu-
merous erroneous singleton clusters it contains.

The third graph of Figure 3 shows the LCEAFm

and CEAFm F-scores. Since LCEAFm uses both
singleton and non-singleton clusters when com-
puting the optimal alignment, it should not be
surprising that as we increasewsing, the sin-
gleton clusters will play a more important role
in the LCEAFm score. Consider, for example,
LCEAFm(W1). Sincewsing = 0, LCEAFm(W1)
ignores the correct identification of singleton clus-
ters. From the graph, we see that LCEAFm(W1)
gives a higher score to response (a) than response
(e). This is understandable: response (a) is not
penalized for the many erroneous singleton clus-
ters it contains; on the other hand, response (e)
is penalized for the erroneous coreference links
it introduces. Now, consider LCEAF(W3), where
wsing = 1. Here, response (e) is assigned a higher
score by LCEAF(W3) than response (a): response
(a) is heavily penalized because of the many erro-
neous clusters it contains.

The rightmost graph of Figure 3 shows the
LCEAFe and CEAFe F-scores. Like LB3,
LCEAFe returns the same score when it is used
in combination withW1, W2 andW3, because the
φ4 similarity function returns 0 or 1 when the key
cluster or the system cluster it is applied to is a
singleton cluster, regardless of the value ofwsing.
In addition, we can see that LCEAFe penalizes er-
roneous singleton clusters more than CEAFe does



ch- MUC LMUC B3 LB3 CEAFm LCEAFm CEAFe LCEAFe

ains R P F R P F R P F R P F R P F R P F R P F R P F
(a) 58.3 100 73.7 50.7 58.6 54.4 64.3 100 78.3 39.2 70.0 50.2 75.0 75.0 75.0 50.7 58.6 54.4 91.1 56.1 69.4 73.8 45.4 56.2
(b) 66.7 100 80.0 53.7 64.3 58.5 71.3 100 83.3 43.1 75.0 54.7 80.0 80.0 80.0 53.7 64.3 58.5 91.9 61.3 73.6 74.5 49.7 59.6
(c) 66.7 100 80.0 64.2 68.3 66.2 71.3 100 83.3 50.8 75.0 60.6 80.0 80.0 80.0 64.2 68.3 66.2 91.9 61.3 73.6 76.7 51.1 61.4
(d) 66.7 100 80.0 74.6 71.4 73.0 71.3 100 83.3 58.6 75.0 65.8 80.0 80.0 80.0 74.6 71.4 73.0 91.9 61.3 73.6 78.4 52.3 62.8
(e) 91.7 91.7 91.7 76.1 92.7 83.6 79.0 79.0 79.0 65.0 72.5 68.5 70.0 70.0 70.0 58.2 70.9 63.9 86.5 86.5 86.5 85.8 85.8 85.8

Table 1: Comparison of theLMetrics(W4) scores and theOMetricsscores.

for the same reason that LB3 penalizes erroneous
singleton clusters more than B3 does.

In sum, the value ofwsing does not impact LB3

and LCEAFe. On the other hand, LMUC and
LCEAFm pay more attention to singleton clusters
aswsing increases.

4.3 Impact of wnam, wnom and wpro

When we were analyzing theLMetrics in the pre-
vious subsection, by settingwnam, wnom, and
wpro to the same value, we were not exploiting
their capability to be linguistically aware. In this
subsection, we investigate the impact of linguis-
tic awareness usingW4 and W5, which employ
different values for the three weights.9 To better
understand the differences in recall and precision
scores for each of the five system responses, we
show these scores as computed by theLMetrics
when they are used in combination withW4.

First, consider response (a). As we can see from
Figure 3 and the first row of Table 1, theOMetrics
give decent scores to this output. Linguistically
speaking, however, the system should be penal-
ized more. The reason is that its output contributes
little to understanding the document: in response
(a), only the links between thePRONOUN men-
tions are established, and none of thePRONOUN

or NOMINAL mentions is linked to a more infor-
mative mention that would enable the underlying
entity to be inferred.

As expected,LMetrics(W4) andLMetrics(W5)
assign much lower scores to response (a) than the
OMetrics, owing to a relatively small value of
wpro. Also, we see that theLMetrics(W5) scores
are even lower than theLMetrics(W4) scores. This
suggests that the smaller the values ofwpro and
wnom are, the more heavily a resolver will be pe-
nalized for its failure to link a mention to a more
informative coreferent mention.

Next, consider responses (b), (c) and (d). As the

9Like W3, we setwsing to 1 inW4 andW5, because this
assignment makes CEAFm(W3) rank response (e) above re-
sponse (a), which we think is reasonable.

OMetrics ignore the type of mentions while scor-
ing, they are unable to distinguish the differences
among these three system responses: theOMet-
rics results in Figure 3 and their results in rows 2, 3
and 4 of Table 1 show that the scores for responses
(b), (c) and (d) are identical. Linguistically speak-
ing, however, they should not be. Response (d)
contributes the most to document understanding,
because the presence ofNAME mentionm2

d in its
output enables one to infer the entity (Jerusalem)
to which the mentions inSyou refer. In contrast,
although response (b) correctly linksSyou to PRO-
NOUN mentionm2

f , one cannot infer the entity to
which the mentions inSyou refer. The contribution
of response (c) is in-between, because viam2

e, we
at least know that the mentions inSyou point to
one city, although we do not know whichcity it
is. Such differences in responses (b), (c) and (d)
are captured byLMetrics(W4) andLMetrics(W5).
Specifically, theLMetrics scores for response (d)
are higher than those for response (c), which in
turn are higher than those for response (b).

It is worth noting that the performance gaps be-
tween responses (b) and (c) and between responses
(c) and (d) are larger underLMetrics(W5) than
underLMetrics(W4). This is becausewnom and
wpro in W5 are comparatively smaller. These re-
sults enable us to conclude that as the difference
in the three edge weights becomes larger, the per-
formance gap between a less informative resolver
and a more informative resolver according to the
LMetricswidens.

5 Conclusion

We addressed the problem of linguistic agnos-
ticity in existing coreference evaluation metrics
by proposing a framework that enables linguistic
awareness to be incorporated into these metrics.
While our experiments were performed on gold
mentions, it is important to note that our linguisti-
cally aware metrics can be readily combined with,
for example, Cai and Strube’s (2010) method, so
that they can be applied to system mentions.
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