
Unsupervised morphological parsing of Bengali

Sajib Dasgupta · Vincent Ng

© Springer Science+Business Media B.V. 2007

Abstract Unsupervised morphological analysis is the task of segmenting words

into prefixes, suffixes and stems without prior knowledge of language-specific

morphotactics and morpho-phonological rules. This paper introduces a simple, yet

highly effective algorithm for unsupervised morphological learning for Bengali, an

Indo–Aryan language that is highly inflectional in nature. When evaluated on a set

of 4,110 human-segmented Bengali words, our algorithm achieves an F-score of

83%, substantially outperforming Linguistica, one of the most widely-used unsu-

pervised morphological parsers, by about 23%.

Keywords Morphological parsing · Word segmentation · Data annotation ·

Unsupervised learning · Asian language processing · Bengali

1 Introduction

While research in Asian language processing has gained a lot of momentum in the

past decade, much of this research effort has indeed been focusing on only a handful

of oriental languages such as Chinese, Korean, and Japanese. On the other hand,

being spoken by more than 200 million people residing mostly in Bangladesh and

the Indian state of West Bengal, Bengali is far less computerized than any of these

oriental languages. However, with the rapid increase in the amount of Bengali data

S. Dasgupta (&) · V. Ng

Human Language Technology Research Institute, University of Texas at Dallas,

Richardson, TX 75083, USA

e-mail: sajib@hlt.utdallas.edu

V. Ng

e-mail: vince@hlt.utdallas.edu

123

Lang Resources & Evaluation

DOI 10.1007/s10579-007-9031-y

available in electronic form, there is a practical need for developing automatic tools

for processing Bengali.

Bengali, a member of the Indo–Aryan language family, has several linguistic

characteristics that can potentially complicate its automatic processing. First, the

Bengali morphology is very productive, especially for verbs, with each root verb

taking more than 50 different forms. In addition, the Bengali lexicon contains a

large number of compound words, i.e., words that have more than one root, which

can be created from almost any combination of nouns, pronouns and adjectives. The

large vocabulary as a result of its morphological richness makes it difficult to

manually construct a Bengali lexicon. Second, Bengali is more or less free word

order (even though subject–object–verb is the typical word order), thus making its

syntactic analysis potentially more difficult than that for fixed order languages such

as English. Finally, the fact that all Bengali letters have only one case complicates

the detection of proper nouns in Bengali than in languages with both upper and

lower case letters.

This paper addresses a fundamental problem in Bengali language processing:

morphological parsing (also known as word segmentation). The goal of morpholog-

ical parsing is to segment a given word into the smallest meaning-bearing elements

known as morphemes. For instance, the English word “unforgettable” can be divided
into three morphemes: “un”, “forget”, and “able”, whereas the Bengali word

“অন৷ধুনিকতার” (anAdhUnIkTAr)1 can be divided into “an” (Prefix), “AdhUnIk”

(Root), “TA” (Suffix), and “r” (Inflection). While computational morphology has

been extensively studied for many European languages, this has not been the case for

Bengali.

Our goal in this paper is to investigate an unsupervised approach to Bengali

morphological parsing, which, to our knowledge, represents the first attempt at

applying unsupervised learning to this Bengali language processing problem.

Unsupervised morphological parsing is typically composed of two steps: (1) a

morpheme induction step in which morphemes are first automatically acquired from

a vocabulary consisting of words taken from a large, unannotated corpus, and (2) a

segmentation step in which a given word is segmented based on these induced

morphemes. The biggest challenge in unsupervised morphological parsing, then, lies

in the ability to induce morphemes correctly without prior knowledge of language-

specific morphotactics and morpho-phonological rules. It is worth noticing, though,

that unsupervised morphological parsing has achieved considerable success for many

European languages (e.g., Goldsmith 2001; Schone and Jurafsky 2001; Creutz 2003;

Freitag 2005; Cavar et al 2006). For instance, Schone and Jurafsky report F-scores of

88%, 92%, and 86% onEnglish, German, andDutch word segmentation, respectively.

Nevertheless, empirical evaluations in the recent PASCAL Challenge, Unsupervised
Segmentation of Words into Morphemes,2 reveal that the success of unsupervised

word segmentation algorithms does not carry over to agglutinative languages such as

1 Throughout this paper, we use the Romanized transliteration for Bengali, which is almost phonetic. For

example, ‘অ’ is ‘a’, ‘আ’ is ‘@’, ‘া’ is ‘A’, ‘ক’ is ‘k’, ‘ট’ is ‘t’, ‘ত’ is ‘T’, ‘ঠ’ is ‘th’, etc. We have used ‘�’

for Halant in Bengali. Our transliteration mapping table is shown in our data distribution site at http://

www.utdallas.edu/�sajib/dataset.html
2 See http://www.cis.hut.fi/morphochallenge2005/

S. Dasgupta, V. Ng

123

Finnish and Turkish,3 both of which have presented significant challenges to word

segmentation researchers because of their morphological richness. Being highly

inflectional in nature, Bengali is expected to offer similar challenges to researchers as

Finnish and Turkish.

Not only is Bengali morphological parsing a challenging research problem, its

solution is of practical significance. As Pushpak Bhattacharyya argues in the

COLING/ACL 2006 Asian Language Processing panel discussion, the availability

of an accurate word segmentation algorithm for morphologically rich languages

could substantially reduce the amount of annotated data needed to construct

practical language processing tools such as part-of-speech taggers for these

languages. Since Bengali, like the majority of Indo–Aryan languages, is morpho-

logically rich and yet resource-scarce, Bhattacharyya’s observation suggests that our

progress in Bengali morphological parsing can potentially accelerate the develop-

ment of automatic tools for analyzing Bengali and other Indo–Aryan languages in

the absence of large annotated corpora.

The major contribution of this paper is the introduction of a morphological parser

for Bengali. Specifically, our parser extends Keshava and Pitler’s (2006) algorithm,4

the best performer for English in the aforementioned PASCAL Challenge, with

three new techniques (see Sects. 4–6) that focus on improving the segmentation of

regular words.5 The key features of our algorithm are:

The algorithm is totally unsupervised: As mentioned above, there have been very

few attempts at tackling the Bengali morphological parsing problem (e.g.,

Chaudhuri et al. 1997; Bhattacharya et al. 2005; Dasgupta and Khan 2004; Dash

2006), all of which have adopted knowledge-based approaches. These approaches

operate by segmenting a word using manually-designed heuristics, which require a

lot of linguistic expertise and are also time-consuming to construct. Worse still,

these heuristics are typically language-specific, implying that a new set of heuristics

has to be designed for each new language encountered. On the other hand, our

algorithm is unsupervised, relying solely on language-independent techniques for

morpheme induction. To our knowledge, we are the first to apply unsupervised

learning to morphological parsing of an Indo–Aryan language.

The algorithm can segment words with multiple roots:Many existing segmentation

algorithms can only be applied to words with one root and one suffix (e.g., DéJean

1998; Snover and Brent 2001). Goldsmith (2001) relaxes this severe limitation by

allowing words with multiple affixes to be segmented correctly. Creutz (2003) moves

one step further by enabling the segmentation of words with multiple roots, thus

facilitating morphological parsing of agglutinative languages. Our algorithm, like

Creutz’s, is capable of segmenting words with multiple prefixes, suffixes and roots, as

a Bengali word can be composed of a lengthy sequence of alternating roots and

affixes.

3 A word in an agglutinative language is composed of a linear sequence of distinct morphemes.
4 Keshava and Pilter’s algorithm has been applied to English, Finnish, and Turkish only.
5 Our morphological parser does not handle the segmentation of words that show orthographic character

changes during attachment with other morphemes. Nevertheless, since less than 4% of our test cases

correspond to words in this category, not handling them will unlikely lead to a dramatic degradation of

system performance.

Unsupervised morphological parsing of Bengali

123

The algorithm identifies inappropriate morpheme attachments: Many existing

morphological parsers erroneously segment “ally” as “all + y”, because they fail to

identify that the morpheme “y” should not attach to the word “all”. Schone and

Jurafsky (2001) represents one of the very few attempts at addressing this

inappropriate morpheme attachment problem. Specifically, they introduce a method

that exploits the semantic relatedness between word pairs to judge whether the

attachment of a morpheme to a root is valid, and show that identifying inappropriate

attachments can substantially improve performance. On the other hand, we propose

in this paper a novel use of relative frequency distribution to solve the attachment

problem. Whereas Schone and Jurafsky’s method relies on complex co-occurrence

statistics for calculating semantic relatedness, our system, which just uses word

frequency, is shown to be effective in improving segmentation performance and is

arguably much simpler.

When evaluated on a set of 4,110 hand-segmented Bengali words chosen randomly

from a news corpus, our segmentation algorithm achieves an F-score of 83%,

substantially outperforming Linguistica (Goldsmith 2001), one of the most widely-

used unsupervised morphological parsers, by about 23% in F-score. Unlike ours, none

of the existing Bengali morphological parsers has been evaluated empirically,

presumably due to the lack of annotated datasets. In fact, the lack of annotated datasets

has been amajor obstacle to the computerization of resource-scarce languages such as

Bengali. Hence, we believe that our dataset would be a valuable addition to the list of

resources publicly available for Bengali language processing,6 facilitating compar-

ative evaluation of different Bengali word segmentation algorithms.

The rest of this paper is organized as follows. Section 2 presents related work on

unsupervised morphological parsing. In Sect. 3, we describe our basic algorithm for

inducing morphemes from our Bengali vocabulary. Sections 4–6 present three

extensions to this basic morpheme induction algorithm. In Sect. 7, we describe our

algorithm for segmenting a word in the test set using the automatically acquired

morphemes. We then evaluate the efficacy of our approach in Sect. 8 and conclude

with future work in Sect. 9.

2 Related work

As mentioned in the introduction, the problem of unsupervised and minimally

supervised morphological learning has been extensively studied for English and

many other European languages. In this section, we will give an overview of the

three major approaches to this problem.

One common approach to unsupervised morphological learning is to first identify

morpheme boundaries and then identify the morphemes. For instance, Harris (1955)

develops a strategy for identifying morpheme boundaries that checks whether the

number of different letters following a sequence of letters exceeds some given

threshold. Hafer and Weiss (1974) improve Harris’s algorithm by proposing 15

different heuristics that depend on successor and predecessor frequencies to identify

6 Our dataset is available at http://www.utdallas.edu/�sajib/dataset.html

S. Dasgupta, V. Ng

123

morpheme boundaries. Their best heuristic achieves a precision of 0.91 and recall of

0.61 on an English corpus of approximately 6,200 word types, which is very small

compared to the number of word types typically seen in existing literature on

unsupervised morphological induction. DéJean (1998) improves Harris’s segmenta-

tion algorithm by first inducing a list of the 100 most frequent morphemes and then

using those morphemes for word segmentation. The aforementioned PASCAL

Challenge on Unsupervised Word Segmentation undoubtedly intensified interest in

this problem. Among the participating groups, Keshava and Pitler’s (2006)

segmentation algorithm combines the ideas of DéJean and Harris and achieves the

best result on the English dataset.

Another approach to unsupervised morphological learning is based on an

application of the Minimum Description Length (MDL) principle. The goal is to

find a set of morphemes such that when each word in a given corpus is segmented

according to these morphemes, the total length of an encoding of the corpus is

minimized. Specifically, the Expectation Maximization (EM) algorithm is used to

iteratively segment a list of words taken from a given corpus using some predefined

heuristics until the length of the morphological grammar converges to a minimum.

Brent et al. (1995) introduce an information-theoretic notion of compression to

represent the MDL framework, although the overall aim of their work is to find an

appropriate set of suffixes from a corpus rather than the correct morphological

analysis of each word. They use the n most common words in the Wall Street

Journal corpus of the Penn Treebank to induce the suffix list, where n ranges from

500 to 8,000. Brent (1999) and Snover and Brent (2001) later propose a Bayesian

Model for MDL that yields very few false suffixes over a wide range of input sizes

in English and French. Goldsmith (1997) tries to find the segmentation point of a

word based on the probability and length of the hypothesized stems and affixes. In a

subsequent paper, Goldsmith (2001) adopts the MDL approach and provides a new

information-theoretic compression system that gives a measure of the length of the

morphological grammar. He applies his algorithm to English and French and reports

accuracies of 82.9% and 83.3% respectively. He also groups together the possible

suffixes for each stem, and introduces the signature paradigm that is helpful for

determining syntactic word classes (i.e., part-of-speech classes). Motivated by

Goldsmith, Creutz (2003) and Creutz and Lagus (2005) propose a probabilistic

maximum a posteriori formulation that uses prior distributions of morpheme length

and frequency to measure the goodness of an induced morpheme. They work on

English and Finnish (a highly agglutinative language) and report better accuracy

than Goldsmith’s Linguistica morphological parser.

The last approach, introduced by Freitag (2005), first automatically clusters the

words using local co-occurrence information and then induces the suffixes according

to the orthographic dissimilarity between the words in different clusters. His

segmentation algorithmachieves a high precision (0.95)whenmorphemes are induced

from an English vocabulary that consists of the 10 K most frequent terms in the Wall

Street Journal corpus of the Penn Treebank. He also makes the interesting observation

that employing a larger vocabulary size (say 20 K) for morpheme induction

considerably degrades system precision and recall (0.8 and 0.82, respectively).

Unsupervised morphological parsing of Bengali

123

3 The basic morpheme induction algorithm

Asmentioned in the introduction, our unsupervisedmorphological parser is composed

of two steps: (1) inducing prefixes, suffixes and roots from a vocabulary consisting of

words taken from a large, unannotated corpus, and (2) segmenting a word based on

these induced morphemes. The biggest challenge in unsupervised morphological

learning lies in accurately performing step 1 (i.e., morpheme induction). This section

describes our morpheme induction method.

3.1 Extracting a list of candidate affixes

The first step of our morpheme induction method involves extracting a list of

candidate affixes. We rely on a fairly simple idea originally proposed by Keshava

and Pitler (2006) for extracting candidate prefixes and suffixes. Assume that A and

B are two character sequences and AB is the concatenation of A and B. If AB and A

are both found in the vocabulary, then we extract B as a candidate suffix. Similarly,

if AB and B are both found in the vocabulary, then we extract A as a candidate

prefix. Following previous work (e.g., Goldsmith 2001; Schone and Jurafsky 2001),

we represent the vocabulary using the Trie data structure to allow efficient

extraction of affixes.

3.2 Ranking the candidate affixes

The above affix induction method is arguably overly simplistic, and therefore can

generate many spurious affixes. To exemplify, consider the English word pair:

“diverge” and “diver”. From this word pair, our algorithmwould induce the candidate

suffix “ge”, which, however, is erroneous. The same problem occurs for Bengali. For

example, our algorithm would induce from the word pair [“জালেম” (JAlEm), “জাল”
(JAl)] the candidate suffix “েম” (Em), which again is an erroneous suffix. To address

this problem, we examine in the rest of this subsection two scoring metrics to score

each affix, with the goal of assigning low scores to spurious affixes and subsequently

removing them from our list of induced affixes.

Metric 1: Counting the number of word types to which each induced affix
attaches. In this metric, we set the score of an affix to be the number of word types

to which it attaches in the vocabulary. To understand the rationale behind this

metric, consider the two suffixes in Bengali: “ের” (Er) and “েম” (Em). “Er” attaches

to 9817 word types in our corpus, whereas “Em” attaches to only 23. This indicates

that “Er” is a good affix and “Em” is not.

Metric 2: Incorporating the generative strength. By counting the number of word

types to which an affix attaches, metric 1 essentially places the same weight on each

word when scoring an affix. However, some words are “better” than the others for

morpheme induction (e.g., words to which many different affixes attach), and hence

a good word should be given a high weight. Specifically, we assign to each word a

weight based on its generative strength (i.e., how many distinct induced affixes

S. Dasgupta, V. Ng

123

attach to the word). Given this notion of word strength, in metric 2 we set the score

of an affix to be the sum of the strengths of the words to which it attaches.

To see why it makes sense to assign weights based on word strength, consider the

following words in English: “scholarship”, “scholars”, “championship”, “champi-

ons”. From these words, our basic morpheme induction algorithm will infer that

“hip” is a suffix. However, if we examine the words to which “hip” attaches (e.g.,

“scholars” and “champions”), we can see that none of them has generative strength

(i.e., no other suffixes attach to these words). Hence, this scoring metric will assign

a low score to “hip”, which is what we desire. As another example, consider the

Bengali words: “কলেজ” (klEj), “কলে” (klE), “লাগেজ” (lAgEj), “লাগে” (lAgE),

“আজিজ” (ajIj), “আজি”(ajI), “ াউজ”(hAuj), and “ াউ”(hAu). From these words, our

algorithm would induce “j” as a candidate suffix. However, since “klE”, “lAgE”,

“ajI”, and “hAu” lack generative strength, the scoring metric will assign a lower

score to the candidate suffix “j”, which is again what we desire.

Neither of the above metrics takes into account an important factor when scoring

an induced affix: the length of the affix. As Goldsmith (2001) points out, among the

induced affixes, the short ones (especially the single character affixes) are more

likely to be spurious than the long ones. This is due to the fact that among different

words it is easier to get one character difference at the word boundary than two or

three character difference. To address this problem, Goldsmith suggests that a

higher weight should be placed on longer affixes. Hence, we modify each of the

scoring metrics above by multiplying the score of an affix with the length of the

affix. In other words, for the first scoring metric, the score of an affix m is now

computed as

scoreðmÞ ¼ lengthðmÞ � ðNumber of different words to which m attachesÞ
and for the second scoring metric, the score of an affix m is computed as

scoreðmÞ ¼ lengthðmÞ �
X

w

strengthðwÞ

where w is a word to which m attaches, and strength(w) is the strength of w.
To investigate which of these two scoring metrics is better, we employ them

separately to score the induced affixes. The top-scoring prefixes and suffixes

according to metric 1 are shown on the left half of Table 1. All the affixes in both

the prefix list and the suffix list are correct, and in fact they represent the most

commonly used affixes in Bengali.

Next, we examine the top-scoring prefixes and suffixes according to metric 2

(shown in the right half of Table 1). After incorporating generative strength,we can see

that the suffix list does not change much, but surprisingly, all the top-scoring prefixes

are spurious. A closer examination of the affix lists also reveals that metric 1 is better

scoring metric than metric 2: 78% of the top 50 prefixes induced by metric 1 are

correct, whereas the corresponding accuracy for metric 2 is only 11%. To investigate

the reason, we examined the highest ranking prefix “পরিকল্পনা” (prIkl�pnA) and

discovered thatmany of thewords towhich “prIkl�pnA” attaches are actually suffixes

like “গুলে·া” (gUlO), “কারী” (kArII), “মতে·া” (mTO), “বিধ” (bID) and “ ীণ” (hIIN).

Unsupervised morphological parsing of Bengali

123

The problem here is thatmany suffixes inBengali are found in the corpus as a complete

meaning bearing entity, and so they work as a stem in a prefixed word. As a suffix

(working like a stem) generally has a high generative strength, the overall score

increases manifold and longer prefixes appear high in the list.

Hence, we conclude that metric 1 does a better job at scoring candidate affixes than

metric 2. Hence, in our basic morpheme induction algorithm, we will employmetric 1

to score each affix, and retain an induced affix in our list if and only if its score is greater

than some pre-defined threshold. Specifically, we employ a threshold of 60 and 40 for

prefixes and suffixes, respectively. These thresholds are determined based on a small

validation set consisting of 500 hand-segmented Bengali words that are randomly

chosen from our corpus.7

3.3 Extracting a list of candidate roots

After filtering the spurious affixes as described in the previous subsection, we

extract an initial list of candidate roots using the induced list of affixes as follows.

For each word, w, in the vocabulary, we check whether w can be segmented as r + s
or p + r, where p is an induced prefix, s is an induced suffix, and r is a word in the

vocabulary. If so, then w is not a root and so we do not add it to the root list;

otherwise, we add w to the root list. However, since Bengali words can contain

multiple roots, it is possible that after stripping off the induced affixes from a word,

we will end up with a string that is a concatenation of several roots. Hence, we make

Table 1 Top N-scoring affixes according to metric 1 (left) and metric 2 (right)

Top-scoring affixes according to metric 1 Top-scoring affixes according to metric 2

Prefix list Suffix list Prefix list Suffix list

Prefix Score Suffix Score Prefix Score Suffix Score

bi 1,054 Er 19,634 prIkl�pnA 23,048 Er 121,936

a 770 kE 13,456 kOm�pAnI 20,517 kE 113,584

p�rTI 664 r 12,747 p�rTIsh�thAn 20,240 Sh 73,184

mhA 651 O 8,213 nIr�bAcn 20,139 gUlO 65,200

p�r 640 I 7,872 S�tEdhIyAm 20,016 o 56,885

SU 636 Sh 6,502 p�rTIjOgITA 19,700 I 52,290

@ 626 E 6,218 p�rk�rIyA 19,635 gUlOr 52,165

bIs�b 580 dEr 5,874 SEn�cUrI 19,481 E 49,459

bA 544 TE 4,296 anUsh�thAn 18,711 r 48,305

sIk�shA 500 gUlO 3,440 Sid�Dan�T 18,613 tA 44,430

gN 496 rA 3,262 pAr�tnArsIp 18,080 tI 44,208

prI 486 tA 2,592 SmS�jA 17,700 dEr 43,626

7 We expect that larger thresholds are needed for languages that have a larger vocabulary (e.g., Turkish

and Finnish) because an affix is likely to be generated from a larger number of words.

S. Dasgupta, V. Ng

123

another pass over our initial list of roots to remove those strings that contain

multiple roots.

3.4 Extensions to the basic induction algorithm

So far, we have described our basic morpheme induction algorithm. For each of the

following three sections, wewill propose an extension to this basic induction algorithm.

Specifically, in Sect. 4, we will discuss an extension that involves employing a length-
dependent threshold. Sections 5 and 6 present our second extension (i.e., detecting
composite suffixes) and our third extension (i.e., improving root induction), respectively.

4 Employing a length-dependent threshold

Let us begin by motivating our first extension, length-dependent threshold. Recall
from Sect. 3.2 that, in our basic morpheme induction algorithm, we retain an

induced morpheme in our list if and only if its score is greater than some threshold.

However, instead of having the same threshold for all induced morphemes, we will

employ a varying threshold that depends on the length of a morpheme. In particular,

we use larger thresholds for shorter morphemes. The rationale is simple: since

shorter morphemes (especially those that are of length 1 and 2) are more likely to be

erroneous than their longer counterparts, it makes more sense to employ larger

thresholds for shorter morphemes. We set our length-dependent threshold as

follows:

Threshold for affix A ¼ m� C;

where C is a constant set to 40 for suffixes and 60 for prefixes as in Sect. 3.2

and m ¼ ð4� length(A)) if length(A)� 2

¼ 1 if length(A)[2

Wewill empirically investigate in Sect. 8whether employing this varying threshold

would yield better segmentation performance than employing a length-independent

threshold.

5 Detecting composite suffixes

Our second extension to the basic morpheme induction algorithm involves the

detection of composite suffixes. A composite suffix is a suffix formed by combining

multiple suffixes. For instance, “তাকে” (TAkE) is a composite suffix that comprises

“তা” (TA) and “কে” (kE) (like “ers” in English which is formed by “er” and “s”).

However, not all suffixes formed by combining multiple suffixes are composite. For

instance, “ের” (Er) is a non-composite suffix in Bengali, even though it comprises

the two simple suffixes “ে”(E) and “র”(r).

Unsupervised morphological parsing of Bengali

123

Our goal is to detect and remove composite suffixes from the list of morphemes

induced using our basic algorithm, because their presence can produce incorrect

segmentation of words. For example, if the composite suffix “TAkE” is present in

the induced morpheme list, then “ভদ্রতাকে” (vd�rTAkE) will be erroneously

segmented as “vd�r + TAkE” (note: the correct segmentation is “vd�r + TA + kE”).

The reason is that the presence of the composite suffix causes the segmentation

algorithm to believe that “TAkE” is a non-divisible unit, leading to under-

segmentation.

Now the question is: How to detect a composite suffix? Not all strings that can be

segmented into two suffixes are actually composite suffixes. As we have seen at the

beginning of this section, “Er”, “E” and “r” all are valid suffixes but “Er” is not a

composite suffix. Hence, we need a more sophisticated method for detecting

composite suffixes. Specifically, our method posits a suffix as a composite suffix if

both of the following criteria are satisfied.

Suffix strength: This criterion is motivated by the observation that, given a

composite suffix a formed by combining two suffixes a1 and a2, the strength of a
(i.e., the number of different words to which a attaches) should be smaller than the

minimum of the strength of a1 and the strength of a2. As an example, consider the

composite suffix “fullness” (“full” + “ness”) in English. The number of words to

which “full” or “ness” attaches is far greater than the number of words to which

“fullness” attaches in a naturally-occurring corpus. Consider the non-composite
Bengali suffix “Er”. It attaches to 9,817 word types in our corpus, but its component

suffix “E” only attaches to 6,218 words. Hence, this suffix violates the suffix

strength criterion and is correctly predicted to be non-composite. However, there are

suffixes like “AT” and “Ar” (see the right column of Table 2) that satisfy the suffix

strength criterion and yet are not composite. This illustrates why using suffix

strength alone is not sufficient for determining the compositeness of a suffix.

Word-level similarity: This criterion is motivated by the observation that, if a

composite suffix (AB) attaches to a word w, then it is highly likely that the first

component suffix A will also attach to w. In other words, AB and A should be

similar in terms of the words to which they attach. For example, if the composite

suffix “ers” attaches to an English word (e.g., “sing”), then its first component suffix

“er” should attach to the same word. This property does not hold for non-composite

suffixes, however. For instance, while the non-composite suffix “ent” attaches to

words such as “absorb”, its first component suffix “en” does not. Given this

observation, we can detect composite suffixes by first computing the similarity

between a suffix (AB) and its first component suffix (A) as follows:

SimilarityðAB;AÞ ¼ PðAjABÞ ¼ jW 0j
jW j

where |W¢| is the number of words to which both AB and A attach, and |W| is the

number of words to which AB attaches.

In other words, the similarity between the two suffixes, AB and A, is the

probability of seeing A conditioned on seeing AB. If this probability is greater than

some threshold (we set it to 0.6) and the first criterion (i.e., suffix strength) is

S. Dasgupta, V. Ng

123

satisfied, then we posit AB as a composite suffix. One advantage of the above

probabilistic metric is that it can potentially be used to select the best segmentation

of a word among multiple candidates. For example, “েরই” (Eri) is a composite suffix

that can be segmented as either “E + ri” (the incorrect segmentation) or “Er + i” (the

correct segmentation). Since the similarity between “Eri” and “Er” (0.979) is greater

than that between “Eri” and “E” (0.739), “Er + i” is more likely to be the correct

segmentation of “Eri”.

Most importantly, composite suffix detection has enabled us to segment many

Bengali verbs with complex morphology correctly. For example, the actual

segmentation of the verb “ ” (hAtCIlAm) is “hAt + CI + l + Am”, where

“hAt” is the root, “CI” is the tense (Continuous) marker, “l” is the time (Past) marker,

and “Am” is the person (first person) marker. Below we show how our algorithm

segments “hAtCIlAm” step by step:

hAtCIlAm ¼ hAtþ CIlAm

¼ hAtþ CIþ lAm [detection of composite suffix CIlAm]

¼ hAtþ CIþ lþ Am [detection of composite suffix lAm]

.

To investigate how reliable suffix strength and word-level similarity are with

respect to detecting composite suffixes, we (1) apply these two criteria to all the

suffixes that are concatenations of multiple suffixes, and (2) determine which are

composite suffixes and which are not. Results for a randomly selected set of suffixes

are shown in Table 2, where the left column lists the suffixes identified by our

Table 2 Examples of suffixes checked for compositeness

Suffixes determined to be composite Suffixes determined to be non-composite

Suffix Division Similarity Suffix Division Similarity

AkE (220) A (1,764) + kE (6,728) 0.954 AT (83) A (1,764) + T (340) 0.45

AnO (98) A (1,764) + nO (160) 0.70 Ar (854) A (1,764) + r (12,747) 0.57

Ei (1,274) E (6,218) + i (7,872) 0.96 IyE (116) I (1,246) + yE (325) 0.53

Eri (445) Er (9,817) + i (7,872) 0.979 TA (463) T (340) + A (1,764) 0.038

Tao (82) TA (463) + o (8213) 0.94 TE (2,148) T (340) + E (6,218) 0.057

T�bEr (45) T�b (62) + Er (9817) 0.91 Tm (85) T (1,246) + m (236) 0.023

dEri (107) dEr (1,958) + i (7,872) 0.95 Tr (54) T (346) + r (12,747) 0.07

krNE (27) krN (84) + E (6218) 0.77 kE (6,728) k (332) + E (6,218) 0.015

CEn (259) CE (335) + n (1,478) 0.83 nA (188) n (1,478) + A (1,764) 0.4

ECI (34) E (6,218) + CI (144) 0.97 Er (9,817) E (6,218) + r (12747) 0.43

bEn (94) bE (147) + n (1,478) 0.82 bE (55) b (156) + E (6218) 0.47

lAm (120) l (616) + Am (235) 0.85 bI (81) b (156) + I (1246) 0.45

lEn (233) l (616) + En (597) 0.86 c�CIl (22) c�CI (20) + l (616) 0.45

The strength of each suffix is parenthesized

Composite suffixes that are incorrectly identified as non-composite are boldfaced

Unsupervised morphological parsing of Bengali

123

criteria as composite, and the right column lists the suffixes that are identified as

non-composite.

Note that all the entries in the left column are indeed valid composite suffixes in

Bengali. In addition, all but the last three entries (“bE”, “bI” and “c�CIl”, which are

different tense markers in Bengali) in the right column are valid non-composite

suffixes. Failure to detect these three and similar tense markers has resulted in

incorrect segmentations of present or past continuous and future indefinite forms of

Bengali verbs. For example, the word “ াটবে” (“hAtbE”, future tense, third person

form of verb “hAt”) is under-segmented as “hAt + bE” (note: the correct segmentation

is “hAt + b + E”). The reason why the algorithm fails to detect “bE” as a composite

suffix is that there are not enough words in the vocabulary to which the suffix “b” (first

person, future indefinite tense form of a verb) attaches, and so the similarity value

between “bE” and “b” is low (0.47).

The question, then, is: Why are there not enough words in the vocabulary to

which the suffix “b” attaches? The reason can be attributed to the fact that “b” is a

first-person marker, but the Bengali corpus from which we extracted our vocabulary

is composed of news articles, which are normally written in “Third Person” form.

Unless we have a text collection with different verb forms (first, second and third

person variations), it would be very difficult to segment Bengali verbs correctly.

6 Improving root induction

Our third extension to the basic morpheme induction algorithm involves improving

the root induction method described in Sect. 3.3. One potential problem with this root

induction method is low recall: many words in the vocabulary that are roots are not

present in our induced root list. To see the reason, consider again the inductionmethod

applied to the English word “candidate”. Assuming, without loss of generality, that

“candidate” and “candid” are found in the vocabulary and “ate” is an induced suffix,

the root induction method will incorrectly segment “candidate” as “candid + ate”; as a

result, it does not consider “candidate” as a root. So, to improve the root induction

method, we should prevent the segmentation of words like “candidate”. Oneway to do

this is to determine that the attachment of the suffix “ate” to the root “candid” to form

“candidate” is incorrect.

Now, the question is: How can we determine whether morpheme attachment

(e.g., “ate”) relative to a particular root word (e.g., “candid”) is correct or not? In

this section, we propose a simple yet novel idea of using relative corpus frequency

to decide whether morpheme attachment to a particular root word is plausible or not.

Our idea is based on the following hypothesis: if a word, A, is a morphological

inflection or derivation of a word, B (i.e., A is formed by attaching an affix m to B),

then the frequency of A is likely to be less than that of B. In other words, we

hypothesize that the inflectional or derivational form of a root word occurs less

frequently in the corpus than the root word itself.8

8 Note that in many inflectional languages, the root form rarely stands alone, and so the morphologically

formed A is likely to be more frequent than its root form. However, from a computational perspective, it

is beneficial to exploit this hypothesis in our segmentation algorithm, as it applies to a fairly large

percentage of words.

S. Dasgupta, V. Ng

123

To obtain empirical support for our hypothesis, we show in Table 3 some

randomly chosen Bengali words with their word-root frequency ratios (WRFR),
each of which is obtained by dividing the frequency of a word by the frequency of

its root. The word-root pairs in the left side of the table are examples of correct

attachments, whereas those in the right side are not. Consider the word “নারী”
(nArII) in the right side of the table; the WRFR of “nArII” and “nAr” is 556, which

means the corpus frequency of “nArII” (1670) is far bigger than that of the

constituent stem “nAr” (3). Hence, our hypothesis correctly predicts that the suffix

“ী” (II) cannot attach to “nAr” to form “nArII”. Note that WRFR is less than 1 for all

the words in the left side of the table, whereas it is greater than 1 for all the words in

the right side of Table 3.

The question, then, is: To what extent does our hypothesis hold true? To investigate

this question, we selected 400 words from our vocabulary that can be segmented as

Prefix + Root or Root + Suffix and removed (1) proper nouns and (2) words whose

constituent root word is absent in the vocabulary thus lacking root frequency

information (e.g., “আসব”, @sb= “@s + b” but “@s” is not found in the vocabulary).

The final list contains 287 words. We then hand-segmented each of these words into

Prefix + Root or Root + Suffix, and computed the WRFR ratio for each word-root pair.

We found that the WRFR is less than one in 83.56% of the 257 words. This provides

reasonably strong evidence for our hypothesis that during attachment, the frequency of a

word is less than that of its constituent root word. Among the remaining 16.44% of the

words that violate our hypothesis, we found thatmany of them that should be segmented

asRoot + Suffix are verbal inflections. InBengali, inflected forms of the verb roots occur

more often in the corpus than the roots (e.g., “করে” (kre) occurs more often than “kr”).

This can be attributed to the grammatical rule that says that the main verb of a sentence

has to be inflected according to the subject in order to maintain sentence order.

Since we have shown that our hypothesis is correct to a fairly large extent, we can

now use relative frequency information to identify incorrect morpheme attachments

and improve root induction. Specifically, we incorporate relative frequency informa-

tion in our basic root inductionmethod as follows: For eachword,w, in our vocabulary,
we check (1)whetherw can be segmented into any of r+ sor p+ spattern, where p and s
are valid prefixes and suffixes respectively and r is anotherword in the vocabulary, and
(2) whether WRFR in between w and r is less than some predefined threshold (>1).

Table 3 Some word-root frequency ratios (WRFRs)

Examples of correct attachments Examples of incorrect attachments

Word Root WRFR Word Root WRFR

@SrEr (আসরের) @Sr 34/200 = 0.17 nArII (নারী) nAr 1,670/3 = 556

@bEgE (আবেগে) @bEg 28/71 = 0.39 JAbTIy (যাবতীয়) JAbT 198/3 = 66

jIIbnKE (জীবনকে) jIIbn 63/908 = 0.0693 KOlA (খে়াল৷) KOl 587/4 = 146.75

Apb�jy (অপব্যয়) b�jy 8/940 = 0.0085 jAmAyAT (জামায়াত) jAmAy 996/5 = 199.2

upjATi (উপজ৷তি) jATi 17/509 = 0.033 bAjAr (বাজার) bAj 1,093/3 = 364.3

p�rTIdIn (প্রতিদিন) dIn 728/6,932 = 0.105 jbAb (জবাব) jbA 813/3 = 271

Unsupervised morphological parsing of Bengali

123

If w satisfies both constraints, it means that w is segmentizable, and hence we do not
addw to the list of induced roots. Otherwise, we addw into the list of roots. TheWFFR

threshold is set differently for prefixes and suffixes. Specifically, we set the threshold

to be 2 for prefix attachment and 10 for suffix attachment. (Note, however, that the

result is not sensitive to small changes to these thresholds.) We employ a higher

threshold for suffixes than prefixes to account for the fact that inflectional words

(mainly verbal suffixations) normally occur more frequently than their corresponding

root forms.

7 Word segmentation

In Sect. 3–6, we described how we induce a good list of affixes and roots. After

inducing the morphemes, we can use them to segment a word in the test set into a

sequence of morphemes, m1 m2 ... mn, by adopting a generate-and-remove strategy,
as described below.

Given a word w in the test set, we (1) generate all possible segmentations of w
using only the induced affixes and roots, and then (2) apply a sequence of tests to

remove candidate segmentations until we are left with only one candidate, which

we take to be the final segmentation of w.
Our first test involves removing any candidate segmentation m1m2 ... mn that

violates any of the linguistic constraints below:

(1) At least one of m1, m2,..., mn is a root.

(2) For 1 � i < n, if mi is a prefix, then mi+1 must be a root or a prefix.

(3) For 1 < i � n, if mi is a suffix, then the mi-1 must be a root or a suffix.

(4) m1 can not be a suffix and mn can not be a prefix.

Next, we apply our second test, in which we retain only those candidate

segmentations that have the smallest number of morphemes. For example, if

“বালকগুলে·়া” (bAlkgUlO) has two candidate segmentations: “bAlk + gUlO” and

“bAl + k + gUlO”, then we select the first one to be the segmentation of w.
If more than one candidate segmentation still remains, we apply our third test to

remove any candidate c that satisfies one of the three cases below.

Case 1: There exists a root r in c such that r is immediately preceded by a prefix p
and immediately followed by a suffix s, but neither the substring pr nor the

substring rs is in our vocabulary.

Case 2: There exists a root r in c such that r is immediately preceded by a prefix p but
not immediately followed by a suffix, and the substring pr is not in our vocabulary.
Case 3: There exists a root r in c such that r is immediately followed by a suffix s
but not immediately preceded by a prefix, and the substring rs is not in our

vocabulary.

As an example of applying the third test described above, consider segmenting

the Bengali word “আরবিতে” (@rbITE). This word has two candidate segmentations

(“@rb + I + TE” and “@rb + IT + E”), both of which follow the Root + Suffix + Suffix

pattern. Since “@rbI” is in our vocabulary whereas “@rbIT” is not, we remove

S. Dasgupta, V. Ng

123

“@rb + IT + E” from our list of candidate segmentations (because the second case is

satisfied) but retain “@rb + I + TE” (because none of the three cases is satisfied).

If more than one candidate still remains, we score each remaining candidate

using the heuristic below, selecting the highest-scoring candidate to be the final

segmentation of w. Basically, we score each candidate segmentation by summing up

the strength of each morpheme in the segmentation, where (1) the strength of a

prefix/suffix is simply the number of word types in the vocabulary to which the

prefix/suffix attaches, multiplied by the length of the prefix/suffix, and (2) the

strength of a root is the number of distinct morphemes that attach to it, again

multiplied by the length of the root. For example, the word “আচরণে” (@crNE) has

two segmentation options: “@crN + E” and “@c + rNE”. The strengths of the

morphemes “@crN”, “E”, “@c” and “rNE” are 80, 5937, 26 and 33, respectively.

So we select “@crN + E” as the final segmentation, because it has the highest

strength (6,017=80 + 5,937).

8 Evaluation

In this section, we evaluate our morphological parsing algorithm.

8.1 Experimental setup

Vocabulary creation: The corpus from which we extract our vocabulary contains

one year of news articles taken from the Bengali newspaper Prothom Alo.
Specifically, we only use articles that are sports news or editorials, as well as those

that appear in the first page and the last page of the newspaper.9 We then pre-

process each of these articles by tokenizing it and removing punctuations and other

unwanted character sequences (such as “***”). The remaining words are then used

to create our vocabulary, which consists of 1,42,955 word types. Unlike

morphological analysis for many European languages, however, we do not take

the conventional step of removing proper nouns from our vocabulary, because we

do not have a name entity identifier for Bengali.

Test set preparation: To create our test set, we randomly choose 5,000 words

from our vocabulary that are at least 3-character long. We impose this length

restriction when selecting our test cases simply because words of length one or two

do not have any morphological segmentation in Bengali. We then manually remove

the proper nouns and words with spelling mistakes from the test set before giving it

to two of our linguists for hand-segmentation. In the absence of a complete

knowledge-based morphological parsing tool and a hand-tagged morphological

database for Bengali, our linguists had to depend on two Bengali dictionaries10 for

annotating our test cases.

9 These are the major sections of Prothom Alo. The remaining sections are relatively small and are

simply ignored.
10 The dictionaries are “বঙগীয় শব্দকে ·ায়” (Bangiya Sabdakosh) by হরিচরণ বণ্দ্যে·া াধ্য়ায় (Haricharan
Bandopaday) and “বাংলা একাডেমী ব্যব ারিক বাংলা অভিধান” (Bangla Academy Bebharic Bangla Avidan).

Unsupervised morphological parsing of Bengali

123

There is one caveat in our manual annotation procedure, however. Many Bengali

words are morphologically derived from Sanskrit roots.11 These words are very

difficult, if not impossible, for any morphological analyzer to segment correctly,

because the orthographic changes that take place during the segmentation process

are highly non-linear and complex in nature. One example of such word is “বিরুদ্ধ”
(bIrUd�D), whose actual segmentation is “বি+রুধ+ক্ত(ত)” (bI + rUD + k�T (T))—

which is tough to obtain. As a result, we instruct our linguists to simplify the

segmentation of these words so that the orthographic changes are within tractable

edit distance. Given this restriction, the Bengali word shown above (i.e., “বিরুদ্ধ”)
will simply be segmented as “বি+রুদ্ধ” (bI + rUd�D). However, if the meaning

derived from the segmented word differs from that of the original word, then we

simply treat the original word as a root (i.e., the word should not be segmented at

all). Words that fall within this category include “প্রধ৷ন” (p�rdhAn), “আবেদন”
(@bEdn), and “প্রতিবেদন” (p�rTIbEdn), for instance. After all the words have

been manually segmented, we remove those for which the two linguists produce

inconsistent segmentations. The resulting test set contains 4,110 words.

Evaluation metrics: We use two standard metrics—exact accuracy and F-score
—to evaluate the performance of our morphological parser on the test set. Exact

accuracy is the percentage of the words whose proposed segmentation (SP) is

identical to the correct segmentation (Sc). F-score is simply the harmonic mean of

recall and precision, as computed using the formulas below.

Precision ¼ ðHÞ=ðHþ IÞ
Recall ¼ ðHÞ=ðHþ DÞ

F-score ¼ ð2HÞ=ð2Hþ Iþ DÞ
where H is the number of Hits (i.e., correctly placed boundaries), and I, D represent

the number of morpheme boundaries needed to be inserted into and deleted from Sc,

respectively, to make it identical to Sp. For instance, comparing the incorrect

segmentation “un + fri + endly” against the correct segmentation “un + friend + ly”,

we obtain 1 Hit, 1 Insertion and 1 Deletion, thus yielding a F-score of 0.5 and an

exact accuracy of 0. Note that most previous work simply reports results in terms of

F-score, which is a less stringent evaluation metric than exact accuracy. However,

we believe that reporting results in terms of both metrics will give us a better picture

of the strengths and weaknesses of a morphological parser.

8.2 Results

The baseline system: Following Schone and Jurafsky (2001), we use Goldsmith’s

(2001) Linguistica12 as our baseline system for unsupervised morphological learning.

The first row of Table 4 shows the results of our baseline system on the test set when it

is trained on the Bengali corpus described in Sect. 8.1 (with all the training parameters

11 Sanskrit roots have compact orthography which is not morpho-phonologically transparent. That is, one

written unit does not necessarily correspond to one morpheme or syllable.
12 Linguistica is publicly available at http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/

S. Dasgupta, V. Ng

123

set to their default values). As we can see, the exact accuracy is about 36%. On the

other hand, the baseline achieves a decent F-score of 60.63%. This indicates that many

of the analyses returned by Linguistica are only partially correct rather than exactly

correct. A closer examination of Linguistica’s output reveals that it is particularly

weak at segmenting Bengali compound words and its complex verbal inflectional

system.

Our segmentation algorithm: Results of our segmentation algorithm are shown in

rows 2–5 of Table 4. Specifically, row 2 shows the results of our segmentation

algorithm when used in conjunction with the basic morpheme induction methods

described in Sects. 3.1–3.3. Rows 3–5 show the results when our techniques for

employing length-dependent thresholds, detecting composite suffixes, and improving

root induction are incorporated into the basic system one after the other. It is worth

mentioning that (1) our basic algorithm already outperforms the baseline system by a

widemargin in terms of both evaluationmetrics; and (2) while each of our additions to

the basic algorithm boosts system performance, composite suffix detection and

improved root induction contribute to performance improvements particularly

significantly. As we can see, the best segmentation performance is achieved when

all of our three additions are applied to the basic algorithm.13We also performed 5-fold

cross validation and found that each addition to the system improves performance

statistically significantly at p = 0.05.

8.3 Discussion and error analysis

As part of the analysis of our algorithm, we examine whether our morphological analyzer

can handle complicated test cases. We found that our system successfully segments

complex verbal inflections like “দুলিয়ে িল” (dUlIyECIl) as “dUl + IyE + CI + l”, and

multi-root words like “বিণে· ় াদনকেন্দ্রগুলে· ় াও” (bInOdnkEndRgUlOo) as

“bInOd + n + kEndR + gUlO + o”. Even more interestingly, it correctly parses

English words, which are widely used in the Sports section of the newspaper. For

example, words like “বলিং” (blIng) and “ফাইনালিস্ট”(FAinAlIS�t) are correctly

segmented as “bl + Ing” and “FAinAl + IS�t”, respectively. It isworthmentioning that

Table 4 Results. The best exact accuracy and F-score are highlighted.

System variations Exact accuracy (%) Precision (%) Recall (%) F-score (%)

Baseline 36.32 58.23 63.27 60.63

Basic induction 47.05 76.14 65.15 70.22

Length dependent thresholds 48.95 78.37 65.47 71.34

Detecting composite suffixes 58.66 79.44 82.1 80.75

Improving root induction 64.62 86.64 80.02 83.19

13 It may seem that our performance improvements over Linguistica have come from our fine-tuning the

thresholds. However, our system has achieved good performance on English, Turkish and Finnish using

almost the same set of thresholds. The only exception is the thresholds used for inducing affixes (see Sect. 3);

however, these thresholds can be set automatically depending on the vocabulary size of a language (see

Dasgupta and Ng (2007)).

Unsupervised morphological parsing of Bengali

123

the compounding nature of Bengali and the influence of foreign languages have

introduced into our repository a lot of new words, whose presence increases the

difficulty of the segmentation task. Nevertheless, our morphological parser manages

to stem those words correctly.

We also examined the words that were incorrectly segmented by our system. The

errors can be broadly divided into following categories:

(1) Verbal inflections: These constitute a large portion of the words incorrectly

segmented by our algorithm. There are two reasons for such errors. First, the root of

an incorrectly segmented verb is missing from the corpus. For instance, “উঠা”
(uthA) is incorrectly segmented because its root “উঠ” (uth) is not found in the

corpus. Second, the first and second person forms of verbs are often missing in the

corpus, as the newspaper articles from which our vocabulary is induced contain

mostly third person forms of verbs.

(2) Irregular words: When root words exhibit orthographic spelling changes

during attachment, our system fails to identify the roots. For example, “রিক্সার ী”
(rIk�sArhII) is not correctly segmented, because the root “আর ী” (@rhII) is

changed into “ার ী” (ArhII) during attachment.

(3) Incorrect attachments: Although we use relative frequency to detect incorrect

morpheme attachments, many incorrect prefixations and suffixations remain unde-

tected (e.g., “শিকল” (sIkl) is a root word but it is incorrectly parsed as “sIk + l”). This

suggests that we need a more sophisticated algorithm for incorrect morpheme

attachment detection.

(4) Unseen roots: Many words remain unsegmented because their constituent root

words are absent in the corpus. For example, the root “নেতৃ” (nETR) in “নেতৃত্ব”
(nETRT�b) is not found in our corpus.

9 Conclusions and future work

We have presented a new unsupervised algorithm for Bengali morphological parsing.

Our work distinguishes itself from previous algorithms for Bengali morphological

parsing in two important aspects. First, all previous algorithms adopt knowledge-

based approaches, thus requiring a lot of time and linguistic expertise to implement.

Second, none of them has been empirically evaluated, and hence it is unclear howwell

they perform. Despite its simplicity, our algorithm achieves very promising results:

when evaluated on a set of 4,110 human-segmented Bengali words, the algorithm

achieves an F-score of 83% and an exact accuracy of 66%, outperformingGoldsmith’s

Linguistica by 23% in F-score and 28% in exact accuracy. Analysis reveals that our

novel use of relative frequency information, togetherwith our technique for composite

suffix detection, have contributed to the superior performance of our algorithm.

In future work, we intend to improve our algorithm in a number of ways. First, we

will examine the problem of morphologically analyzing highly irregular word forms.

This involves automatically acquiring transformation rules that specify what

characters are inserted or deleted during the transformation, and is considered a

challenging problem even for morphologically impoverished languages such as

English (Yarowsky andWicentowski 2000). Second, we plan to employ automatically

S. Dasgupta, V. Ng

123

acquired information about the semantic relatedness between word pairs (see Schone

and Jurafsky 2001) to improve our incorrect attachment detection algorithm. Finally,

motivated by Singh et al.’s (2006)work onHindi, we plan to investigate how to build a

part-of-speech tagger for Bengali that exploits the morphological information

provided by our algorithm.

Bengali language processing is still in its infancy. Asmentioned in the introduction,

one major obstacle to the computerization of Bengali is the scarcity of annotated

corpora. As part of our commitment to developing high-performance tools and

algorithms for automatically analyzing Bengali, we intend to construct annotated

datasets for different Bengali language processing problems.With annotated data, we

hope to advance the state of the art in Bengali language processing by (1) enabling

empirical evaluations of Bengali language processing systems, and (2) tackling

problems inBengali language processing using corpus-based techniques, which are by

far the most successful techniques in natural language learning. Above all, we hope to

stimulate interest in the computerization of Bengali in the natural language processing

community.

References

Bhattacharya, S., Choudhury, M., Sarkar, S., & Basu, A. (2005). Inflectional morphology synthesis for

Bengali noun, pronoun and verb systems. In Proceedings of the national conference on computer
processing of Bangla (NCCPB 05), pp. 34–43.

Brent, M. R. (1999). An efficient, probabilistically sound algorithm for segmentation and word discovery.

Machine Learning, 34, 71–106.
Brent, M. R., Murthy, S. K., & Lundberg, A. (1995). Discovering morphemic suffixes: A case study in

minimum description length induction. In Proceedings of the fifth international workshop on
artificial intelligence and statistics.

Cavar, D., Rodriguez, P., & Schrementi, G. (2006). Unsupervised morphology induction for part-

of-speech-tagging. In Penn working papers in Linguistics: Proceedings of the 29th annual Penn
Linguistics colloquium, Vol. 12.1.

Chaudhuri, B. B., Dash, N. S., & Kundu, P. K. (1997). Computer parsing of Bangla verbs. In Linguistics
Today, 1(1), 64–86.

Creutz, M. (2003). Unsupervised segmentation of words using prior distributions of morph length and

frequency. In Proceedings of the 41st annual meeting of the ACL, pp. 280–287.
Creutz, M., & Lagus, K. (2005). Unsupervised morpheme segmentation and morphology induction from

text corpora using Morfessor 1.0. In Computer and information science, Report A81, Helsinki

University of Technology.

Dasgupta, S., & Khan, M. (2004). Feature unification for morphological parsing in Bangla. In

Proceedings of international conference on computer and information technology.
Dasgupta, S., & Ng, V. (2007). High-performance, language-independent morphological segmentation. In

NAACL-HLT 2007: Proceedings of the main conference, pp. 155–163.
Dash, N. S. (2006). The Morphodynamics of Bengali Compounds decomposing them for lexical

processing. Language in India (www.languageinindia.com), 6, 7.
DéJean, H. (1998). Morphemes as necessary concepts for structures: Discovery from untagged corpora. In

Workshop on paradigms and grounding in natural language learning, pp. 295–299.
Freitag, D. (2005). Morphology induction from term clusters. In Proceedings of the ninth conference on

computational natural language learning (CoNLL), pp. 128–135.

Goldsmith, J. (1997). Unsupervised learning of the morphology of a natural language. University of

Chicago. http://humanities.uchicago.edu/faculty/goldsmith.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language. Computational
Linguistics, 27(2), 153–198.

Unsupervised morphological parsing of Bengali

123

Hafer, M. A., & Wess, S. F. (1974). Word segmentation by letter successor varities. Information Storage
and Retrieval, 10, 371–385.

Harris, Z. (1955). From phoneme to morpheme. Language, 31(2), 190–222.
Keshava, S., & Pitler, E. (2006). A simpler, intuitive approach to morpheme induction. In PASCAL

challenge workshop on unsupervised segmentation of words into morphemes.
Schone, P., & Jurafsky, D. (2001). Knowledge-free induction of inflectional morphologies. In

Proceedings of the second meeting of the NAACL, pp. 183–191.
Singh, S., Gupta, K., Shrivastava, M., & Bhattacharyya, P. (2006). Morphological richness offsets

resource demand – experiences in constructing a POS tagger for Hindi. In Proceedings of the
COLING/ACL 2006 poster sessions, pp. 779–786.

Snover, M. G., & Brent, M. R. (2001). A Bayesian model for morpheme and paradigm identification. In

Proceedings of the 39th annual meeting of the ACL, pp. 482–490.
Yarowsky, D., & Wicentowski, R. (2000). Minimally supervised morphological analysis by multimodal

alignment. In Proceedings of the 38th annual meeting of the ACL, pp. 207–216.

S. Dasgupta, V. Ng

123

	Unsu�per�vised mor�pho�log�i�cal pars�ing of Ben�gali
	Abstract
	Intro�duc�tion
	Related work
	The basic mor�pheme induc�tion algo�rithm
	Extract�ing a list of can�di�date affixes
	Rank�ing the can�di�date affixes
	Extract�ing a list of can�di�date roots
	Exten�sions to the basic induc�tion algo�rithm

	Employ�ing a length-depen�dent thresh�old
	Detect�ing com�pos�ite suf�fixes
	Improv�ing root induc�tion
	Word seg�men�ta�tion
	Eval�u�a�tion
	Exper�i�men�tal setup
	Results
	Dis�cus�sion and error anal�y�sis

	Ref�er�ences

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

