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Abstract

Multi-pass sieve approaches have been successfully applied to entity coreference resolution and many other tasks in natural language

processing (NLP), owing in part to the ease of designing high-precision rules for these tasks. However, the same is not true for event

coreference resolution: typically lying towards the end of the standard information extraction pipeline, an event coreference resolver

assumes as input the noisy outputs of its upstream components such as the trigger identification component and the entity coreference

resolution component. The difficulty in designing high-precision rules makes it challenging to successfully apply a multi-pass sieve

approach to event coreference resolution. In this paper, we investigate this challenge, proposing the first multi-pass sieve approach to

event coreference resolution. When evaluated on the version of the KBP 2015 corpus available to the participants of EN Task 2 (Event

Nugget Detection and Coreference), our approach achieves an Avg F-score of 40.32%, outperforming the best participating system by

0.67% in Avg F-score.
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1. Introduction

Within-document event coreference resolution is the task

of determining which event mentions in a text refer to the

same real-world event. Compared to entity coreference res-

olution, event coreference resolution is not only much less

studied, but it is arguably more challenging. The chal-

lenge stems in part from the fact that an event coreference

resolver typically lies towards the end of the standard in-

formation extraction pipeline, assuming as input the noisy

outputs of its upstream components. More specifically, an

event coreference resolver assumes as input not only the

event triggers, their types/subtypes, and their arguments,

but also entity coreference information.

Different corpora have been used to train and evaluate event

coreference resolvers, but as Liu et al. (2014) pointed out,

not all of them were carefully annotated. As will be dis-

cussed in more detail in Section 2, OntoNotes and ECB

have only be partially annotated with event coreference

links. Among the publicly-available corpus, the ACE 2005

corpus is arguably the one that is most complete with re-

spect to the annotation of event coreference links. In fact,

the majority of recent work on event coreference was eval-

uated on the ACE 2005 corpus.

As an event coreference corpus, ACE 2005 has a major

weakness: it adopts a strict notion of event identity. Specif-

ically, two event mentions were annotated as coreferent if

and only if “they had the same agent(s), patient(s), time,

and location” (Song et al., 2015), and their event attributes

(polarity, modality, genericity, and tense) are not incompat-

ible. This is arguably an overly strict definition of event

coreference, as some event mentions are intuitively coref-

erent even if their time and/or location arguments are not

identical.

The new KBP 2015 event coreference corpus was created

in response to the aforementioned weakness of the ACE

2005 corpus (Song et al., 2015). It was annotated using

the Rich ERE guidelines, which are arguably more realistic

in the sense that they mimic more closely a human’s judg-

ment of whether two event mentions are coreferent. There

are at least three major differences between the ACE guide-

lines and the Rich ERE guidelines for annotating a docu-

ment with event coreference chains. First, while ACE al-

lows only single-word event triggers (main verbs, nouns,

adjectives, adverbs), Rich ERE additionally allows multi-

word phrases to be event triggers. For example, “laid off”

is the event trigger in the sentence “Jane was laid off by

XYZ Corp.” As can be seen, just using “laid” as the trig-

ger does not allow the event to be represented correctly.

Second, while ACE allows at most one event mention to

be triggered by a given word, Rich ERE allows the same

word/phrase to trigger multiple event mentions with differ-

ent types/subtypes. For instance, the word “murder” can

trigger two event mentions, one with subtype Life.Die and

the other with subtype Conflict.Attack. As can be seen,

having only one of these two event mentions does not suf-

ficiently represent the underlying events. Finally, and per-

haps most importantly, while ACE adopts the aforemen-

tioned strict notion of event coreference, Rich ERE defines

a relaxed coreference criterion, which allows two event

mentions be coreferent as long as they intuitively refer to

the same real-world event. For instance, the two event men-

tions “attack in Baghdad on Thursday” and “bombing in

the Green Zone last week”, though having different time

and location expressions, are intuitively coreferent, and will

be annotated as coreferent according to Rich ERE but not

ACE. This relaxed notion of event coreference yields an

event coreference task that is not only more realistic but

also more challenging than that of ACE, since we can no

longer rule out two event mentions as being coreferent sim-

ply on the grounds that their times and locations are differ-

ent, for instance. Our goal is to work with this realistic ver-

sion of the event coreference task and presenting one of the

first results on the new KBP 2015 event coreference corpus.

In particular, we propose a multi-pass sieve approach to



event coreference resolution. Multi-pass sieves were origi-

nally applied to entity coreference resolution (Raghunathan

et al., 2010; Lee et al., 2013) and have then been success-

fully applied to many other tasks in natural language pro-

cessing (NLP) such as temporal relation extraction (Cham-

bers et al., 2014), spatial relation extraction (D’Souza and

Ng, 2015b), and disorder mention normalization (D’Souza

and Ng, 2015a). Though rarely explicitly mentioned, suc-

cessful application of a sieve-based approach to a given task

depends heavily on the extent to which high-precision rules

can be designed for the task. For event coreference resolu-

tion, designing high-precision rules is by no means trivial.

The reason is that, as mentioned above, an event corefer-

ence resolver typically assumes as input the noisy outputs

of its upstream components. The difficulty in designing

high-precision rules makes the successful application of a

multi-pass sieve approach to event coreference resolution

challenging.

In this paper, we address this challenge, proposing the first

multi-pass sieve approach to event coreference resolution.

When evaluated on the version of the KBP 2015 corpus

available to the participants of the Event Nugget Detec-

tion and Coreference task, our approach achieves an Avg F-

score of 40.32%, outperforming the best participating sys-

tem by 0.67% in Avg F-score.

The rest of the paper is organized as follows. Section 2

presents an overview of related work on event coreference

resolution. In Section 3, we describe our evaluation corpus,

which is the corpus used in the official KBP 2015 Event

Nugget Detection and Coreference task. Sections 4 and 5

discuss our baseline system and our multi-pass sieve ap-

proach to event coreference resolution. Finally, we present

evaluation results in Section 6 and conclusions in Section 7.

2. Related Work

Early work on event coreference resolution was primarily

evaluated on the MUC and ACE corpora, both of which

contained within-document event coreference links. While

event coreference research in MUC was limited to several

scenarios such as terrorist attacks, management succession

and resignation (e.g., Humphreys et al. (1997)), the ACE

program takes a further step towards processing more fine-

grained events. Most ACE event coreference resolvers are

supervised, training a pairwise model to determine whether

two event mentions are coreferent (e.g., Ahn (2006), Chen

and Ng (2013; 2014)). Improvements to this standard ap-

proach include the use of (1) feature weighting to train a

better model (McConky et al., 2012), and (2) graph-based

clustering algorithms to produce event coreference clusters

(e.g., Chen and Ji (2009), Sangeetha and Arock (2012)).

Despite the successes of supervised approaches, Chen and

Ng (2015) proposed an unsupervised probabilistic model

for event coreference resolution that rivaled its supervised

counterparts when evaluated on the ACE corpus.

There have also been attempts to evaluate within-document

event coreference resolvers on other corpora, such as

OntoNotes (Pradhan et al., 2007). For instance, Chen et

al. (2011) trained multiple classifiers to handle corefer-

ence between event mentions of different syntactic types

(e.g., verb-noun coreference, noun-noun coreference) on

the OntoNotes corpus. However, since event coreference

links and entity coreference links are not distinguished in

OntoNotes, Chen et al. made the simplifying assumption

that event coreference chains are all and only those corefer-

ence chains that involve at least one verb when performing

event coreference on OntoNotes.

Researchers have also employed other corpora when eval-

uating their event coreference resolvers. For instance, Cy-

bulska and Vossen (2012) performed event coreference on

the Intelligence Community (IC) corpus using semantic re-

lations (e.g., hyponymy relations extracted from WordNet).

The IC corpus, which at the time of writing is not yet pub-

licly available, is different from the MUC and ACE corpora

in that it is annotated with not only full event coreference

relations but also partial event coreference relations. Partial

coreference is a term coined by Hovy et al. to refer to event

relations that exhibit subtle deviation from the perfect iden-

tity of events (e.g., the subset relation, the membership rela-

tion). While all of the aforementioned work addresses the

full event coreference task, a two-stage approach was re-

cently proposed by Araki et al. (2014) to identify subevent

relations from the IC corpus.

Bejan and Harabagiu (2010; 2014) evaluated their unsuper-

vised nonparametric models on the EventCorefBank (ECB)

corpus, which is composed of documents annotated with

both within-document and cross-document event corefer-

ence links. Lee et al. (2012) extended the ECB corpus

by annotating it with entity coreference links, which allow

them to propose a “joint” method that iteratively performs

entity coreference and event coreference by allowing one

model to make use of the partial results produced so far for

the other model in each iteration. While calling their ap-

proach a joint approach, they employ neither joint learning

nor joint inference. A closer look at the ECB corpus reveals

that within-document coreference links are only partially

annotated (Liu et al., 2014): in almost all documents only

the first few sentences are annotated with entity and event

coreference links. In response to the missing links prob-

lem, the ECB+ corpus (Cybulska and Vossen, 2014b), an

extension to ECB, was created. ECB+ was used by Yang et

al. (2015) to evaluate their hierarchical distance-dependent

Bayesian event coreference model.

More recently, Araki and Mitamura (2015) have evaluated

their event coreference system on the ProcessBank cor-

pus (Berant et al., 2014), a corpus of 200 paragraphs taken

from a biology textbook. Specifically, they performed event

trigger identification and event coreference resolution si-

multaneously using a structured perceptron.

The newest event coreference corpus is perhaps the one

used in the KBP 2015 Event Nugget Detection and Coref-

erence shared task. The teams that achieved the highest

scores have adopted different strategies for this task. RPI’s

system viewed the event nugget coreference space as an

undirected weighted graph in which the nodes represent all

the event nuggets and the edge weight indicates corefer-

ence confidence between two event nuggets (Hong et al.,

2015). LCC’s system first determined the compatibility of

each pair of event mentions in the document using a multi-

stage pipeline and then employed a greedy iterative clus-

tering algorithm to produce event hoppers (Monahan et al.,



Training Data Newswire Forum

Documents 81 77

Event mentions 2,219 4,319

Event hoppers 1,461 1874

Evaluation Data Newswire Forum

Documents 98 104

Event mentions 3,788 2,650

Event hoppers 2,440 1,685

Table 1: Statistics on the official KBP 2015 Event Nugget

Detection and Coreference corpus.

2015). UI-CCG’s system first modeled the similarity be-

tween two event mentions either by a supervised model or

in an unsupervised fashion, and then made a coreference

decision on each pair (Sammons et al., 2015).

3. Corpus and Task Definition

In this section, we introduce our corpus and the event coref-

erence task.

Our evaluation corpus is the one used in the Event Nugget

Detection and Coreference task in the TAC KBP 2015

Event Track (henceforth the KBP 2015 coreference cor-

pus). This corpus is composed of two types of docu-

ments: newswire documents and discussion forum docu-

ments. Statistics on the corpus are shown in Table 1.

This corpus is annotated according to the Rich ERE anno-

tation guidelines.1 Rich ERE defines the following termi-

nologies related to event detection and coreference:

• Event mention: an explicit occurrence of an event with

or without participants. An Rich ERE event mention

consists of a textual trigger, arguments or participants

if exist and the event type/subtype.

• Event trigger: a string of text that most clearly ex-

presses the occurrence of event, usually a word or a

multi-word phrase

• Event argument: an entity or an argument filler that

plays a certain role in an event.

• Event hopper: a group of event mentions that refer

to the same event. They must have the same event

type/subtype, but are allowed to have different argu-

ments and triggers. It is a slightly relaxed standard of

coreference compared to the ACE standard.

Despite the fact that the corpus is annotated with event ar-

guments, the version of the corpus we employ in this pa-

per (i.e., the version available to the participants of the

Event Nugget Detection and Coreference Task in the KBP

2015 Event Track) is only annotated with event mentions,

event triggers, and event hoppers. In particular, it does not

contain any event argument annotations. Nevertheless, the

KBP organizers have made available to the shared task par-

ticipants a number of annotated corpora that the participants

1See http://cairo.lti.cs.cmu.edu/kbp/2015/

event/annotation.

French far-left killer[Person] {leaves}(EV1) jail[Origin]

A former militant of the French far-left group Action Directe,

Georges Cipriani[Person] {left}(EV2) prison[Origin] on pa-

role on Wednesday[Time] after 23 years behind bars for two

high-profile murders.

A policeman at the scene confirmed to AFP the iden-

tity of Cipriani, 59, who[Person] {left}(EV3) the

prison in Ensisheim in northeastern France[Origin]wearing a

leather jacket and with long white hair.

Cipriani[Person] {left}(EV4) Ensisheim[Origin] in a

police vehicle[Instrument] bound for an open prison near

Strasbourg where the police officer said he was due to do

community service including working at a food bank as part

of his parole.

Table 2: Event coreference resolution example.

are allowed to use to train their systems. Some of these

corpora are composed with newswire and discussion forum

documents and are annotated with event mentions, triggers,

arguments, and hoppers according to the Rich ERE guide-

lines. As we will see in the next section, we make use of

two of these corpora for training our entity extractor and our

argument identification and role determination classifier.

To better understand the aforementioned definitions, con-

sider the text segment in Table 2. The trigger under-

lying each event mention is surrounded by curly brack-

ets and marked with an identifier (e.g., the event mention

”leaves” is marked with the identifier EV1), and its ar-

guments are underlined with their roles in square brack-

ets.2 As we can see, this example contains four event men-

tions, all of which belong to the same event hopper be-

cause they have the same type (MOVEMENT) and subtype

(TRANSPORT-PERSON) and intuitively refer to the same

real-world event. Although some arguments are not identi-

cal, one can determine that these event mentions are coref-

erential when examining the surrounding contexts. For ex-

ample, the Origin argument “Ensisheim” of EV4 and the

Origin arguments “prison” and “jail” of EV1, EV2 and EV3

are different in granularity, and yet one can easily infer from

the contexts Cipriani left Ensisheim and Cipriani left the

prison in Ensisheim that they refer to the same event, for

instance.

4. Baseline System

In this section, we describe our baseline system, which op-

erates in three steps. First, it performs event mention de-

tection, which involves detects all explicit mentioning of

events with certain specified types in text (Section 4.1).

Second, it performs event argument identification and role

determination, which involves identifying the arguments of

each event mention detected in the first step and assign-

ing a semantic role to each participating argument (Sec-

tion 4.2). Finally, it performs event coreference resolu-

tion on the event mentions extracted in the first step (Sec-

tion 4.3), using the arguments detected in the second step

as one of its knowledge sources.

2Recall that event argument annotations are not available in the

KBP 2015 coreference corpus. They are shown in this example for

ease of exposition only.



4.1. Event Trigger Identification and Subtyping

This component extracts event triggers and determines the

type and subtype of each extracted trigger. In the KBP 2015

coreference corpus, there are nine event types and 38 event

subtypes. A event trigger can be a single word or a multi-

word phrase. We recast the task of identifying event trig-

gers as a sequence labeling task, where we train CRFs us-

ing the CRF++ package on the training portion of the KBP

2015 coreference corpus.3 As mentioned in the introduc-

tion, since each word can trigger multiple event mentions

having different types/subtypes, we train one CRF for each

type. Specifically, for classifier of type tj , we create one

instance for each word wi, assigning it a class label that

indicates whether it begins a trigger with subtype sjk (B-

sjk), is inside a trigger with subtype sjk (I-sjk), begins a

trigger with other types (B-tm 6=j), is inside a trigger with

other types (I-tm 6=j) or is outside a trigger (O). Below we

describe the 13 features used to represent wi, which can be

divided into three categories: lexical, syntactic and seman-

tic.

Lexical: word unigrams (wi−2,wi−1,wi,wi+1,wi+2); word

bigrams (wi−1wi, wiwi+1); word trigrams (wi−2wi−1wi,

wi−1wiwi+1, wiwi+1wi+2); the part-of-speech tag of wi;

lemmatized word unigrams, bigrams and trigrams.

Syntactic: depth of wi’s node in its syntactic parse tree;

the path from the leaf node of wi to the root in its syntac-

tic parse tree; the phrase structure expanded by the parent

of wi’s node; the phrase type of wi’s node. We compute

the syntactic features based on the syntactic parse trees re-

turned by Stanford’s CoreNLP package (Manning et al.,

2014).

Semantic: the WordNet synset id of wi; the WordNet

synset ids of wi’s hypernym, its parent, and its grandpar-

ent. When computing these semantic features, we only use

the synset corresponding to wi’s first sense.

We improve the recall of event trigger detection in a

postprocessing process as follows. First, we construct a

wordlist containing triggers that appear infrequently (less

than 10 times) in the training data and do not belong more

than one subtype according to the training data. For exam-

ple, the word “hijack” appears only a few times in the train-

ing data but is always labeled as “Conflict.Attack”. Then,

we extract any word as a trigger with the corresponding

subtype as long as it appears in the wordlist.

4.2. Event Argument Identification and Role
Classification

This component takes as inputs (1) a set of event mentions

whose triggers were identified in the previous component

(see Section 4.1) and (2) a set of candidate event arguments.

For each event mention em, it identifies those candidate ar-

guments that are the true arguments of em and assigns a

role to each of its true arguments. In the rest of this subsec-

tion, we first describe how we extract the candidate event

arguments for each event mention, and then show we iden-

tify and assign roles to its true arguments.

3https://taku910.github.io/crfpp/

Newswire Forum

LDC2015E29
Documents 48 43

Entity mentions 2,751 4,906

LDC2015E68
Documents − 95

Entity mentions − 12,570

Table 3: Statistics on LDC2015E29 and LDC2015E68.

4.2.1. Extracting Candidate Event Arguments

Event arguments can be entity mentions or argument fillers.

Argument fillers correspond to specific event subtypes,

meaning that they will only appear if the corresponding

subtype lends itself to such information. In addition, ar-

gument fillers such as Title and Age provide little useful

information for event coreference. For this reason, we only

extract entity mentions as candidate event arguments.

To extract entity mentions, we train a CRF (using CRF++)

on two of the annotated corpora made available to us by

the KBP 2015 shared task organizers, LDC2015E29 and

LDC2015E68, both of which are annotated with Rich ERE

entity mentions. Statistics on those corpora are shown in

Table 3.

We train the CRF to jointly identify and determine the se-

mantic type of each entity mention. Specifically, we create

one instance for each word wi, assigning it a class label

that indicates whether it begins an entity mention of type tj
(B-tj) , is inside an entity of type tj (I-tj) or is outside an

entity (O). In Rich ERE annotation, each entity is labeled

with one of five semantic types: PER, ORG, GPE, LOC,

and FAC, so under the IOB labeling scheme, there are 11

labels in total. Each token wi is represented using the nine

features, as described below:

Lexical: word unigrams, bigrams, and trigrams formed

from wi in a window of five.

Grammatical: the part-of-speech tag of wi; whether wi is

in a NP or not; whether wi is part of a pronoun, whether the

first letter of wi is in uppercase.

Semantic: the WordNet synset id of wi; the WordNet

synset ids of the wi’s hypernym, its parent, and its grand-

parent.

4.2.2. Identifying True Arguments and their Roles

We jointly learn the tasks of (1) identifying the true argu-

ments of an event mention and (2) assigning a role to each

of its true arguments. We train this classifier on the doc-

uments in LDC2015E29 and LDC2015E68, both of which

are annotated with event arguments. To create training in-

stances, we pair each true event mention em (i.e., event

mention consisting of a true trigger) with each of em’s can-

didate event arguments, considering an entity mention ex-

tracted by our CRF-based entity-mention extractor a candi-

date argument of em if it appears in the same sentence as

em. If the candidate argument is indeed a true argument

of em, the class label of the training instance is the argu-

ment’s role. Otherwise, its class label is None. There are

27 labels in total, including 26 roles defined in the Rich

ERE annotation and NONE. Each instance is represented

by 13 features, as described below:

Basic: trigger subtype; type of candidate argument; head



word of candidate argument; event subtype + head word;

event subtype + entity type; POS of trigger word.

Neighboring words: left/right neighbor word of the can-

didate argument; left/right neighbor word of the candidate

argument + the word’s POS; left/right neighbor word of the

trigger + the word’s POS.

Syntactic: the phrase structure obtained by expanding the

parent of the trigger in the constituent parse tree; the phrase

type of the trigger; the path from the candidate argument

to the trigger in the constituent parse tree; the dependency

path from the candidate argument to the trigger.

To create test instances, we pair each candidate event men-

tion (i.e., an event mention whose trigger was identified in

Section 4.1) with each of its candidate event arguments.

The test instances are represented using the same set of fea-

tures as the training instances.

4.3. Event Coreference Resolution

This component identifies event coreference links by com-

bining a mention-pair model (Soon et al., 2001), which is

a binary classifier that determines whether two event men-

tions are co-referring or not, with a closest-first single-link

clustering algorithm, which selects as the antecedent of an

event mention e the closest preceding event mention that

is classified as coreferent with e. We train the mention-

pair model using the libSVM software package (Chang and

Lin, 2001) as follows. We first divide the training docu-

ments of the KBP 2015 coreference corpus into two sets:

a 128-document training set for model training, and a 30-

document development set for jointly tuning the regulariza-

tion parameter C and the γ parameter associated with the

RBF kernel.4 Then we retrain the model on all 158 training

documents using the learned parameters.

We create positive training instances by pairing each

anaphoric event mention em with its closest antecedent

and (2) negative training instances by pairing em with each

of its preceding event mentions that is not coreferent with

em. Each instance is representing using 22 features. We

use Stanford CoreNLP package to extract the linguistic in-

formation needed to compute these features, including the

part-of-speech tags, syntactic parse trees, dependency parse

trees and entity coreference chains. As can be seen below,

the 22 features can be divided into three groups. For con-

venience, we use em2 to refer to an event mention to be

resolved and em1 to refer to a candidate antecedent of em2.

Group 1 (Event Type and Subtype features). The four

features in this group encode: whether em1 and em2 agree

w.r.t. event type; whether they agree w.r.t. event subtype;

the concatenation of their event types; and the concatena-

tion of their event subtypes.

Group 2 (Event Trigger features). The ten features in this

group encode: whether em1 and em2 have the same trigger;

whether they have the same lemmatized trigger; whether

the triggers of em1 and em2 or the hypernyms of these trig-

gers are in the same synset in WordNet; the concatenation

of their triggers; the concatenation of part-of-speech tags of

their triggers; whether their triggers agree in number if they

are nouns; whether their triggers have the same modifiers if

4We attempted values of 2−1, 2, 23, 25, 27 for C and 2
−7, 2−5,

2
−3, 2−1, 2 for γ.

they are nouns; whether their triggers are in the same entity

coreference chain if they are nouns; the sentence distance

between the triggers of em1 and em2; whether the triggers

of em1 and em2 appear in a training document as a coref-

erent event mention pair.

Group 3 (Event Argument features). The eight features

in this group encode: whether em1 and em2 have argu-

ments of the same role; whether the arguments have the

same head word; whether they are in the same coreference

chains; whether they have the same modifiers; the roles and

number of the arguments that only appear in em1; and the

roles and number of the arguments that only appear in em2

5. A Multi-Pass Sieve Approach

In this section, we describe our multi-pass sieve approach to

event coreference resolution. The sieve approach has been

successfully applied to entity coreference resolution. To

our knowledge, ours represents the first attempt to apply

the sieve approach to event coreference resolution.

5.1. Brief Introduction to Sieves

A sieve is composed of one or more heuristic rules. Each

rule extracts a coreference relation between two event men-

tions. Sieves are ordered by their precision, with the most

precise sieve appearing first. To resolve a set of event men-

tions in a document, the resolver makes multiple passes

over them. In the i-th pass, we process the event mentions

in a test text from left to right. Each event mention encoun-

tered, em2, is compared in turn to each preceding event

mention, em1, from right to left. If any of the rules in the

i-th sieve posits the two as coreferent, we will select em1

as the antecedent of em2. Once an antecedent has been se-

lected for em2, we will process the next mention in the text.

In other words, we will not select more than one antecedent

for each event mention. If none of em2’s preceding event

mentions is posited as coreferent with it, then em2 will re-

main unresolved in the i-th pass. The partial clustering of

event mentions generated in the i-th pass is then passed to

the i+1-th pass. In this way, later passes can exploit the

information computed by previous passes, but the decision

make earlier cannot be overridden later.

In our approach, later sieves exploit the decisions made by

the earlier sieves as follows. When two event mentions are

posited as coreferent by a sieve, any argument extracted for

one mention will be shared by the other mention. It is this

sharing of argument among coreferent event mentions that

will be exploited by the later sieves.

5.2. Sieves for Event Coreference

Given a test document, our sieve approach first extracts (1)

the event mentions using the CRF described in Section 4.1

and (2) their arguments using the SVM classifier described

in Section 4.2, and then employs the following sieves for

event coreference resolution. The sieves we designed for

processing newswire documents are slightly different from

those for processing discussion forum documents, as de-

scribed below.

5.2.1. Sieves for Newswire Documents

We employ the following six sieves. Note that whenever a

rule posits two event mentions as coreferent, we merge the



clusters containing the two mentions.

1. Newswire Headline sieve: the design of this sieve

is motivated by the journalistic nature of newswire docu-

ments. The first sentence in the newswire documents al-

ways contains a detailed explanation of the headline. This

sieve posits an event mention in the headline and an event

mention the first sentence as coreferent if they have the

same subtype and their triggers are in the same WordNet

synset.

2. Strict Event Coreference sieve: the design of this sieve

is motivated by the strict event coreference criterion. Two

mentions are posited as coreferent if they satisfy all of the

following conditions: (a) they have the same subtype; (b)

their triggers have the same lemmatized form; (c) at least

one of their arguments of the same role are in the same

entity coreference chain or are lexically identical (if they

are non-pronominal); and (d) their triggers are in the same

entity coreference chain if they are nouns.

3. Strict Trigger Match sieve: this sieve posits two event

mentions with noun triggers as coreferent if they have the

same subtypes and their triggers have the same lemma and

same modifiers.

4. Semantically Similar Triggers sieve: this sieve re-

laxes the conditions in the Strict Event Coreference Sieve

by deleting conditions (b) and (d), but it requires the trig-

gers of the two mentions or the hypernyms of the triggers

to be in the same WordNet synset.

5. Known Coreferent Pairs sieve: this sieve posits two

event mentions as coreferent if they have the same subtypes

and the underlying triggers have appeared in the training

data as a coreferent event mention pair.

6. Machine Learning sieve: this sieve exploits the in-

formation provided by the baseline system described in

the previous section. Specifically, two event mentions are

posited as coreferent if their coreference probability ex-

ceeds a certain threshold according to the baseline mention-

pair model. The threshold is tuned on the 30-document de-

velopment set described in Section 4.3.5

5.2.2. Sieves for Discussion Forum Documents

For discussion forum documents, we employ essentially the

same sieves except that we replace the first sieve with a

sieve that posits two event mentions as coreferent if their

triggers and the sentences containing them are identical.

This sieve is motivated by the nature of a discussion forum

where an author usually quotes a preceding post to which

she wants to respond.

6. Evaluation

In this section, we evaluate our multi-pass sieve approach

to event coreference resolution.

6.1. Experiment Setup

Corpora. As mentioned before, we use LDC2015E29

and LDC2915E68 to train our entity mention extractor and

our event argument identification and role classification

model. In addition, we use the training portion of the KBP

5We attempted values of 0.5, 0.6, 0.7, 0.8, and 0.9 for the

threshold.

2015 coreference corpus for training our trigger identifica-

tion and subtyping model and our mention-pair-based event

coreference classifier. 20% of this training data is used to

tune the threshold in the Machine Learning sieve.

Evaluation metrics. To evaluate event coreference perfor-

mance, we employ four commonly-used coreference scor-

ing measures as implemented in version 1.7 of the offi-

cial scorer provided by the KBP 2015 organizers, namely

MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),

CEAFe (Luo, 2005) and BLANC (Recasens and Hovy,

2011).6 Each of these evaluation measures reports results

in terms of recall (R), precision (P), and F-score (F). We

also report event mention detection performance in terms

of recall, precision and F-score, considering a mention cor-

rectly detected if it has an exact match with a gold mention

in terms of boundary, event type, and event subtype.

6.2. Results and Discussion

We evaluate the baseline and our sieve-based approach in

an end-to-end setting using automatically detected event

mentions. Our event mention detection system (see Sec-

tion 4.1) achieves scores of 50.50% (R), 66.60% (P), and

57.45% (F). It underperforms only one participating sys-

tem, which achieves an F-score of 58.41%, in the official

KBP 2015 evaluation.

Table 4 shows the results of the baseline system (row 1)

and our sieve-based event coreference resolver (rows 2 to

7). As we can see, the baseline achieves an Avg F-score

(the unweighted average of the F-scores of the four scor-

ing measures) of 37.82%. The subsequent rows show the

results when the six sieves are added incrementally into

the system. When all six sieves are employed, our ap-

proach achieves an Avg F-score of 40.32%, yielding a sta-

tistically significant improvement of 2.5% absolute F-score

over the baseline (paired t-test, p < 0.05). These results

provide suggestive evidence that our multi-pass sieve ap-

proach to event coreference, which is a hybrid rule-based

and learning-based approach, is superior to a pure learning-

based approach. Equally importantly, our approach outper-

forms the best participating system in the official KBP 2015

evaluation, which achieves an F-score of 39.65%.

6.3. Qualitative Error Analysis

Next, we present an analysis of the major sources of error

made by our sieve-based approach.

A major source of recall error stems from our system’s in-

ability to cluster event mentions that have few common fea-

tures. Consider the sentence “Somali pirates said Saturday

they had received a record nine million dollar ransom in a

helicopter air drop for the release of a South Korean super-

tanker, Samho Dream, with 24 crew. ‘The boat was freed

this morning agter the payment of nine million dollars to

my colleagues,’ one of the pirates told AFP by telephone.”

In this example, “ransom” and “payment” are triggers of

two coreferent event mentions, but our system failed to de-

tect this coreferent pair for at least two reasons. First, the

semantic similarity of these two triggers provides little evi-

dence that the corresponding event mentions are coreferent.

6The official scorer is available at http://cairo.lti.

cs.cmu.edu/kbp/2015/event/scoring.



MUC B3 CEAFe BLANC Avg

R P F1 R P F1 R P F1 R P F1 F1

Baseline 29.26 50.78 37.13 39.34 53.88 45.48 35.85 41.66 38.54 23.82 40.93 30.12 37.82

Sieve 1 0.73 73.91 1.45 30.66 66.17 41.91 43.47 36.90 39.92 13.68 58.22 17.13 25.10

+ Sieve 2 6.26 53.70 11.22 31.88 65.02 42.78 43.21 38.65 40.80 15.15 49.55 19.92 28.68

+ Sieve 3 9.07 56.30 15.63 32.46 64.61 43.21 43.32 39.63 41.39 15.93 50.10 21.29 30.38

+ Sieve 4 11.06 52.35 18.27 32.98 63.59 43.44 42.59 40.00 41.25 16.50 48.31 22.22 31.29

+ Sieve 5 40.51 48.00 43.93 42.75 48.33 45.37 33.07 46.56 38.67 29.67 39.26 33.11 40.27

+ Sieve 6 40.68 48.08 44.07 42.82 48.29 45.39 33.04 46.60 38.67 29.72 39.27 33.14 40.32

Table 4: Event coreference results on the official KBP 2015 evaluation data.

Second, in order to know that their arguments “a South Ko-

rean supertanker” and “the boat” are coreferent, we need a

deeper linguistic analysis.

A major source of precision error stems from our system’s

tendency to cluster event mentions whose triggers have the

same lemma. Despite the fact that we employ a Semanti-

cally Similar Triggers sieve, additional background knowl-

edge is needed to resolve these difficult cases.

7. Conclusion

We have presented a multi-pass sieve approach to the

under-studied task of event coreference resolution. When

evaluated on the version of the KBP 2015 corpus avail-

able to the participants of the Event Nugget Detection and

Coreference task, our approach achieves an Avg F-score

of 40.32%, outperforming the best participating system by

0.67% in Avg F-score.
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