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Abstract
This paper describes the design, implementation, and evaluation of SinoCoreferencer, a publicly-available end-to-end ACE-style
Chinese event coreference system that achieves state-of-the-art performance on the ACE 2005 corpus. SinoCoreferencer comprises eight
information extraction system components, including those for entity extraction, entity coreference resolution, and event extraction.
Its modular design makes it possible to run each component in a standalone manner, thus facilitating the development of high-level
Chinese natural language applications that make use of any of these core information extraction components. To our knowledge,
SinoCoreferencer is the first publicly-available Chinese event coreference resolution system.
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1. Introduction
Event coreference resolution is the task of determining
which event mentions in a text refer to the same real-world
event. Its well-known entity counterpart, entity coreference
resolution, is the task of determining which entity men-
tions in a text refer to the same real-world entity. While
entity coreference is considered one of the most difficult
tasks in natural language processing (NLP) (Mitkov et al.,
2001), event coreference is arguably even more challeng-
ing: an event coreference resolver is typically situated at
the end of the information extraction pipeline, assuming as
input the outputs produced by various text-processing com-
ponents. Compared to entity coreference, there is relatively
little work on event coreference. In fact, almost all recent
work on event coreference has reported results for English
(e.g., Humphreys et al. (1997), Chen et al. (2009), Be-
jan and Harabagiu (2010), Chen et al. (2010), Chen et al.
(2011), Lee et al. (2012)).
Our goal in this paper is to present the design and imple-
mentation of SinoCoreferencer, a publicly-available end-
to-end ACE-style Chinese event coreference system that
achieves state-of-the-art performance on the ACE 2005 cor-
pus. SinoCoreferencer comprises eight information extrac-
tion system components, including those for entity extrac-
tion, entity coreference resolution, and event extraction. Its
modular design makes it possible to run each component in
a standalone manner, thus facilitating the development of
high-level Chinese natural language applications that make
use of any of these core information extraction components.
To our knowledge, SinoCoreferencer is the first publicly-
available Chinese event coreference resolution system.1

2. Design and Implementation
This section describes the design and implementation of
SinoCoreferencer. SinoCoreferencer takes raw text as in-
put and first uses the Stanford CoreNLP tool2 to perform

1SinoCoreferencer can be downloaded from http://www.
hlt.utdallas.edu/~yzcchen/coref.

2http://nlp.stanford.edu/software/corenlp.shtml

various kinds of preprocessing, including sentence segmen-
tation, word tokenization, part-of-speech tagging and syn-
tactic parsing.
After preprocessing, the text then passes through the eight
components of SinoCoreferencer, which are shown in Fig-
ure 1. As we can see, the eight components can be roughly
divided into four subsystems, one for entity extraction, one
for entity coreference, one for event extraction, and one for
event coreference.
Also shown in the figure are the dependencies among the
components and subsystems. Roughly speaking, the Event
Coreference subsystem, which lies at the end of the infor-
mation extraction pipeline, relies on the outputs of the Event
Extraction subsystem and the Entity Coreference subsys-
tem, which in turn rely on the output of the Entity Extrac-
tion subsystem. Below we describe the components in each
subsystem in detail.

2.1. Entity Extraction Subsystem
The Entity Extraction subsystem consists of three compo-
nents, the Entity Mention Identification component (Com-
ponent 1), the Entity Typing and Subtyping component
(Component 2), and the Named Entity Recognition compo-
nent (Component 3). The outputs of these components will
subsequently be used by the Entity Coreference subsystem
and the Event Extraction subsystem, so they only have an
indirect influence on event coreference.

Component 1: Entity Mention Identification
This component extracts from raw text the entity mentions
and the candidate event arguments. Event arguments can be
entity mentions, time expressions, and value expressions.3
We recast the task of identifying entity mentions, time ex-
pressions, and value expressions as a sequence labeling
task, where we train one CRF (using the CRF++ software

3The ACE 2005 task definition is available from
http://http://www.itl.nist.gov/iad/mig/tests/ace/
2005/doc/ace05-evalplan.v2a.pdf.



Figure 1: The architecture of SinoCoreferencer.

package4) to extract each of these three types of candidate
event arguments. Specifically, we create one instance for
each character ci, assigning it a class label that indicates
whether it begins a candidate event argument, is inside an
argument or is outside an argument. So there are three
class labels in total. Below we describe the 25 features we
use to represent ci, which can be divided into three cate-
gories: lexical, wordlist-based, and grammatical. The num-
ber enclosed within the parentheses after each category is
the number of features in that category.
Lexical (12): Character unigrams (ci−3, ci−2, ci−1, ci,
ci+1, ci+2, ci+3), character bigrams (ci−1ci, cici+1), and
character trigrams (ci−2ci−1ci, ci−1cici+1, cici+1ci+2)
formed from characters in a window of five.
Wordlist-based (10): We employ 10 Chinese wordlists to
generate 10 features, each of which is computed based on
exactly one wordlist. The 10 wordlists consist of (a) Chi-
nese surnames; (b) famous GPE5 and location names (three
wordlists); (c) Chinese location suffixes; (d) Chinese GPE
suffixes; (e) famous international organization names; (f)
famous company names; (g) famous person names; and (h)
a list of pronouns. To create the wordlist-based features,
we first create n + 1 strings, each of which is of the form
sj = ci...ci+j , where 0 ≤ j ≤ n and n is the maximum
length of a string that can be found in the 10 wordlists. Then
we check whether any of these strings is in any of these
wordlists. The default feature value for all 10 wordlists is
O. If si appears in wordlist k, we (1) set k(ci), the feature
corresponding to wordlist k for ci, to B, and (2) set k(x) to
I, where x is a character in si that is not ci.
Grammatical (3): The part-of-speech tag of ci concate-
nated with either "B-" or "I-" to indicate whether ci is the

4http://code.google.com/p/crfpp/
5GPE (geo-political entity) is an entity type defined in ACE.

Examples of GPEs include country and city names.

Type SubTypes
Facility Airport, Building-Grounds, Path,

Plant, Subarea-Facility
Geo-
Political
Entity

Continent, County-or-District,
GPE-Cluster, Nation, Population-
Center, Special, State-or-Province

Location Address, Boundary, Celestial,
Land-Region-Natural, Region-
General, Region-International,
Water-Body

Organization Commercial, Educational, En-
tertainment, Government, Me-
dia, Medical-Science, Non-
Governmental, Religious, Sports

Person Group, Indeterminate, Individual
Vehicle Air, Land, Subarea-Vehicle, Under-

specified, Water
Weapon Biological, Blunt, Chemical, Ex-

ploding, Nuclear, Projectile, Sharp,
Shooting, Underspecified

Table 1: ACE 2005 entity types and subtypes.

first character of ci or not; whether ci is in a NP or not;
whether ci is part of a pronoun.

Component 2: Entity Typing and Subtyping
This component takes a set of entity mentions (provided by
Component 1) and determines the semantic type and sub-
type of each of them. Since we train this component on
the ACE 2005 training data, the entity types and subtypes it
produces are those defined in the ACE 2005 task definition.
The complete list of ACE 2005 entity types and subtypes
is shown in Table 1. As we can see, there are seven entity
types and 45 entity subtypes.
Knowing the semantic type and subtype of an argument is



helpful for classifying the role of event arguments. For ex-
ample, we can assign the role Victim only to those argu-
ments with entity type Person. To determine semantic
types and subtypes, we train two SVM multiclass classi-
fiers using SVMmulticlass (Tsochantaridis et al., 2004). We
create one training instance for each mention mk. Its class
label is either the semantic type or the semantic subtype of
mk, depending on which classifier we are training. We em-
ploy the same set of features for representing an instance
when training the two classifiers, as described below.

Lexical (6): mk 's head string; each character in mk 's
head; characters in a window of five surroundingmk 's head.

Wordlist-based (10): We employ the same 10 wordlists
that we used in the entity mention identification task to gen-
erate 10 features. Those 10 features indicate whether mk

appears in these 10 wordlists.

Semantic (1): The semantic category ofmk 's head, which
is extracted from a Chinese lexical database organized in a
similar way as the English WordNet.6

Component 3: Named Entity Recognition
We train our named entity tagger using the CRF++ software
package on the Chinese training data of the CoNLL-2012
shared task. The CoNLL-2012 data is annotated with 18
named entity types, as listed in the leftmost column of Ta-
ble 4.7

We recast named entity recognition as a sequence labeling
task. Specifically, we create one instance for each character
ci, assigning ci a class label that indicates whether it begins
a specific named entity (one of 18 labels), is inside a specific
named entity (one of 18 labels) or is outside a named entity
(1 label). So there are 37 class labels in total. Below we
describe the 18 features, which can be divided into three
categories: lexical, wordlist-based, and grammatical.

Lexical (12): Character unigrams (ci−3, ci−2, ci−1, ci,
ci+1, ci+2, ci+3), character bigrams (ci−1ci, cici+1), and
character trigrams (ci−2ci−1ci, ci−1cici+1, cici+1ci+2)
formed from characters in a window of seven.

Wordlist-based (3): Whether ci is in a Chinese surname
wordlist; whether ci is in a Chinese location suffix wordlist;
whether ci is in a Chinese GPE suffix wordlist.

Grammatical (3): The part-of-speech tag of ci concate-
nated with either "B-" or "I-" to indicate whether ci is the
first character of ci or not; whether ci is in a NP or not;
whether ci is inside part of a pronoun.

2.2. Entity Coreference Subsystem
The Entity Coreference subsystem has only one component
(Component 4).

6The dictionary is available from Harbin Institute of Technol-
ogy's NLP Group website.

7The reason why we train our named entity recognizer on the
CoNLL-2012 shared task data rather than the ACE 2005 data is
that the former contains more named entity annotations than the
latter.

Component 4: Entity Coreference
The Entity Coreference component creates a coreference
partition in which each cluster contains all and only those
entity mentions that refer to the same real-world entity.
Since two event mentions having coreferent arguments are
likely to be coreferent, the output of this component can be
used to create useful features for event coreference.
This component assumes as input a set of entity mentions
(identified by Component 1) for a document, and then gen-
erates features for these mentions from the syntactic parse
trees (provided by the Stanford CoreNLP tool) and the
named entities (provided by Component 3). The corefer-
ence resolution algorithm used by this component adopts a
sieve-based approach, as described in detail below.
The sieve-based approach to coreference resolution was
originally proposed by Raghunathan et al. (2010). Infor-
mally, sieve is composed of one or more heuristic rules.
Each rule extracts a coreference relation between two men-
tions based on one or more conditions. Sieves are ordered
by their precision, with the most precise sieve appearing
first. To resolve a set of mentions in a document, the re-
solver makes multiple passes over them: in the i-th pass, it
attempts to use only the rules in the i-th sieve to find an an-
tecedent for each mention mk. Specifically, when search-
ing for an antecedent for mk, its candidate antecedents are
visited in an order determined by their positions in the as-
sociated parse tree (Haghighi and Klein, 2009). The partial
clustering of the mentions created in the i-th pass is then
passed to the i+1-th pass. Hence, later passes can exploit
the information computed by previous passes, but a coref-
erence link established earlier cannot be overridden later.
For Chinese coreference resolution, we design nine sieves,
some of which are motivated by the sieves proposed by Lee
et al. (2011) for English coreference resolution. Below we
describe each of these sieves in detail.

1. Discourse Processing sieve: There are four scenarios
in which this sieve posits two mentions as coreferent.

• Two mentions are both first person pronouns and
have the same speaker.

• One mention is a first person pronoun in a dia-
logue, of which the other mention is the speaker.

• Two mentions are both second person pronouns
in two dialogues with the same speaker.

• One mention is a first person pronoun and the
other is a second person pronoun. Also, the
speaker of the first person pronoun should be the
same as the subsequent analogue's speaker of the
second person pronoun.

2. Exact Match sieve: This sieve posits two mentions
having exactly the same string as coreferent if they are
not pronouns.

3. Precise Constructs sieve: This sieve employs named
entity information. It handles specific cases of abbre-
viations for Chinese named entities: (a) Abbreviation
of foreign person names, e.g., 萨达姆·侯赛因 [Sad-
dam Hussein] and 萨达姆 [Saddam]. (b) Abbrevi-
ation of Chinese person names, e.g., 陈总统 [Chen



President] and 陈水扁总统 [Chen Shui-bian Presi-
dent]. (c) Abbreviation of country names, e.g, 多国
[Do country] and多米尼加 [Dominica].

4. Strict HeadMatch sieve A: Amentionmk and a can-
didate antecedent mj are posited as coreferent if they
satisfy all of the following conditions: (a) their head
nouns are the same; (b) all the non-stop words in mk

appears in at least one of the mentions in the same clus-
ter as mj ; (c) all the modifiers in mk appear in mj ,
including includes all adjective and nouns modifiers;
and (d) mk and mj are not in an i-within-i construct
(see Raghunathan et al. (2010)).

5. Strict Head Match sieve B: A relaxed version of the
Strict Head Match sieve A that posits two mentions
as coreferent as long as the aforementioned conditions
(a), (b) and (d) are satisfied.

6. Strict Head Match sieve C: Another relaxed version
of the Strict Head Match sieve A that posits two men-
tions as coreferent as long as the aforementioned con-
ditions (a), (c) and (d) are satisfied.

7. Proper Head Word Match sieve: This sieve re-
laxes Strict HeadMatch sieve A by deleting conditions
(b) and (c), but it requires that the two mentions' head
nouns are proper nouns and the two mentions cannot
have different location or number modifiers.

8. Pronouns sieve: The Pronouns sieve resolves a pro-
noun to the closest preceding mention whose gender,
number and person are compatible with those of the
pronoun.

9. Lexical Pair sieve: This sieve exploits lexical infor-
mation using a learning-based approach. Given a pair
of mentionsmj andmk in the test data, two probabili-
ties are computed based on the ACE training data: (1)
SP-Prob, the string-pair probability, which is the prob-
ability that two strings of two mentions are coreferent
in the training data; and (2) HP-Prob, the head-pair
probability, which is the probability that two heads of
two mentions are coreferent in the training data. These
two probabilities affect the whole system in two as-
pects. We set two thresholds, tSPL and tHPL. If SP-
Prob≤ tSPL or HP-Prob≤ tHPL, even when the pair
ofmj andmk satisfies the conditions specified in any
of the above sieves, our resolver will not posit them
as coreferent. We set two other thresholds, tSPU and
tHPU . If SP-Prob≥ tSPU or HP-Prob≥ tHPU , our
resolver will posit them as coreferent no matter what.
These four thresholds are tuned on development data.

2.3. Event Extraction Subsystem
The Event Extraction subsystem consists of three compo-
nents, the EventMention Identification and Subtyping com-
ponent (Component 5), the Event Mention Attribute Com-
putation component (Component 6), and the Event Argu-
ment and Role Identification component (Component 7).

Type SubTypes
Life Be-Born, Marry, Divorce, Injure,

Die
Movement Transport
Transaction Transfer-Ownership, Transfer-

Money
Business Start-Org, Merge-Org, Declare-

Bankruptcy, End-Org
Conflict Attack, Demonstrate
Contact Meet, Phone-Write
Personnel Start-Position, End-Position, Nom-

inate, Elect
Justice Arrest-Jail, Release-Parole, Trial-

Hearing, Charge-Indict, Sue, Con-
vict, Sentence, Fine, Execute, Ex-
tradite, Acquit, Appeal, Pardon

Table 2: ACE 2005 event types and subtypes.

Component 5: Event Mention Identification and
Subtyping
This component (1) provides the event mentions for event
coreference resolution, and (2) labels each event mention
with its subtype. Since we train this component on the ACE
2005 training data, the event subtypes it produces are those
that are defined in the ACE 2005 annotation guidelines. The
complete list of event subtypes is shown in Table 2. As we
can see, there are 33 event subtypes, which can be catego-
rized into eight broader event types.
Since two event mentions with different subtypes cannot be
coreferent, subtypes can be used to create useful features for
event coreference. To implement this component, we use
our Chinese event extraction system (Chen and Ng, 2012),
which jointly learns these tasks via training a classifier using
the SVMlight software package.

Component 6: Event Mention Attribute Value
Computation
This component takes as input a set of event mentions (pro-
vided by Component 5) and computes for each mention its
attributes, including its Polarity, Modality, Gener-
icity and Tense. Since two event mentions that differ
with respect to any of these attributes cannot be coreferent,
they can be used to create useful features for event corefer-
ence. Following Chen et al. (2009), we employ a classifier
trained on the ACE 2005 training data using maximum en-
tropy modeling8 to compute the value of each attribute of
each event mention (see Chen et al. for details on the imple-
mentation of these classifiers, including the features used to
train each classifier).

Component 7: Event Argument and Role Classification
This component takes as input a set of event mentions (pro-
vided by Component 5) and a set of candidate event argu-
ments (provided by Component 1). For each event mention
em, it (1) identifies those candidate arguments that are the
true arguments of em (e.g., the participants, time, and place

8We use the maximum entropy implementation available
at http://homepages.inf.ed.ac.uk/lzhang10/maxent_
toolkit.html.



Entity Typing Entity Subtyping
Input R P F R P F
Perfect 90.1 90.1 90.1 81.6 81.6 81.6
Predicted 80.5 77.6 79.0 73.1 70.4 71.7

Table 3: Entity typing and subtyping performance.

Type R P F
CARDINAL 55.8 54.3 55.0
DATE 76.8 77.1 76.9
EVENT 18.4 61.0 28.3
FAC 21.0 69.6 32.2
GPE 85.0 66.6 74.7
LANGUAGE 44.4 40.0 42.1
LAW 16.7 76.9 27.4
LOC 27.7 68.2 39.4
MONEY 91.9 75.6 82.9
NORP 28.8 66.7 40.2
ORDINAL 77.9 85.1 81.3
ORG 69.9 54.6 61.3
PERCENT 83.1 85.2 84.2
PERSON 77.5 69.9 73.5
PRODUCT 2.0 25.0 3.8
QUANTITY 61.5 79.1 69.2
TIME 62.1 85.7 72.0
WORK_OF_ART 19.5 60.4 29.4
Overall 62.9 70.3 66.4

Table 4: Named entity recognition performance.

of em), and then (2) assigns a role (e.g., Victim, Place,
Time-Within) to each of its true arguments. Since two
events involving different times, places, or participants can-
not be coreferent, the arguments and their roles can be used
to create useful features for event coreference. To imple-
ment this component, we use our Chinese event extraction
system (Chen and Ng, 2012), which jointly learns these two
tasks by training a classifier using the SVMlight software
package.

2.4. Event Coreference Subsystem
The Event Coreference subsystem has only one component
(Component 8).

Component 8: Event Coreference
Underlying our learning-based event coreference resolver is
a mention-pair model (Soon et al., 2001) trained using the
SVMlight software package. Training instances are created
as follows. For each anaphoric event mention em, we create
one positive instance between em and its closest antecedent.
To create negative instances, we pair em with each of its
preceding event mentions that is not coreferent with em.
Each instance is represented using 32 features, which are
modeled after a state-of-the-art English event coreference
resolver (Chen and Ji, 2009; Chen et al., 2009). The 32 fea-
tures can be divided into five groups, as discussed below.
For convenience, we use em2 to refer to an event mention
to be resolved and em1 to refer to one of its candidate an-
tecedents.

Group 1 (Event Type and Subtype features). The four
features in this group are provided by Component 5. These
features encode: whether em1 and em2 agree w.r.t. event
type; whether they agree w.r.t. event subtype; the concate-
nation of their event types; and the concatenation of their
event subtypes.
Group 2 (Event Mention Attribute features). The eight
features in this group are computed based on the output of
Component 6. These features encode: the four event men-
tion attributes of em2; and whether em1 and em2 are com-
patible w.r.t. each of the event mention attributes.
Group 3 (Event Argument Roles features). The four
features in this group are computed based on the output of
Component 7. These features encode: the roles and number
of the arguments that only appear in em1; and the roles and
number of the arguments that only appear in em2.
Group 4 (Entity Coreference features). The six features
in this group are computed based on the output of Com-
ponent 4. These features encode: the roles and number of
arguments between em1 and em2 that have the same role
and are also in the same entity coreference chain; the roles
and number of arguments between em1 and em2 that have
same role but are in different coreference chains; and the
roles and number of arguments between em1 and em2 that
have different roles but are in the same coreference chain.
Group 5 (Other features). The 10 features in this group
encode: the sentence distance between em1 and em2; the
number of event mentions intervening them in the associ-
ated text; the number of words between them; whether they
have the same trigger word; whether they are in a coordinat-
ing structure; whether they have same basic verb9; whether
they agree in number if they are nouns; whether they have
incompatible modifiers if they are nouns; the concatenation
of the part-of-speech tags of their heads; and the concatena-
tion of their trigger words.
After training, the resulting mention-pair model is used in
combination with a closest-first single-link clustering algo-
rithm to impose a coreference partition on the event men-
tions in a test text (Soon et al., 2001). The test instances are
created in the same way as the training instances.

3. Evaluation
Despite the fact that the focus of this paper is event coref-
erence, we will evaluate each of the eight components of
SinoCoreferencer in this section. As we mentioned in the
introduction, each of its components can be used in a stan-
dalone manner. Presenting the results of each component
will therefore give an end user of a particular component a
better idea of whether it is accurate enough to be used in her
application.

3.1. Experimental Setup
Corpus. Evaluations of all but the Named Entity Recog-
nition component will be performed on the Chinese portion
of the ACE 2005 training corpus10 using 5-fold cross vali-
dation. The ACE 2005 training corpus consists of 633 doc-
uments with 3,333 event mentions distributed over 2,521

9For example, the basic verb ofಲᆊ (go home) isಲ (go).
10The ACE 2005 test documents are not publicly available.



MUC B3 CEAFe Avg
Input R P F R P F R P F F
Perfect 71.5 85.8 78.0 67.4 88.0 76.4 69.4 48.8 57.3 70.6
Predicted 61.7 78.0 68.9 63.6 84.6 72.6 57.9 40.3 47.6 63.0

Table 5: Entity coreference performance.

Polarity Modality Genericity Tense
Input R P F R P F R P F R P F
Perfect 96.5 96.5 96.5 86.9 86.9 86.9 91.2 91.2 91.2 67.1 67.1 67.1
Predicted 57.9 68.8 62.9 51.8 61.6 56.2 54.7 65.0 59.4 33.8 40.2 36.7

Table 6: Event attribute classification performance.

MUC B3 CEAFe Avg
Input R P F R P F R P F F
Perfect 80.4 70.0 74.8 88.4 79.7 83.8 57.3 66.8 61.7 73.4
Predicted 37.4 36.7 37.1 72.8 71.1 71.9 40.6 41.1 40.8 49.9

Table 7: Event coreference performance.

Argument Role
Input R P F R P F
Perfect 68.9 87.1 76.9 61.1 77.2 68.2
Predicted 23.1 36.7 28.3 20.0 31.9 24.6

Table 8: Argument identification and role classification per-
formance.

event coreference chains and 34,319 entity mentions dis-
tributed over 15,413 entity coreference chains.
The performance of the named entity recognizer will be
measured on the CoNLL-2012 shared task corpus. Specifi-
cally, we train the recognizer on the CoNLL-2012 training
set and evaluate its performance on the CoNLL-2012 devel-
opment set.11 The CoNLL-2012 training set contains 1,391
documents with 62,543 named entities, while the develop-
ment set contains 172 documents with 9,104 named entities.
Evaluationmetrics. To evaluate entity and event corefer-
ence performance, we employ three commonly-used coref-
erence scoring measures, namelyMUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), and CEAFe (Luo, 2005).
Each of these evaluation measures reports results in terms
of recall (R), precision (P), and F-score (F). In addition, fol-
lowing the CoNLL-2012 shared task on unrestricted coref-
erence, we also report the unweighted average (Avg) of the
F-scores produced by these three metrics. To evaluate the
remaining components, we employ recall, precision, and F-
score computed in the standard manner.
Evaluation settings. We evaluate each component under
two settings, which differ in terms of whether the compo-
nent has access to perfect or predicted input. For exam-
ple, the input to the Entity Coreference component comes
from the Entity Mention Identification component and the
Named Entity Recognition component, so evaluating the
Entity Coreference component under the perfect (predicted)

11We do not use the CoNLL-2012 test set for evaluating the
named entity recognizer because the versionwe have does not con-
tain named entity annotations.

setting implies that it is given access to perfect (predicted)
information regarding entity mentions and named entities.
Comparing the results of these two settings enables us to get
a better idea of how much performance deterioration can be
attributed to noisy input.

3.2. Results
Next, we present the results of each of the eight components.
Component 1: Entity Mention Identification. Recall
that this component does not depend on any other compo-
nents. Its recall, precision, and F-score are 86.8%, 82.6%
and 84.7% respectively.
Component 2: Entity Typing and Subtyping. Results
of this component, which depends on Component 1, are
shown in Table 3. Given perfect input, its entity typing and
subtyping F-scores are 90.1% and 81.6% respectively. In
contrast, given predicted input, its entity typing and subtyp-
ing F-scores are 79.0% and 71.7% respectively.
Component 3: Named Entity Recognition. Recall that
this component does not depend on any other components.
Its overall and per-class results are shown in Table 4.
As we can see, it achieves an overall F-score of 66.4%.
Note that reasonably high F-scores are achieved for Per-
son, Gpe, Organization,Percent, Money, Quan-
tity and Cardinal.
Component 4: Entity Coreference. Results of this com-
ponent, which depends on Components 1 and 3, are shown
in Table 5. Given perfect input, it achieves an Avg F-score
of 70.6%. In contrast, given predicted input, it achieves an
Avg F-score of 63.0%.
Component 5: Event Mention Identification and Sub-
typing. This component does not dependent on any other
components. Our event mention identifier achieves scores
of 60.0% (R), 71.3% (P) and 65.1% (F), whereas our event
subtype classifier achieves scores of 56.4% (R), 67.1% (P)
and 61.30% (F).
Component 6: Event Mention Attribute Value Compu-
tation. Recall that we trained four classifiers to predict



the four attribute values of an event mention. Results of
these four classifiers are shown in Table 6. Given gold
event mentions, the Polarity,Modality, Genericity,
and Tense classifiers achieve F-scores of 96.5%, 86.9%,
91.2%, and 67.1% respectively. In contrast, given predicted
event mentions, the F-scores achieved by these four classi-
fiers are 62.9%, 56.2%, 59.4%, and 36.7% respectively.
Component 7: Event Argument and Role Classifica-
tion. Results of this component, which depends on Com-
ponents 1, 2, and 5, are shown in Table 8. Given perfect in-
put, the F-scores for argument identification and role classi-
fication are 76.9% and 68.2% respectively. Given predicted
input, the corresponding F-scores drop to 28.3% and 24.6%.
Component 8: Event Coreference. Results of this com-
ponent, which depends on Components 4, 5, 6, and 7, are
shown in Table 7. Given perfect input, the Avg F-score is
73.4%. In contrast, given predicted input, the Avg F-score
drops to 49.9%.

4. Conclusion
We described the design, implementation, and evaluation
of SinoCoreferencer, a publicly-available end-to-end ACE-
style Chinese event coreference system that achieved state-
of-the-art performance on the ACE 2005 corpus. To our
knowledge, SinoCoreferencer is the first publicly-available
Chinese event coreference resolver. We hope that its un-
derlying components can be profitably exploited to develop
high-level natural language applications for Chinese.
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