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Abstract

This paper introduces an unsupervised
morphological segmentation algorithm
that shows robust performance for four
languages with different levels of mor-
phological complexity. In particular, our
algorithm outperforms Goldsmith’s Lin-
guistica and Creutz and Lagus’s Mor-
phessor for English and Bengali, and
achieves performance that is comparable
to the best results for all three PASCAL
evaluation datasets. Improvements arise
from (1) the use of relative corpus fre-
quency and suffix level similarity for de-
tecting incorrect morpheme attachments
and (2) the induction of orthographic rules
and allomorphs for segmenting words
where roots exhibit spelling changes dur-
ing morpheme attachments.

1 Introduction

Morphological analysis is the task of segmenting a
word into morphemes the smallest meaning-
bearing elements of natural languages. Though
very successful, knowledge-based morphological
analyzers operate by relying on manually designed
segmentation heuristics (e.g. Koskenniemi (1983)),
which require a lot of linguistic expertise and are
time-consuming to construct. As a result, research
in morphological analysis has exhibited a shift to
unsupervised approaches, in which a word is typi-
cally segmented based on morphemes that are
automatically induced from an unannotated corpus.
Unsupervised approaches have achieved consider-

able success for English and many European lan-
guages (e.g. Goldsmith (2001), Schone and Juraf-
sky (2001), Freitag (2005)). The recent PASCAL
Challenge on Unsupervised Segmentation of
Words into Morphemes' has further intensified
interest in this problem, selecting as target lan-
guages English as well as two highly agglutinative
languages, Turkish and Finnish. However, the
evaluation of the Challenge reveals that (1) the
success of existing unsupervised morphological
parsers does not carry over to the two agglutinative
languages, and (2) no segmentation algorithm
achieves good performance for all three languages.
Motivated by these state-of-the-art results, our
goal in this paper is to develop an unsupervised
morphological segmentation algorithm that can
work well across different languages. With this
goal in mind, we evaluate our algorithm on four
languages with different levels of morphological
complexity, namely English, Turkish, Finnish and
Bengali. It is worth noting that Bengali is an under-
investigated Indo-Aryan language that is highly
inflectional and lies between English and Turk-
ish/Finnish in terms of morphological complexity.
Experimental results demonstrate the robustness of
our algorithm across languages: it not only outper-
forms Goldsmith’s (2001) Linguistica and Creutz
and Lagus’s (2005) Morphessor for English and
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when
evaluated on all three datasets in the Challenge.
The performance improvements of our segmen-
tation algorithm over existing morphological ana-
lyzers can be attributed to our extending Keshava
and Pitler’s (2006) segmentation method, the best
performer for English in the aforementioned

! http://www.cis.hut.fi/morphochallenge2005/



PASCAL Challenge, with the capability of han-
dling two under-investigated problems:

Detecting incorrect attachments. Many existing
morphological parsers incorrectly segment “candi-
date” as “candid”+*“ate”, since they fail to identify
that the morpheme “ate” should not attach to the
word “candid”. Schone and Jurafsky’s (2001) work
represents one of the few attempts to address this
inappropriate morpheme attachment problem, in-
troducing a method that exploits the semantic re-
latedness between word pairs. In contrast, we
propose two arguably simpler, yet effective tech-
niques that rely on relative corpus frequency and
suffix level similarity to solve the problem.
Inducing orthographic rules and allomorphs.
One problem with Keshava and Pitler’s algorithm
is that it fails to segment words where the roots
exhibit spelling changes during attachment to mor-
phemes (e.g. “denial” = “deny”’+“al”). To address
this problem, we automatically acquire allomorphs
and orthographic change rules from an unannotated
corpus. These rules also allow us to output the ac-
tual segmentation of the words that exhibit spelling
changes during morpheme attachment, thus avoid-
ing the segmentation of “denial” as “deni”+”al”, as
is typically done in existing morphological parsers.

In addition to addressing the aforementioned
problems, our segmentation algorithm has two ap-
pealing features. First, it can segment words with
any number of morphemes, whereas many analyz-
ers can only be applied to words with one root and
one suffix (e.g. DéJean (1998), Snover and Brent
(2001)). Second, it exhibits robust performance
even when inducing morphemes from a very large
vocabulary, whereas Goldsmith’s (2001) and
Freitag’s (2005) morphological analyzers perform
well only when a small vocabulary is employed,
showing deteriorating performance as the vocabu-
lary size increases.

The rest of this paper is organized as follows.
Section 2 presents related work on unsupervised
morphological analysis. In Section 3, we describe
our basic morpheme induction algorithm. We then
show how to exploit the induced morphemes to (1)
detect incorrect attachments by using relative cor-
pus frequency (Section 4) and suffix level similar-
ity (Section 5) and (2) induce orthographic rules
and allomorphs (Section 6). Section 7 describes
our algorithm for segmenting a word using the in-
duced morphemes. We present evaluation results
in Section 8 and conclude in Section 9.

2 Rdated Work

As mentioned in the introduction, the problem of
unsupervised morphological learning has been ex-
tensively studied for English and many other
European languages. In this section, we will give
an overview of the related work on this problem.

Harris (1955) develops a strategy for identifying
morpheme boundaries that checks whether the
number of different letters following a sequence of
letters exceeds some given threshold. DéJean
(1998) improves Harris’s segmentation algorithm
by first inducing a list of 100 most frequent mor-
phemes and then using those morphemes for word
segmentation. The aforementioned PASCAL Chal-
lenge on Unsupervised Word Segmentation has
undoubtedly intensified interest in this problem.
Among the participating groups, Keshava and Pit-
ler’s (2006) segmentation algorithm combines the
ideas of DéJean and Harris and achieves the best
result for the English dataset, but it only offers me-
diocre performance for Finnish and Turkish.

There is another class of unsupervised morpho-
logical learning algorithms whose design is driven
by the Minimum Description Length (MDL) prin-
ciple. Specifically, EM is used to iteratively seg-
ment a list of words using some predefined
heuristics until the length of the morphological
grammar converges to a minimum. Brent et al.
(1995) are the first to introduce an information-
theoretic notion of compression to represent the
MDL framework. Goldsmith (2001) also adopts
the MDL approach, providing a new compression
system that incorporates signatures when measur-
ing the length of the morphological grammar.
Creutz (2003) proposes a probabilistic maximum a
posteriori formulation that uses prior distributions
of morpheme length and frequency to measure the
goodness of an induced morpheme, achieving bet-
ter results for Finnish but worse results for English
in comparison to Goldsmith’s Linguistica.

3 The Basic Morpheme Induction Algo-
rithm

Our unsupervised segmentation algorithm is com-
posed of two steps: (1) inducing prefixes, suffixes
and roots from a vocabulary that consists of words
taken from a large corpus, and (2) segmenting a
word using these induced morphemes. This section
describes our basic morpheme induction method.



3.1 Extractingalist of Candidate Affixes

The first step of our morpheme induction method
involves extracting a list of candidate prefixes and
suffixes. We rely on a fairly simple idea originally
proposed by Keshava and Pitler (2006) for extract-
ing candidate affixes. Assume that a and f are two
character sequences and af is the concatenation of
a and g. If af and a are both found in the vocabu-
lary, then we extract f§ as a candidate suffix. Simi-
larly, if af and g are both found in the vocabulary,
then we extract a as a candidate prefix.

The above affix induction method is arguably
overly simplistic and therefore can generate many
spurious affixes. To filter spurious affixes, we (1)
score each affix by multiplying its frequency (i.e.
the number of distinct words to which each affix
attaches) and its length?, and then (2) retain only
the K top-scoring affixes, where K is set differently
for prefixes and suffixes. The value of K is some-
what dependent on the vocabulary size, as the af-
fixes in a larger vocabulary system are generated
from a larger number of words. For example, we
set the thresholds to 70 for prefixes and 50 for suf-
fixes for English; on the other hand, since the Fin-
nish vocabulary is almost six times larger than that
of English, we set the corresponding thresholds to
be approximately six times larger (400 and 300 for
prefixes and suffixes respectively).’

3.2 Detecting Composite Suffixes

Next, we detect and remove composite suffixes (i.e.
suffixes that are formed by combining multiple
suffixes [e.g. “ers” = “er”+“s”]) from our induced
suffix list, because their presence can lead to un-
der-segmentation of words (e.g. “walkers”, whose
correct segmentation is “walk”+“er”+“s”, will be
erroneously segmented as “walk”+“ers”). Compos-
ite suffix detection is a particularly important prob-
lem for languages like Bengali in which composite
suffixes are abundant (see Dasgupta and Ng
(2007)). Note, however, that simple concatenation
of multiple suffixes does not always produce a
composite suffix. For example, “ent”, “en” and “t”

all are valid suffixes in English, but “ent” is not a

% The dependence on frequency and length is motivated by the observation that
less-frequent and shorter affixes (especially those of length 1) are more likely to
be erroneous (see Goldsmith (2001)).

% Since this method for setting our vocabulary-dependent thresholds is fairly
simple, the use of these thresholds should not be viewed as rendering our seg-
mentation algorithm language-dependent.

composite suffix. Hence, we need a more sophisti-
cated method for composite suffix detection.

Our detection method is motivated by the fol-
lowing observation: if Xy is a composite suffix and
a word W combines with Xy, then it is highly likely
that w will also combine with its first component
suffix X. Note that this property does not hold for
non-composite suffixes. For instance, words that
combine with the non-composite suffix “ent” (e.g.
“absorb”) do not combine with its first component
suffix “en”. Consequently, given two suffixes X
and Yy, our method posits Xy as a composite suffix if
Xy and X are similar in terms of the words to which
they attach. Specifically, we consider Xy and X to
be similar if their similarity value as computed by
the formula below is greater than 0.6:

Smilarity (xy, X) = P(xI xy) :R//VTI"
where W'l is the number of distinct words that
combine with both xy and X, and IW is the number
of distinct words that combine with Xxy.

3.3 ExtractingalList of Candidate Roots

Finally, we extract a list of candidate roots using
the induced list of affixes as follows. For each
word, W, in the vocabulary, we check whether w is
divisible, i.e. whether w can be segmented as r+x
or p+r, where p is an induced prefix, X is an in-
duced suffix, and r is a word in the vocabulary. We
then add w to the root list if it is not divisible.
Note, however, that the resulting root list may con-
tain compound words (i.e. words with multiple
roots). Hence, we make another pass over our root
list to remove any word that is a concatenation of
multiple words in the vocabulary.

4 Detecting Incorrect Attachments Using
Relative Frequency

Our induced root list is not perfect: many correct
roots are missing due to over-segmentation. For
example, since “candidate” and “candid” are in the
vocabulary and “ate” is an induced suffix, our root
induction method will incorrectly segment “candi-
date” as “candid”+“ate”; as a result, it does not
consider “candidate” as a root. So, to improve the
root induction method, we need to determine that
the attachment of the morpheme “ate” to the root
word “candid” is incorrect. In this section, we pro-
pose a simple yet novel idea of using relative cor-



pus frequency to determine whether the attachment
of a morpheme to a root word is plausible or not.

Consider again the two words “candidate” and
“candid”. While “candidate” occurs 6380 times in
our corpus, “candid” occurs only 119 times. This
frequency disparity can be an important clue to
determining that there is no morphological relation
between “candidate” and “candid”. Similar obser-
vation is also made by Yarowsky and Wicentowski
(2000), who successfully employ relative fre-
quency similarity or disparity to rank candidate
VBD/VB pairs (e.g. “sang”/“sing”) that are irregu-
lar in nature. Unlike Yarowsky and Wicentowski,
however, our goal is to detect incorrect affix at-
tachments and improve morphological analysis.

Our incorrect attachment detection algorithm,
which exploits frequency disparity, is based on the
following hypothesis: if a word w is formed by
attaching an affix mto a root word r, then the cor-
pus frequency of W is likely to be less than that of r
(i.e. the frequency ratio of W to r is less than one).
In other words, we hypothesize that the inflectional
or derivational forms of a root word occur less fre-
quently in a corpus than the root itself.

To illustrate this hypothesis, Table 1 shows
some randomly chosen English words together
with their word-root frequency ratios (WRFRs).
The <word, root> pairs in the left side of the table
are examples of correct attachments, whereas those
in the right side are not. Note that only those words
that represent correct attachments have a WRFR
less than 1.

The question, then, is: to what extent does our
hypothesis hold? To investigate this question, we
generated examples of correct attachments by ran-
domly selecting 400 words from our English vo-
cabulary and then removing those that are root
words, proper nouns, or compound words. We then
manually segmented each of the remaining 378
words as Prefix+Root or Root+Suffix with the aid
of the CELEX lexical database (Baayean et al.,
1996). Somewhat surprisingly, we found that the
WREFR is less than 1 in only 71.7% of these at-
tachments. When the same experiment was re-
peated on 287 hand-segmented Bengali words, the
hypothesis achieves a higher accuracy of 83.6%.

To better understand why our hypothesis does
not work well for English, we measured its accu-
racy separately for the Root+Suffix words and the
Prefix+Root words, and found that the hypothesis
fails mostly on the suffixal attachments (see Table

2). Though surprising at first glance, the relatively
poor accuracy on suffixal attachments can be at-
tributed to the fact that many words in English
(e.g. “amusement”, “winner”’) appear more fre-
quently in our corpus than their corresponding root
forms (e.g. “amuse”, “win”). For Bengali, our hy-
pothesis fails mainly on verbs, whose inflected
forms occur more often in our corpus than their
roots. This violation of the hypothesis can be at-
tributed to the grammatical rule that the main verb
of a Bengali sentence has to be inflected according
to the subject in order to maintain sentence order.

To improve the accuracy of our hypothesis on
detecting correct attachments, we relax our initial
hypothesis as follows: if an attachment is correct,
then the corresponding WREFR is less than some
predefined threshold t, where t > 1. However, we
do not want t to be too large, since our algorithm
may then determine many incorrect attachments as
correct. In addition, since our hypothesis has a high
accuracy for prefixal attachments than suffixal at-
tachments, the threshold we employ for prefixes
can be smaller than that for suffixes. Taking into
account these considerations, we use a threshold of
10 for suffixes and 2 for prefixes for all the lan-
guages we consider in this paper.

Correct Parses Incorrect Parses
Word Root WRFR | Word Root WRFR
bear-able bear 0.01 candid-ate candid 53.6
attend-ance attend | 0.24 medic-al medic 483.9
arrest-ing arrest 0.06 prim-ary prim 3274
sub-group group | 0.0002 ac-cord cord 24.0
re-cycle cycle 0.028 ad-diction diction | 52.7
un-settle settle 0.018 de-crease crease 20.7
Table 1: Word-root frequency ratios
Root+Suffix | Prefix+Root | Overall
# of words 344 34 378
WRFR <1 70.1% 88.2% 71.7%

Table 2: Hypothesis validation for English

Now we can employ our hypothesis to detect in-
correct attachments and improve root induction as
follows. For each word, w, in the vocabulary, we
check whether (1) w can be segmented as r+X or
p+r, where p and X are valid prefixes and suffixes
respectively and r is another word in the vocabu-
lary, and (2) the WREFR for w and r is less than our
predefined thresholds (10 for suffixes and 2 for
prefixes). If both conditions are satisfied, it means
that w is divisible. Hence, we add w into the list of
roots if at least one of the conditions is violated.



5 Suffix Level Similarity

Many of the incorrect suffixal attachments have a
WRER between 1 and 10, but the detection algo-
rithm described in the previous section will deter-
mine all of them as correct attachments. Hence, in
this section, we propose another technique, which
we call suffix level similarity, to identify some of
these incorrect attachments.

Suffix level similarity is motivated by the fol-
lowing observation: if a word W combines with a
suffix X, then w should also combine with the suf-
fixes that are “morphologically similar” to X. To
exemplify, consider the suffix “ate” and the root
word “candid”. The words that combine with the
suffix “ate” (e.g. “alien”, “fabric”, “origin”) also
combine with suffixes like “ated”, “ation” and “s”.
Given this observation, the question of whether
“candid” combines with the suffix “ate” then lies
in whether or not “candid” combines with “ated”,
“s” and “ation”. The fact that “candid” does not
combine with many of the above suffixes provides
suggestive evidence that “candidate” cannot be
derived from “candid”.

More specifically, to check whether a word w
combines with a suffix X using suffix level simial-
rity, we (1) find the set of words W that can com-
bine with X; (2) find the set of suffixes S, that
attach to all of the words in W, under the constraint
that S, does not contain X; and (3) find the 10 suf-
fixes in S that are most “similar” to X. The ques-
tion, then, is how to define similarity. Intuitively, a
good similarity metric should reflect, for instance,
the fact that “ated” is a better suffix to consider in
the attachment decision for “ate” than “s” (i.e.
“ated” 1s more similar to “ate” than “s”), since “‘s”
attaches to most nouns and verbs in English and
hence should not be a distinguishing feature for
incorrect attachment detection.

We employ a probabilistic measure (PM) that
computes the similarity between suffixes X and y as
the product of (1) the probability of a word com-
bining with y given that it combines with X and (2)
the probability of a word combining with X given
that it combines with y. More specifically,

PM(x, ) = P(y1X)*P(x] y) =5

1 2
where N, is the number of distinct words that com-
bine with X, n, is the number of distinct words that

combine with Yy, and n is the number of distinct
words that combine with both X and y.*

After getting the 10 suffixes that are most simi-
lar to X, we employ them as features and use the
associated similarity values (we scale them linearly
between 1 and 10) as the weights of these 10 fea-
tures. The decision of whether a suffix X can attach
to a word W depends on whether the following ine-

quality is satisfied:
10
Z fiw, >t
1

where f; is a boolean variable that has the value 1 if
W combines with X;, where X; is one of the 10 suf-
fixes that are most similar to X; W, is the scaled
similarity between X and X; and t is a predefined
threshold that is greater than 0.

One potential problem with suffix level similar-
ity is that it is an overly strict condition for those
words that combine with only one or two suffixes
in the vocabulary. For example, if the word “char-
acter” has just one variant in the vocabulary (e.g.
“characters”), suffix level similarity will determine
the attachment of “s” to “character” as incorrect,
since the weighted sum in the above inequality will
be 0. To address this sparseness problem, we rely
on both relative corpus frequency and suffix level
similarity to identify incorrect attachments. Spe-
cifically, if the WRFR of a <word, root> pair is
between 1 and 10, we determine that an attachment
to the root is incorrect if

-WRFR + y * (suffix level smilarity) < 0,

where y is set to 0.15.

Finally, since long words have a higher chance
of getting segmented, we do not apply suffix level
similarity to words whose length is greater than 10.

6 Inducing Orthographic Rules and Al-
lomor phs

The biggest drawback of the system, described
thus far, is its failure to segment words where the
roots exhibit spelling changes during attachment to
morphemes (e.g. “denial” = “deny”+*“al”). The
reasons are (1) the system does not have any
knowledge of language-specific orthographic rules
(e.g. in English, the character ‘y’ at the morpheme
boundary is changed to ‘i’ when the root combines

* Note that this metric has the desirable property of returning a low similarity
value for “s”: while nis likely to be large, it will be offset by a large n,.



with the suffix “al”), and (2) the vocabulary we
employ for morpheme induction does not normally
contain the allomorphic variations of the roots
(e.g. “deni” is allomorphic variation of “deny”). To
segment these words correctly, we need to generate
the allomorphs and orthographic rules automati-
cally given a set of induced roots and affixes.

Before giving the details of the generation
method, we note that the induction of orthographic
rules is a challenging problem, since different lan-
guages exhibit orthographic changes in different
ways. For some languages (e.g. English) rules are
mostly predictable, whereas for others (e.g. Fin-
nish) rules are highly irregular. It is hard to obtain
a generalized mapping function that aligns every
<root, allomorph> pair, considering the fact that
our system is unsupervised. An additional chal-
lenge is to ensure that the incorporation of these
orthographic rules will not adversely affect system
performance (i.e. they will not be applied to regu-
lar words and thus segment them incorrectly).
Yarowsky and Wicentowski (2000) propose an
interesting algorithm that employs four similarity
measures to successfully identify the most prob-
able root of a highly irregular word. Unlike them,
however, our goal is to (1) check whether the
learned rules can actually improve an unsupervised
morphological system, not just to align <root, al-
lomorph> pair, and (2) examine whether our sys-
tem is extendable to different languages.

Taking into consideration the aforementioned
challenges, our induction algorithm will (1) handle
orthographic character changes that occur only at
morpheme boundaries; (2) generate allomorphs for
suffixal attachments only’, assuming that roots ex-
hibit the character changes during attachment, not
suffixes; and (3) learn rules that aligns <root, allo-
morph> pairs of edit distance 1 (which may in-
volve 1-character replacement, deletion or
insertion). Despite these limitations, we will see
that the incorporation of the induced rules im-
proves segmentation accuracy significantly.

Let us first discuss how we learn a replacement
rule, which identifies <allomorph, root> pairs
where the last character of the root is replaced by
another character. The steps are as follows:

(1) Inducing candidate allomor phs
If aApB is a word in the vocabulary (e.g. “denial”,
where a=“den”, A="1", and f="al”), B is an in-

5 We only learn rules for suffixes of length greater than 1, since most suffixes of
length 1 do not participate in orthographic changes.

duced suffix, aB is an induced root (e.g. “deny”,
where B="y”), and the attachment of § to aB is
correct according to relative corpus frequency (see
Section 4), then we hypothesize that aA is an allo-
morph of aB. For each induced suffix, we use this
hypothesis to generate the allomorphs and identify
those that are generated from at least two suffixes
as candidate allomorphs. We denote the list of
<candidate allomorph, root, suffix> tuples by L.

(2) Learning orthographic rules

Every <candidate allomorph, root, suffix> tuple as
learned above is associated with an orthographic
rule. For example, from the words “denial”, “deny”
and suffix “al”, we learn the rule “y:i / _ + al”ﬁ;
from “social”, “sock” and ‘“‘al”’, we learn the rule
“k:1/ _+ al”, which, however, is erroneous. So, we
check whether each of the learned rules occurs fre-
quently enough for all the <allomorph, root> pairs
associated with a suffix, with the goal of filtering
the low-frequency orthographic rules. Specifically,
for each suffix B, we repeat the following steps:

(a) Counting the frequency of rules. Let Ls be the
list of <candidate allomorph, root> pairs in L that
are associated with the suffix £. For each pair p in
Lg, we first check whether its candidate allomorph
appears in any other <candidate allomorph, root>
pairs in Lg. If not, we increment the frequency of
the orthographic rule associated with p by 1. For
example, the pair <“deni”, “deny”> increases the
frequency of the rule “y:i” by 1 on condition that
“deni” does not appear in any other pairs.

(b) Filtering the rules. We first remove the infre-
quent rules, specifically those that are induced by
less than 15% of the tuples in Lg. Then we check
whether there exists two rules of the form A:B and
A:C in the induced rule list. If so, then we have a
morphologically undesirable situation where the
character A changes to B and C under the same
environment (i.e. ). To address this problem, we
first calculate the strength of a rule as follows:

frequency(A: B)
strength(A: B) =
oth(A:B) > frequency(A: @)
@

We then retain only those rules whose fre-
quency*strength is greater than some predefined
threshold. We denote the list of rules that satisfy
the above constraints by Rg.

(c) Identifying valid allomor phs. For each rule in
Rs, we identify the associated <candidate allo-

® This is the Chomsky and Halle notation for representing orthographic rules. a:b
/ ¢ _ d means a changes to b when the left context is ¢ and the right context is d.



morph, root> pairs in Ls. We refer to the candidate
allomorphs in each of those pairs as valid allo-
morphs and add them to the list of roots. We also
remove from the original root list the words that
can be segmented by the induced allomorphs and
the associated rules (e.g. “denial”).

(d) Identifying composite suffixes. For each rule
in Rs, we also check whether it can identify com-
posite suffixes where the first component suffix’s
last character is replaced during attachment to the
second component suffix (e.g. “liness” =
“ly”+“ness”). Specifically, if (1) A:B/ _ B is arule
in Ry, (2) aAB (say “liness”), B (say “ness”) and aB
(say “ly”) are induced suffixes, and (3) aApB satis-
fies the requirements of a composite suffix (see
Section 3.2), then we determine that aAf is a com-
posite suffix composed of aB and g.

We employ the same procedure for learning in-
sertion and deletion rules, except that strength is
always set to 1 for these two types of rules. The
threshold we set at step (b) is somewhat dependent
on the vocabulary size, since the frequency count
of each rule will naturally be larger when a larger
vocabulary is used. Following our method for set-
ting vocabulary-dependent thresholds (see Section
3.1), we set the threshold to 4 for English and 25
for Finnish, for instance.

Finally, we adapt our candidate allomorph de-
tection method described above to induce allo-
morphs that are generated through orthographic
changes of edit distance greater than 1. Specifi-
cally, if af is a word in the induced root list (e.g.
“stability”’, where a="stabil” and f="ity”), f is an
induced suffix, and the attachment of £ to a is cor-
rect according to suffix level similarity, then we
hypothesize that a (“stabil”) is a candidate allo-
morph. For each induced suffix, we use this hy-
pothesis to generate candidate allomorphs and
consider as valid allomorphs only those that are
generated from at least three different suffixes.®

7 Word Segmentation

After inducing the morphemes, we can use them to
segment a word W in the test set. Specifically, we

7 The correct segmentation of “stability” is “stable”+“ity”. The “stabil”-“stable”
allomorph-root pair is an example of an orthographic change of edit distance 2.

8 This technique can also be used to induce out-of-vocabulary (OOV) roots. For
example, the presence of “perplexity”, “perplexed” and “perplexing” in a vo-
cabulary allows us to induce the root “perplex”. OOV root induction is particu-
larly important for languages like Bengali, where verb roots mostly take the
imperative form and hence are absent in a vocabulary created from a newspaper
corpus, which normally comprises only the first and third person verb forms.

(1) generate all possible segmentations of W using
only the induced affixes and roots, and (2) apply a
sequence of tests to remove candidate segmenta-
tions until we are left with only one candidate,
which we take to be the final segmentation of w.

Our first test involves removing any candidate
segmentation MM, ... M, that violates any of the
linguistic constraints below:

e Atleast one of m;, m, ..., M, is a root.

e Forl<i<n,if mis a prefix, then m,; must

be a root or a prefix.

e Forl<i<n,if mis a suffix, then m., must

be a root or a suffix.

* m can’t be a suffix and m, can’t be a prefix.

Next, we apply our second test, in which we re-
tain only those candidate segmentations that have
the smallest number of morphemes. For example,
if “friendly” has two candidate segmentations
“friend”+“ly” and “fri”+“end”+“ly”, we will select
the first one to be the segmentation of w.

If more than one candidate segmentation still ex-
ists, we score each remaining candidate using the
heuristic below, selecting the highest-scoring can-
didate to be the final segmentation of w. Basically,
we score each candidate segmentation by adding
the strength of each morpheme in the segmenta-
tion, where (1) the strength of an affix is the num-
ber of distinct words in the vocabulary to which
the affix attaches, multiplied by the length of the
affix, and (2) the strength of a root is the number of
distinct morphemes with which the root combines,
again multiplied by the length of the root.

8 Evaluation

In this section, we will first evaluate our segmenta-
tion algorithm for English and Bengali, and then
examine its performance on the PASCAL datasets.

8.1 Experimental Setup

Vocabulary creation. We extracted our English
vocabulary from the Wall Street Journal corpus of
the Penn Treebank and the BLLIP corpus, preproc-
essing the documents by first tokenizing them and
then removing capitalized words, punctuations and
numbers. In addition, we removed words of fre-
quency 1 from BLLIP, because many of them are
proper nouns and misspelled words. The final Eng-
lish vocabulary consists of approximately 60K dis-
tinct words. We applied the same pre-processing



steps to five years of articles taken from the Ben-
gali newspaper Prothom Alo to generate our Ben-
gali vocabulary, which consists of 140K words.
Test set preparation. To create our English test
set, we randomly chose 5000 words from our vo-
cabulary that are at least 4-character long’ and also
appear in CELEX. Although 95% of the time we
adopted the segmentation proposed by CELEX, in
some cases the CELEX segmentations are errone-
ous (e.g. “rolling” and “lodging” remain unseg-
mented in CELEX). As a result, we cross-check
with the online version of Merriam-Webster to
make the necessary changes. To create the Bengali
test set, we randomly chose 5000 words from our
vocabulary and manually removed proper nouns
and misspelled words from the set before giving it
to two of our linguists for hand-segmentation. The
final test set contains 4191 words.

Evaluation metrics. We use two standard metrics
-- exact accuracy and F-score -- to evaluate the
performance of our segmentation algorithm on the
test sets. Exact accuracy is the percentage of the
words whose proposed segmentation is identical to
the correct segmentation. F-score is the harmonic
mean of recall and precision, which are computed
based on the placement of morpheme boundaries. '’

8.2 Resultsfor English and Bengali

The basdline systems. We use two publicly avail-
able and widely used unsupervised morphological
learning systems -- Goldsmith’s (2001) Linguis-
tica'' and Creutz and Lagus’s (2005) Morphessor
1.0"* - as our baseline systems. The first two rows
of Table 3 show the results of these systems for our
test sets (with all the training parameters set to
their default values). As we can see, Linguistica
performs substantially better for English in terms
of both exact accuracy and F-score, whereas Mor-
phessor outperforms Linguistica for Bengali.

Our segmentation algorithm. Results of our
segmentation algorithm are shown in rows 3-6 of
Table 3. Specifically, row 3 shows the results of
our basic segmentation system as described in Sec-
tion 3. Rows 4-6 show the results where our three
techniques (i.e. relative frequency, suffix level

 Words of length less than 4 do not have any morphological segmentation in
English. Hence, by imposing this length restriction on the words in our test set,
we effectively make the evaluation more challenging. This is also the reason for
our using words that are at least 3-character long in the Bengali test set.

10 See http://www.cis.hut.fi/morphochallenge2005/evaluation.shtml for details.

' http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/

12 http://www_cis.hut.fi/projects/morpho/

similarity and allomorph detection) are incorpo-
rated into the basic system one after the other. It is
worth mentioning that (1) our basic algorithm al-
ready outperforms the baseline systems in terms of
both exact accuracy and F-score; and (2) while
each of our additions to the basic algorithm boosts
system performance, relative corpus frequency and
allomorph detection contribute to performance im-
provements particularly significantly. As we can
see, the best segmentation performance is achieved
when all of our three additions are applied to the
basic algorithm.

English Bengali

A P R F A P R F

Linguistica | 68.9 | 84.8 | 75.7 | 80.0 | 36.3

Morphessor | 64.9 | 69.6 | 853 | 76.6 | 56.5 | 89.7 | 67.4

Basic in- | 68.1
duction

794 | 82.8 | 81.1 | 57.7

Relative 74.0 | 86.4 | 825 | 84.4 | 63.2 | 85.6

frequency

Suffix level
similarity

Allomorph | 783 | 88.3 | 864 | 874 || 683 | 89.3 | 81.3

detection

Table 3: Results (reported in terms of exact accu-
racy (A), precision (P), recall (R) and F-score (F))

8.3 PASCAL Challenge Results

To get an idea of how our algorithm performs in
comparison to the PASCAL participants, we con-
ducted evaluations on the PASCAL datasets for
English, Finnish and Turkish. Table 4 shows the F-
scores of four segmentation algorithms for these
three datasets: the best-performing PASCAL sys-
tem (Winner), Morphessor, our system that uses
the basic morpheme induction algorithm (Basic),
and our system with all three extensions incorpo-
rated (Complete). Below we discuss these results.
English. There are 533 test cases in this dataset.
Using the vocabulary created as described in Sec-
tion 8.1, our Complete algorithm achieves an F-
score of 79.4%, which outperforms the winner
(Keshava and Pitler, 2006) by 2.6%. Although our
basic morpheme induction algorithm is similar to
that of Keshava and Pitler, a closer examination of
the results reveals that F-score increases signifi-
cantly with the incorporation of relative frequency
and allomorph detection.

Finnish and Turkish. The real challenge in the
PASCAL Challenge is the evaluation on Finnish

582 | 63.3 | 60.6

76.9

79.6 | 81.2 | 80.4

79.9 | 82.7

749 | 88.6 | 823 | 853 | 66.1 | 89.7 | 78.8 | 83.9

85.1




and Turkish due to their morphological richness.
We use the 400K and 300K most frequent words
from the Finnish and Turkish datasets provided by
the organizers as our vocabulary. When tested on
the gold standard of 661 Finnish and 775 Turkish
words, our Complete system achieves F-scores of
65.2% and 66.2%, which are better than the win-
ner’s scores (Bernhard (2006)). In addition, Com-
plete outperforms Basic by 3-6% in F-score; these
results suggest that the new techniques proposed in
this paper (especially allomorph detection) are also
very effective for Finnish and Turkish.

English Finnish Turkish
Winner 76.8 64.7 65.3
M or phessor 66.2 66.4 70.1
Basic 75.8 59.2 63.4
Complete 79.4 65.2 66.2

Table 4: F-scores for the PASCAL gold standards

As mentioned in the introduction, none of the
participating PASCAL systems offers robust per-
formance across different languages. For instance,
Keshava and Pitler’s algorithm, the winner for
English, has F-scores of only 47% and 54% for
Finnish and Turkish respectively, whereas Bern-
hard’s algorithm, the winner for Finnish and Turk-
ish, achieves an F-score of only 66% for English.
On the other hand, our algorithm outperforms the
winners for all the languages in the competition,
demonstrating its robustness across languages.

Finally, although Morphessor achieves better re-
sults for Turkish and Finnish than our Complete
system, it performs poorly for English, having an
F-score of only 66.2%. On the other hand, our re-
sults for Finnish and Turkish are not significantly
poorer than those of Morphessor.

9 Conclusions

We have presented an unsupervised word segmen-
tation algorithm that offers robust performance
across languages with different levels of morpho-
logical complexity. Our algorithm not only outper-
forms Linguistica and Morphessor for English and
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when
evaluated against all three target languages --
English, Turkish, and Finnish -- in the Challenge.
Experimental results indicate that the use of rela-
tive corpus frequency for incorrect attachment de-
tection and the induction of orthographic rules and

allomorphs have contributed to the performance of
our algorithm particularly significantly.
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