
Markov Logic Networks for Text Mining:
A Qualitative and Empirical Comparison with Integer Linear Programming

Luis Gerardo Mojica and Vincent Ng
Human Language Technology Research Institute

The University of Texas at Dallas
Richardson, TX 75083-0688, USA
{mojica,vince}@hlt.utdallas.edu

Abstract
Joint inference approaches such as Integer Linear Programming (ILP) and Markov Logic Networks (MLNs) have recently been
successfully applied to many natural language processing (NLP) tasks, often outperforming their pipeline counterparts. However,
MLNs are arguably much less popular among NLP researchers than ILP. While NLP researchers who desire to employ these joint
inference frameworks do not necessarily have to understand their theoretical underpinnings, it is imperative that they understand which
of them should be applied under what circumstances. With the goal of helping NLP researchers better understand the relative strengths
and weaknesses of MLNs and ILP; we will compare them along different dimensions of interest, such as expressiveness, ease of use,
scalability, and performance. To our knowledge, this is the first systematic comparison of ILP and MLNs on an NLP task.

Keywords: Markov Logic, Integer Linear Programming, Joint Inference

1. Introduction

In the early days of the statistical natural language process-
ing (NLP) era, many language processing tasks were tack-
led using the so-called pipeline architecture: the given task
is broken into a series of sub-tasks such that the output of
one sub-task is an input to the next sub-task in the sequence.
This pipeline architecture is appealing for various reasons,
including modularity, modeling convenience, and manage-
able computational complexity. However, it suffers from
the error propagation problem: errors made in one sub-task
are propagated to the next sub-task in the sequence.
Realizing this weakness, researchers have turned to joint
inference approaches such as Integer Linear Programming
(ILP) and Markov Logic Networks (MLNs), which of-
ten outperform their pipeline counterparts. These joint
inference approaches enable manual specification of con-
straints. These constraints effectively allow incorporation
of background knowledge into NLP systems, addressing
the aforementioned error propagation problem by allow-
ing the downstream components to influence the upstream
components in a pipelined system architecture. To date,
MLNs have been underused in NLP applications, and are
arguably much less popular among NLP researchers than
ILP. While NLP researchers who desire to employ these
joint inference frameworks do not necessarily have to un-
derstand their theoretical underpinnings, it is imperative
that they understand which of them should be applied under
what circumstances.
In light of this discussion, our goal in this paper is to help
NLP researchers better understand the relative strengths
and weaknesses of MLNs and ILP by comparing them
along different dimensions of interest, such as expressive-
ness (what can and cannot be expressed using a specifica-
tion language?), ease of use (how easy is it to encode con-
straints?), scalability (how efficient is the inference pro-
cedure, especially when applied to large problems?), and
performance (how well do these inference algorithms per-

form?).
To facilitate the comparison, we will discuss how ILP and
MLNs can be applied to the task of fine-grained opinion
extraction. While many tasks could have been chosen, we
chose this task not only for its importance but also for the
fact that its sophistication allows us to demonstrate the dif-
ferences between the two inference frameworks. In fact,
while ILP has been applied to this task (Yang and Cardie,
2013) (henceforth Y&C), MLNs have not, so it would be
informative for us to consider how MLNs can be applied to
it. To our knowledge, this is the first systematic comparison
of ILP and MLNs on an NLP task. It is worth mentioning
that while our discussion is centered on this task, many of
our conclusions and recommendations are generally appli-
cable to other NLP tasks.
The rest of this paper is organized as follows. Section 2
provides some background information, including the task
of fine-grained opinion extraction, the corpus, and the two
inference algorithms. Section 3 describes the constraints
that we enforce on the outputs of a fine-grained opinion
extraction system and how ILP and MLNs encode such
constraints. In Sections 4 and 5, we discuss the relative
strengths and weaknesses of MLNs and ILP. Finally, we
report our empirical results in Section 6, and discuss our
conclusions in Section 7.

2. Preliminaries
2.1. Fine-Grained Opinion Extraction
2.1.1. Task Definition
Fine-grained opinion extraction is an opinion mining task
that involves (1) identifying text spans corresponding to
opinions and their arguments and (2) the relations between
them. Compared to document-level opinion mining (e.g.,
determining whether a customer review is positive, nega-
tive, or neutral), fine-grained opinion extraction occurs at
the sentence and phrase levels and is comparatively less in-
vestigated.

This fine-grained opinion extraction task is typically de-
composed into two subtasks. The first subtask, entity ex-
traction, involves identifying three types of opinionated
entities, including opinions (“O”) and two types of argu-
ments, Sources (“S”, entities generating opinions) and Tar-
gets (“T”, entities of which a opinion is about). The second
subtask, relation extraction, involves extracting Is from re-
lations (i.e., linking a source to its opinion) and Is about re-
lations (i.e., linking a target to its opinion). To better under-
stand the task, consider the following example taken from
the MPQA1 corpus.

1. [Ashcroft]S0
toldO0

us [he]S0
was determinedO1

[to
take every conceivable action]T1

Ashcroft is the source of the two opinions, told and was de-
termined, and to take every conceivable action is the target
of the second opinion. In other words, there are two Is from
relations: one between Ashcroft and told and the other be-
tween Ashcroft and was determined, and there is one Is
about relation between was determined and to take every
conceivable action. Note that the opinion O0 has no target
associated with it. When an opinion has no target argu-
ments or source arguments, we refer to it as target-implicit
or source-implicit, respectively. In this case, O0 is target-
implicit.

2.1.2. Corpus
For training and evaluation, we use the MPQA 2.0 cor-
pus (Wiebe et al., 2005; Wilson, 2008). After discarding
those ill-formatted documents (lack of punctuation, para-
graphs, etc.), we obtain 433 documents with 8, 377 sen-
tences. These documents contains 4, 717 opinions, 4, 680
targets and 5, 505 sources. The number of Is from relations
is 13, 046, and 9, 763 of the Is about type. Unlike Y&C, we
do not remove sentences containing no opinionated entities.

2.1.3. Why Joint Inference?
A straightforward method to address the fine-grained opin-
ion extraction task is to adopt a pipeline approach, where
we (1) use an entity extraction model to extract the opin-
ions, sources, and targets; (2) use argument-implicit clas-
sifiers to identify those extracted opinions that are source-
implicit as well as those that are target-implicit; and (3)
use opinion-argument classifiers to extract Is from rela-
tions between sources and opinions that are not source-
implicit, as well as Is about relations between targets and
opinions that are not target-implicit.2 However, this so-
called pipeline approach suffers from error propagation,
where errors made in the entity extraction model will be
propagated to the implicit opinion identification compo-
nent, which in turn will be propagated to the relation ex-
traction component. For example, in the example sentence

1http://mpqa.cs.pitt.edu/corpora/mpqa_
corpus/

2Our implementation of the entity extraction model, the
argument-implicit classifiers and the opinion-argument classifiers
follow that of Yang and Cardie (2013). Owing to space limita-
tions, we omit the details of the training procedure as well as the
features used to train each model, and refer the reader to Y&C’s
paper for details.

above, if the entity extraction model failed to retrieve the
span [Aschroft], or if the source-implicit classifier misclas-
sifies opinions O0 and O1 (as source-implicit), it would not
be possible for the opinion-argument classifier to extract the
Is from relations between this span and O0 and O1.
One way to address the aforementioned error propagation
problem is to perform joint inference over the outputs of the
entity extraction model, the argument-implicit classifiers,
and the opinion-argument classifiers. Unlike in the pipeline
approach, where entity extraction influences implicit opin-
ion identification, which in turn influences relation extrac-
tion (but not vice versa), in a joint inference approach, all
three tasks can influence each other.
Specifically, recall that one problem with the pipeline ap-
proach is that if the entity extraction model fails to extract
an entity, the opinion-argument classifiers cannot extract
the relations for the opinion in consideration. To be ro-
bust to the errors made by the entity extraction model, in-
stead of making use of its 1-best output, we make use of its
n-best output and the confidence assigned by the model to
each candidate entity it extracted. Similarity, to be robust to
the errors made by the argument-implicit classifiers, instead
of making use of its binary decisions, we make use of the
confidences associated with its decisions. Given this setup,
if the opinion-argument classifier is highly confident that
an Is about relation exists between two candidate entities,
then these two entities will likely be extracted as an opin-
ion and a target even if the entity extraction component fails
to extract them or the target-implicit classifier erroneously
determines that the opinion candidate is target-implicit. In
other words, the final entity extraction decisions and rela-
tion extraction decisions will be made jointly by the entity
extraction model, the argument-implicit classifiers, and the
opinion-argument classifiers by considering the confidence
values they individually assign to the extraction decisions.

2.2. Joint Inference Frameworks
In this subsection, we provide a brief overview of two joint
inference frameworks, ILP and MLNs.

2.2.1. Integer Linear Programming
At a high level, many NLP tasks are structured prediction
problems which can be naturally expressed as constrained
optimization problems, where the goal is to optimize an ob-
jective function subject to a set of linear (equality and in-
equality) constraints. In principle, a variety of methods can
be used to solve these problems. ILP methods are arguably
the most popular choice among NLP researchers. Formally,
an ILP problem is defined as follows:

Maximize: f(x1, x2, ..., xn)

Subject to: gj(x1, x2, ..., xn) ≥ bj (j = 1, 2, ...,m)

where xi are the variables that take finite integer val-
ues, f(x1, x2, ..., xn) is the objective function, and gj
(x1, x2, ..., xn), 1 ≤ j ≤ m, are the constraints (each con-
straint is linear in x1, x2, ..., xn). Several highly optimized
open source and commercial software for solving ILP prob-
lems, such as lpsolve (Berkelaar et al., 2004) and Gurobi 3,

3www.gurobi.com

are readily available, and therefore the application designer
can focus on modeling issues rather than solving optimiza-
tion problems

2.2.2. Markov Logic Networks
Markov logic (Richardson and Domingos, 2006; Domin-
gos and Lowd, 2009), a popular statistical relational learn-
ing (SRL) approach (Taskar and Getoor, 2007), combines
graphical models with first-order logic. At a high level, a
MLN is a set of weighted first-order logic formulas (fi, wi),
where wi is the weight associated with formula fi. Given a
set of constants that model objects in the domain, it de-
fines a Markov network (Koller and Friedman, 2009) in
which we have (1) one node per atom (i.e., grounded pred-
icate) and (2) a propositional feature corresponding to each
grounding of each first-order formula (i.e., a clique formed
from the atoms in the formula). The weight of the feature
is the weight of the corresponding first-order formula.
Formally, the probability of a world ω which represents an
assignment of values to all atoms in the Markov network is
given by:

Pr(ω) =
1

Z
exp

(∑
i

wiN(fi, ω)

)

where N(fi, ω) is the number of groundings of fi which
evaluate to True in ω and Z is a normalization constant
called the partition function.
The key inference tasks over MLNs are computing the par-
tition function (Z) and the most-probable explanation given
evidence (the MAP task). Most queries can be reduced to
these inference tasks. Formally, the partition function and
the MAP tasks are given by:

Z =
∑
ω

exp

(∑
i

wiN(fi, ω)

)
(1)

argmax
ω

P (ω) = argmax
ω

∑
i

wiN(fi, ω) (2)

Unlike ILP, which optimizes an objective function provided
by the user, MLNs typically optimize the conditional like-
lihood of the data. Software packages such as Alchemy
(Kok et al., 2008), Alchemy 2.0 (Venugopal and Gogate,
2012), Markov the beast (Riedel, 2009) and Tuffy (Niu et
al., 2011) for inference and learning with MLNs are widely
available.

3. Joint Inference for Fine-Grained Opinion
Extraction

3.1. Consistency Constraints
As mentioned before, joint inference enables the entity ex-
traction model, the argument-implicit classifiers, and the
opinion-argument classifiers to influence each other by em-
ploying constraints to enforce global consistency over their
outputs. In this subsection, we enumerate seven constraints.
Note that Constraints (1) and (2) are intra-task constraints,
which enforce consistency over the outputs of the entity ex-
traction model, whereas the other constraints are inter-task

constraints, which enforce consistency over the outputs of
models for different tasks.
The first five constraints were originally proposed by Y&C.
Constraint (1) states that an opinion/source/target candi-
date (obtained from the 30-best output of the CRF-based
entity extraction model) can only be assigned exactly one
of four types: opinion, target, source, or none (if it does
not belong to any of the other three types). Constraint
(2) indicates that among every pair of overlapping en-
tity candidates, at most one should be extracted as a non-
none type entity. Constraint (3) enforces the consistency
between opinion-argument classifiers and the argument-
implicit classifiers. Specifically, an opinion candidate can
be related to source and target arguments if it is not an
argument-implicit opinion. Constraint (4) enforces the con-
sistency between the opinion-argument classifiers and the
entity extractor. Specifically, the relations between opin-
ion and arguments should be consistent with their entity
types (i.e., a Is from relation must involve an opinion and
a source, and a Is about relation must involve an opinion
and a target). In the same way, a span related with a tar-
get or source argument must be an opinion. Constraint (5)
enforces the consistency between the opinion-implicit clas-
sifiers and the entity extractor. Specifically, an opinion can-
didate that is not argument-implicit must be an opinion.
Hypothesizing that some verb senses and argument roles
defined in VerbNet (Schuler, 2005) are useful for identi-
fying text spans corresponding to opinions and their argu-
ments as well as their relationships4, we introduce three
constraints that exploit the PropBank-style semantic role
labels provided by Mate Tools (Björkelund et al., 2009).
Specifically, Constraint (6) states that (1) a span candidate
associated with a particular verb sense should be assigned
a non-none label, and (2) a span candidate associated with
a verb argument should be assigned a non-none label. Con-
straint (7) indicates that two entities that are assigned a verb
sense and an argument role respectively might be in a Is
from or Is about relation. Note that while the first five con-
straints are hard constraints, Constraints (6) and (7) are soft
constraints.

3.2. ILP Formulation
In this subsection, we show how to formulate fine-grained
opinion extraction in the ILP framework. Recall that ILP
requires that we define a constrained optimization prob-
lem. Below we first define the objective function and then
describe how we encode the aforementioned seven con-
straints.
We create one ILP program for each test sentence. Specifi-
cally, for each test sentence, letO be the set of opinion can-
didates (provided by the 30-best CRF output),Ak be the set
of argument candidates (also provided by the 30-best CRF
output), where k denotes the relation type (Is about or Is
from), and S be the union of O and Ak.

4For example, in the sentence Williamson still hopes for an
expedited review by the report, the opinion hopes is assigned the
verb sense hope.01, and its A0 and A1 arguments, Williamson
and for an expedited review by the report, are its source and target,
respectively.

Num Consistency constraint ILP MLN

1 Uniqueness
∑
z

xiz = 1 ∃c Span(i,c!).

2 Non-Overlapping
∑

z 6=N

xiz +
∑

z 6=N

xjz ≤ 1 Overlap(i,j)⇒ (Span(i,N) v
Span(j,N))

3
Explicit Relation & Implicit
Relation Classifiers

[1]
∑

j∈Ak

uij = 1−vik+aik+bik

[2] aik ≤ 1− vik; bik ≤ 1− vik

[1]Implicit src(i)⇒
!Is from(i,j)
[2]Implicit trg(i)⇒
!Is about(i,j)

4
Relation Classifier & Entity Ex-
tractor

[1]
∑
i∈O

uij = xjz+cjk+djk

[2] cjk ≤ xjz; djk ≤ xjz

[1] Is from(i,j)⇒Span(j,S)
[2] ∃iSpan(j,S)⇒Is from(i,j)
[3] Is about(i,j)⇒Span(j,T)
[4] ∃iSpan(j,T)⇒Is about(i,j)
[5] Is from(i,j)⇒Span(i,O)
[6] Is about(i,j)⇒Span(i,O)

5
Implicit Classifiers & Entity
Extractor

vik + xiO ≥ 1
[1]!Implicit src(i)⇒Span(i,O)
[2]!Implicit trg(i)⇒Span(i,O)

6 SRL & Entity Extractor − [1] Sense(i,s+) ⇒ Span(i,c+)
[2] Role(i,r+) ⇒ Span(i,c+)

7 SRL & Relation Classifier −

[1] Sense(i,s+) ∧ Role(j,r+)
⇒Is from(i,j)
[2] Sense(i,s+) ∧ Role(j,r+)
⇒Is about(i,j)

− MLN Consistency − [1] !Is from(i,i).
[2] !Is about(i,i).

Table 1: Consistency constraints for fine-grained opinion extraction encoded as linear constraints for ILP and first-order
logic formulas for MLNs.

Next, we introduce a set of binary indicator variables whose
values are to be determined by ILP during the joint infer-
ence process. Specifically, xiz has the value 1 if ILP be-
lieves that span i should have entity label z, where z =∈
{opinion, target, source, none}; uij has the value 1 if and
only if ILP believes that opinion candidate i inO has a rela-
tion with argument candidate j in Ak and vik has the value
1 if ILP believes that this opinion candidate is related to a
null argument in the relation type k.
Finally, we combine these binary variables (xiz , uij , and
vik) with the confidence values returned by the entity ex-
traction model (fiz), the opinion-argument classifiers (rij),
and the argument-implicit classifiers (ri∅) into the follow-
ing objective function:

argmax
x,u,v

λ
∑
i∈S

∑
z

fizxiz (3)

+(1− λ)
∑
k

∑
i∈O

∑
j∈Ak

rijuij + ri∅vik

As we can see, the function is a linear combination of the
confidence values from the three predictors (fiz , rij , ri∅),
and λ is a parameter used to balance the contribution of the
entity extraction model and the relation extraction classi-
fiers.
The objective function will be optimized subject to the first
five consistency constraints defined in the previous section.
The column under “ILP” in Table 1 shows how these con-
straints can be encoded in ILP. The encoding of the first five
constraints is due to Y&C.
Two points deserve mention. First, merely enforcing the
consistency between the argument-implicit classifiers and
the opinion-argument classifiers in Constraint (3) does not

require the use of the variables aik and bik. These two vari-
ables are used to enforce an additional constraint: an opin-
ion can be related to at most three arguments. The same is
true for Constraint (4): the variables cjk and djk are used to
enforce the additional constraint that a source or target can
be related to at most three opinions. Second, we do not en-
code Constraints (6) and (7) as ILP constraints. The reason
is that these two constraints are intended as soft constraints:
although it is possible to soften hard constraints in ILP, it is
by no means easy to directly encode soft constraints in ILP,
as we will see in the next section.

3.3. MLN Formulation
Unlike ILP, which operates at the propositional level by
defining propositional variables, MLNs employ first-order
logic, which defines predicates that operate on sets of ob-
jects. MLNs employ two types of predicates.
Query predicates are those whose assignments are not
given during inference and thus need to be predicted.
For the fine-grained opinion extraction task, we define
five query predicates. Span(i,l) is true when the la-
bel assigned to text span i is l. Is about(i,j)
asserts that opinion i is related to source j. Sim-
ilarly, Is from(i,j) asserts that opinion i is re-
lated to target j. Finally, Implicit src(i) and
Implicit trg(i) assert that opinion i is source-
implicit and target-implicit, respectively.
Evidence predicates are those whose values are known
during inference. We define three evidence predicates.
Overlap(i,j) indicates that spans i and j overlap.
Sense(i,s) and Role(i,r) indicate that span i has
verb sense s and verb argument r assigned to it, respec-
tively.
The column under “MLN” in Table 1 shows how the

seven consistency constraints can be encoded in an MLN.
For instance, the formula ∃c Span(i,c!), which im-
plements Constraint (1), encodes the hard constraint that
each span i can have exactly one label. (The ! symbol as-
serts that the labels assigned to a span are mutually exclu-
sive.) The formulas Sense(i,s+) ⇒ Span(i,c+)
and Role(i,r+) ⇒ Span(i,c+), which implement
Constraint (6), encode the soft constraint that a candi-
date entity having sense s or role r should be labeled as
a span with entity type c. The (+) operator asserts that
there exists an instantiated formula for every combina-
tion of values in the variable domain. For instance, given
Sense(i,s+) ⇒ Span(i,c+), one formula will be
instantiated for each combination of sense s and entity la-
bel c of candidate span i.
In addition to the seven constraints, we need the two for-
mulas shown in the last row of Table 1. They ensure that
spans are not related to themselves. Note that this constraint
needs to be explicitly specified for the MLN but not for
ILP. The reason is that MLN operates at the predicate level,
meaning that it will instantiate all predicates within its argu-
ments domain. On the other hand, in ILP, we have control
over which variables are created because ILP operates at
the propositional level.
As mentioned before, MLN formulas encode either hard
or soft constraints. Hard constraints are encoded as for-
mulas with infinite weights (those ending with a period),
whereas soft constraints are encoded as formulas with fi-
nite weights (i.e., when a soft formula logically evaluates
to True, the knowledge encoded in it is proportional to the
their weight). Note that while Constraints (2)−(5) are orig-
inally intended as hard constraints, they are implemented
as soft constraints in our MLN. The reason is that doing so
may make the MLN more robust to the noise inherent in the
entity extractor and the relation classifiers’ classifications.
A few other points deserve mention. First, while ILP incor-
porates the confidence values associated with the various
classifiers’ outputs into the objective function, these outputs
are incorporated into an MLN as soft evidence, which can
be thought of as our prior belief that a given atom (i.e., a
grounded query predicate) is true. Specifically, we include
as priors the atoms Span(s,l 6= N) with weight we

when p(s = l|x) ≥ γ, where p(s = l|x) is the probability
that the CRF thinks span s has entity type l given evidence
x. We include another atom Span(s,N) with weight
wn. In addition, we include atom Is from(i,j) with
weight wr when p(src(i, j)|x) ≥ ξ, where p(src(i, j)|x)
is the probability that the relation extractor thinks opin-
ion i and source j. In a similar fashion, we include atom
Is about(i,j) with weight wr. Also, we included pri-
ors Implicit src(i) and Implicit trg(i) with
weights equal to the positive probability values given by
the corresponding implicit prediction classifier. In con-
trast, we include atoms Sense(i,s), Role(i,s) and
Overlap(i,j) as evidences to the MLN since we di-
rectly observe them.
Second, unlike ILP, which implements the additional con-
straint that limits the number of arguments an opinion can
take in Constraint (3), MLNs cannot do so: since Markov
Logic is a function-less language, MLNs in general cannot

encode cardinality constraints.
Finally, as mentioned before, MLNs do not require the
specification of an objective function. Instead, they in-
fer the most likely combination of variables (MAP tuple)
from the induced Markov Network obtained by ground-
ing the MLN, typically by maximizing the conditional log-
likelihood of the data.

4. MLNs: Strengths
In this section, we will discuss the strengths of MLNs.
The ability to employ soft constraints. Soft constraints
are useful because (1) they allow us to model phenomena
that are true with a certain probability, and (2) they provide
tunable “knobs” or additional parameters that are used to
increase the system’s performance. A soft constraint can
be created easily in a MLN by assigning a weight (i.e.,
a real value) to the desired constraint, where the magni-
tude of the weight indicates the importance that the con-
straint is satisfied. If it is difficult to assign weights manu-
ally, weight learning algorithms for MLNs can be used in-
stead (e.g., Richardson and Domingos (2006), Huynh and
Mooney (2011)). The ability to learn from data is one of
the advantages of MLNs over ILP: unlike MLNs, ILP is a
pure inference framework that does not have the ability to
learn.
While it is easy to encode soft constraints in MLNs, the
same is not true for ILP. One can, however, “soften” a hard
constraint in ILP by incorporating it into the objective func-
tion and associating it with a coefficient. Consider, for in-
stance, Equation (3), where the two terms in the objective
function weighted using the parameter λ. Note that this pa-
rameter has a softening effect: a smaller λ implies that the
first term will have less of an impact on the objective func-
tion. Hence, any hard constraint can be softened in a similar
manner by associating it with a ”weight” parameter when
incorporated into the objective function, where the magni-
tude of the weight indicates the importance of satisfying the
constraint. If it is difficult to manually specify the param-
eters, one can use a held-out development set to tune these
weights.

Compact representation. While ILP operates at the
propositional level, MLNs operate at the predicate level.
This enables MLNs to inherit a key advantage of first-order
logic over propositional logic: MLNs can encode a problem
more compactly than ILP. This is appealing from a user’s
perspective: a user can focus on encoding the constraints on
the outputs, and leave the grounding of these predicates and
formulas entirely to the MLN inference engine. In particu-
lar, when applying an MLN to different problem instances,
the first-order formulas remain unchanged: all we need to
change are the evidence predicates (i.e., the observations).5

In contrast, an ILP program cannot encode a problem in-
stance compactly. The reason, as mentioned above, is that
ILP operates at the propositional level: one variable has to
be created for each decision that is to be made by the ILP

5A problem instance corresponds to a joint inference problem.
In our fine-grained opinion extraction task, since we perform joint
inference over each sentence, a problem instance corresponds to
the joint inference problem created for a sentence.

inference engine, and constraints have to be defined over
these variables. Given that both the objective function and
the linear constraints are dependent on the variables, a dif-
ferent objective function and a different set of linear con-
straints have to be created for each problem instance.

Ease of specification. It is typically much easier to for-
mulate constraints in MLNs than in ILP. One reason is
that it is easier for humans to reason with constraints ex-
pressed as logical formulas than constraints expressed as
linear equalities/inequalities. As an example, consider Con-
straint (5), which states that an opinion candidate that is not
argument-implicit must an opinion. As can be seen from
Table 1, this constraint can be easily encoded as two first-
order formulas, which state that an opinion candidate that
is not source-implicit or target-implicit must be an opinion.
On the other hand, it is comparatively more difficult for
a human to encode and understand the corresponding ILP
constraint: if vik = 0 (opinion candidate i is not implicit),
then in order for this inequality to be true, xiO has to be
equal to 1 (i.e., i has to be an opinion).
If the above example is not compelling enough, consider
encoding the transitivity constraint. If relation R is tran-
sitive, we can encode transitivity in MLN using the for-
mula R(i, j) ∧ R(j, k)⇒ R(i, k). In ILP, one can enforce
transitivity over three variables using the linear inequality
(1?xi,j) + (1?xj,k) ≥ (1?xi,k). Again, it is comparatively
much harder to encode and understand this constraint in
ILP than in MLN. In fact, the encoding process will only
become harder as a constraint involves more variables. In
other words, ILP puts a much larger burden on the user than
MLNs in terms of problem encoding, especially when the
problem involves encoding complex output constraints.
A related point deserves mention: not all constraints that
are intuitively true for a problem will indeed improve per-
formance when they are enforced. For instance, while all
the constraints in Table 1 are intuitively useful to have,
not all of them will be as useful as we think: their use-
fulness depends on the correctness of the underlying mod-
els (i.e., the entity extractor and the relation classifiers). If
these models are ”reasonably accurate”, enforcing the con-
straints could improve performance. Otherwise, enforcing
the constraints could have an adverse effect on overall per-
formance. One way to determine the usefulness of con-
straints is to experiment with them on a held-out develop-
ment set. MLNs, however, provide an alternative solution.
By encoding constraints as soft formulas, the user does not
need to worry about whether employing a constraint will
hurt performance: if the soft constraint is determined to be
not useful, it will be assigned a low weight by the MLN.

5. MLNs: Challenges and Weaknesses
In this section, we will discuss the weaknesses of MLNs
and the challenges faced by researchers when applying
them to NLP tasks.

Exponential time and space complexity. Since ground-
ing a MLN is exponential in the size of the domain and
inference is shown to be NP-hard (Richardson and Domin-
gos, 2006), handling large problems has traditionally been
one of its major challenges. Fortunately, recent advances

in lifted inference algorithms have been developed to re-
duce the domain size of the variables in MLNs (Gogate
and Domingos, 2010), and scalable approaches to weight
learning have been developed that leverage fast, approxi-
mate counting techniques (Gogate et al., 2010). Despite
these advances, scalability is still a major issue surround-
ing inference and parameter estimation in MLNs. As of
today, ILP can solve larger problems than MLNs. This in
part explains the broader use of ILP in the NLP community
than MLNs for joint inference.

Failure to exploit prior information in learning. As
mentioned before, the confidence values assigned by the
different models (e.g., the entity extractor and the relation
classifiers in the fine-grained extraction task) can be incor-
porated as prior information for an MLN. However, exist-
ing weight learning algorithms cannot take advantage of
such prior information during the training process (Venu-
gopal et al., 2014). In particular, prior information can only
be applied during test time. Moreover, since the weights
were learned without taking into account the prior informa-
tion, they could be suboptimal when combined with prior
information to make decisions during the inference process.
Typically, the priors are scaled before they are used in com-
bination with the learned weights during test time (Venu-
gopal et al., 2014).
In ILP, prior information is used within the objective func-
tion. Since there is no learning in ILP, the issue of combin-
ing priors with weight learning is not applicable to ILP.

No support for functions and preprocessing overhead.
Markov Logic is a functionless language. Common op-
erators such as equality checking and comparison are not
readily available. To perform these operations, new pred-
icates have to be defined, which may result in an expen-
sive preprocessing step before inference and weight train-
ing. In our running example, if we were to assert that two
entity candidates refer to distinct entities in Formula 4.1,
we cannot simply include the expression i 6= j in it. In-
stead, we need to include a predicate Neq(i,j), convert-
ing the formula to: Is from(i,j) ∧ Neq(i,j) ⇒
Span(j,S).6. This is problematic for two reasons. First,
the number of additional atoms that need to be added to
the network can be large depending on the domain size of
the predicate’s arguments. This could significantly increase
the network space requirements as well as the time for in-
ference and parameter learning. Second, the preprocessing
step can be computationally expensive because the num-
ber of groundings is exponential in the size of the predi-
cate’s domain. ILP constraints, in contrast, are expressed
as mathematical equations, so ILP natively support func-
tions and therefore does not incur this preprocessing over-
head. It is worth mentioning that some MLNs implementa-
tions (e.g., Rockit (Noessner et al., 2013) and Markov the
Beast (Riedel, 2008)) create an ILP program as an infer-
ence subroutine that allows the use of a predefined set of
functions.

6We circumvented this problem by including the two hard for-
mulas in the last row of Table 1, which together have the same
effect as Neq(i,j).

Overlap Exact
Opinion Target Source Opinion Target Source

Experiment P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
ILP 50.5 72.2 59.4 44.9 36.2 40.1 67.3 37.4 48.1 39.2 56.1 46.2 15.1 12.2 13.5 57.7 32.0 41.2
MLN 75.6 45.5 56.8 55.0 34.7 42.6 77.1 49.6 60.4 59.2 35.6 44.5 25.3 16.0 19.6 67.7 43.6 53.0
MLNSRL 66.4 47.0 55.0 51.2 25.6 34.2 64.5 59.6 62.0 52.1 36.9 43.2 15.9 8.0 10.6 55.4 51.3 53.3

Table 2: Entity extraction results with respect to the overlap and exact metrics.

Failure to encode cardinality constraints. Another con-
sequence of defining Markov Logic as a functionless lan-
guage is that MLNs cannot encode cardinality constraints.
So, the additional cardinality constraint encoded as part of
the implementation of Constraints (3) and (4) for ILP (e.g.,
an opinion can be related to at most three sources/targets)
cannot not be enforced in an MLN. Note that some of the
aforementioned MLN implementations such as Markov the
Beast and Rockit are able to address this weakness. The
reason is that they implement MLNs by casting the opti-
mization problem of counting the number of satisfied con-
straints as an ILP problem. In other words, once a MLN is
mapped to ILP, one can include cardinality constraints as in
any other ILP formulations.

6. Evaluation
In this section, we will conduct an empirical comparison of
our ILP and MLN for fine-grained opinion extraction.

6.1. Experimental Setup
Corpus. As mentioned in Section 2.1.2, for evaluation
we use the 433 documents in the MPQA 2.0 corpus that
remain after discarding those that are ill-formed. Unlike
Y&C, we do not remove from these documents the sen-
tences that contain no opinionated entities in our evaluation.
Hence, our evaluation setting is arguably more challenging
than that of Y&C. 20% of the corpus is reserved solely for
parameter tuning (i.e., the regularization parameters in the
entity extractor and the relation extraction classifiers, λ (for
ILP), γ, ξ, we and wr (for the MLN)). Evaluation results
are obtained via five-fold cross-validation experiments on
the remaining documents.

Software packages. We employ Gurobi for ILP-based
joint inference and Tuffy for MLN-based joint inference.

Evaluation metrics. We use the same evaluation criteria
as Y&C: precision, recall and F1 score for both overlap
and exact matching mechanisms7. In addition, we report
the time taken by the ILP/MLN package to produce the test
results in each experiment.

6.2. Results and Discussion
Entity extraction results. Entity extraction results ob-
tained using the overlap and exact metrics are shown in Ta-
ble 2. Row 1 shows the ILP results. Rows 2 and 3 show the
MLN results obtained without and with Constraints (6) and
(7) in Table 1 (i.e., the soft constraints on the semantic role
labels), respectively. Comparing rows 1 and 2, we can see

7An overlap match occurs when a predicted entity span’s in-
dices overlap with those of a gold entity.

Is from Is about
Experiment P R F1 P R F1
ILP 68.3 11.6 19.8 54.9 14.3 22.7
MLN 58.8 12.8 21.0 47.7 20.3 28.5
MLNSRL 46.1 19.1 27.0 42.1 8.5 14.1

Table 3: Relation extraction results with respect to overlap
metric.

that with respect to both metrics, ILP outperforms MLN on
Opinion extraction but underperforms it on Source and Tar-
get extraction. The addition of the constraints on semantic
roles to the MLN does not always improve its performance:
comparing rows 2 and 3, we can see that with respect to
both metrics, MLNSRL underperforms MLN on both Opin-
ion and Target extraction and outperforms it slightly on
Source extraction. Hence, as far as entity extraction is con-
cerned, neither inference frameworks are superior to the
other, and moreover, a richer MLN model does not always
yield better performance. It is worth noting that the ILP re-
sults are lower than those reported in Y&C’s paper. These
results suggest that retaining sentences without opinionated
entities yields a harder task.8

Relation extraction results. Relation extraction results
obtained using the overlap metric are shown in Table 3. The
system configurations underlying the three rows in this ta-
ble are the same as those in Table 2. As we can see, MLN
outperforms both ILP and MLNSRL with respect to both
relations. It seems to have benefitted more from joint in-
ference than ILP. In particular, its better performance on
extracting both types of relations is partly responsible for
its superior performance on Source and Target extraction.
While MLNSRL has similarly benefitted from joint infer-
ence (its relatively strong performance on extracting Is from
relations has contributed in part to its strong performance
on Source extraction), it has also suffered from joint infer-
ence. Specifically, its poor performance on extracting Is
about relations has contributed in part to its poor perfor-
mance on Target extraction. These results suggest that joint
inference can sometimes improve performance and some-
times hurt performance. We speculate that semantic role
information has been used correctly by MLNSRL to model
one but not both relation types, and that the weight learn-
ing process is not robust enough to weaken the influence of
”incorrect” formulas. Additional experiments are needed to
determine the reason.

8We caution that our train-test partition may not be the same
as Y&C’s: their partition is not available to us.

Cardinality constraints. While the five constraints
shown in Table 1 were enforced by both inference frame-
works, recall that MLN does not impose the cardinality
constraints that ILP employs in its encoding of Constraints
(3) and (4). The results in Tables 2 and 3 do not seem to
suggest that the lack of cardinality constraints has had an
adverse impact on MLN’s performance.

Running time. ILP, MLN, and MLNSRL took approx-
imately 550 seconds, 7200 seconds, and 21600 seconds
to produce test outputs, respectively. Note that the times
shown here include not only inference time but also the
time needed to read the input files, for instance. Hence,
it is not entirely correct to conclude that MLN is 40 times
slower than ILP. Nevertheless, this large time difference
cannot be solely accounted for by differences in input read-
ing time. We attribute the additional time used by the MLN
to the grounding process. With the addition of predicates
and formulas related to semantic roles, more predicates and
formulas need to be grounded, hence the substantial in-
crease in MLNSRL’s runtime.

7. Conclusions
We conducted a qualitative comparison of two joint infer-
ence frameworks, ILP and MLNs, as well as an empirical
comparison of the two on the fine-grained opinion extrac-
tion task. Empirically speaking, neither of them consis-
tently produces superior results to the other, but our very
rough approximation of running time provided suggestive
evidence that ILP-based inference was more efficient than
MLN-based inference. Qualitatively speaking, MLNs are
superior to ILP in terms of their ease of specification as
well as their ability to employ soft constraints and encode
problem constraints in a compact manner. Their biggest
drawback, however, is their inability to scale to large prob-
lems. Nevertheless, fast and scalable inference for MLNs
is an active area of research that continuously produces ad-
vances towards more efficient algorithms.
In future work, we will conduct an extensive empirical
comparison of these two frameworks on a range of NLP
tasks that can potentially benefit from joint inference.

8. Acknowledgments
We thank the three anonymous reviewers for their detailed
and insightful comments on an earlier draft of this pa-
per. This work was supported in part by NSF Grant IIS-
1546538. Any opinions, findings, conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views or official policies,
either expressed or implied, of NSF.

9. Bibliographical References
Berkelaar, M., Eikland, K., Notebaert, P., et al. (2004). lp-

solve: Open source (mixed-integer) linear programming
system. Eindhoven U. of Technology.

Björkelund, A., Hafdell, L., and Nugues, P. (2009). Mul-
tilingual semantic role labeling. In Proceedings of the
Thirteenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 43–48. Association
for Computational Linguistics.

Domingos, P. and Lowd, D. (2009). Markov logic: An in-
terface layer for artificial intelligence. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 3(1):1–
155.

Gogate, V. and Domingos, P. (2010). Exploiting logical
structure in lifted probabilistic inference. In Statistical
Relational Artificial Intelligence.

Gogate, V., Webb, W., and Domingos, P. (2010). Learning
efficient markov networks. In Advances in Neural Infor-
mation Processing Systems, pages 748–756.

Huynh, T. N. and Mooney, R. J. (2011). Online max-
margin weight learning for markov logic networks. In
SDM, pages 642–651.

Kok, S., Singla, P., Richardson, M., Domingos, P., Sum-
ner, M., Poon, H., Lowd, D., and Wang, J. (2008). The
alchemy system for statistical relational ai: user manual.
Department of Computer Science and Engineering, Uni-
versity of Washington, page 41.

Koller, D. and Friedman, N. (2009). Probabilistic graphi-
cal models: principles and techniques. MIT press.

Niu, F., Ré, C., Doan, A., and Shavlik, J. (2011). Tuffy:
Scaling up statistical inference in markov logic networks
using an rdbms. Proceedings of the VLDB Endowment,
4(6):373–384.

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013).
Rockit: Exploiting parallelism and symmetry for map
inference in statistical relational models. arXiv preprint
arXiv:1304.4379.

Richardson, M. and Domingos, P. (2006). Markov logic
networks. Machine learning, 62(1-2):107–136.

Riedel, S. (2008). Improving the accuracy and efficiency
of map inference for markov logic. In Proceedings of
the 24th Annual Conference on Uncertainty in AI (UAI
’08), pages 468–475.

Riedel, S. (2009). Cutting plane map inference for markov
logic. In SRL 2009.

Schuler, K. K. (2005). Verbnet: A broad-coverage, com-
prehensive verb lexicon.

Taskar, B. and Getoor, L. (2007). Introduction to statistical
relational learning.

Venugopal, D. and Gogate, V. (2012). On lifting the gibbs
sampling algorithm. In Advances in Neural Information
Processing Systems, pages 1655–1663.

Venugopal, D., Chen, C., Gogate, V., and Ng, V. (2014).
Relieving the computational bottleneck: Joint inference
for event extraction with high-dimensional features. In
Proceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
831–843.

Wiebe, J., Wilson, T., and Cardie, C. (2005). Annotating
expressions of opinions and emotions in language. Lan-
guage resources and evaluation, 39(2-3):165–210.

Wilson, T. A. (2008). Fine-grained subjectivity and senti-
ment analysis: recognizing the intensity, polarity, and at-
titudes of private states. Ph.D. thesis, University of Pitts-
burgh.

Yang, B. and Cardie, C. (2013). Joint inference for fine-
grained opinion extraction. In ACL (1), pages 1640–
1649.

