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Abstract 

This paper introduces an unsupervised 
morphological segmentation algorithm 
that shows robust performance for four 
languages with different levels of mor-
phological complexity. In particular, our 
algorithm outperforms Goldsmith’s Lin-
guistica and Creutz and Lagus’s Mor-
phessor for English and Bengali, and 
achieves performance that is comparable 
to the best results for all three PASCAL 
evaluation datasets. Improvements arise 
from (1) the use of relative corpus fre-
quency and suffix level similarity for de-
tecting incorrect morpheme attachments 
and (2) the induction of orthographic rules 
and allomorphs for segmenting words 
where roots exhibit spelling changes dur-
ing morpheme attachments. 

1 Introduction 

Morphological analysis is the task of segmenting a 
word into morphemes, the smallest meaning-
bearing elements of natural languages. Though 
very successful, knowledge-based morphological 
analyzers operate by relying on manually designed 
segmentation heuristics (e.g. Koskenniemi (1983)), 
which require a lot of linguistic expertise and are 
time-consuming to construct. As a result, research 
in morphological analysis has exhibited a shift to 
unsupervised approaches, in which a word is typi-
cally segmented based on morphemes that are 
automatically induced from an unannotated corpus. 
Unsupervised approaches have achieved consider-

able success for English and many European lan-
guages (e.g. Goldsmith (2001), Schone and Juraf-
sky (2001), Freitag (2005)). The recent PASCAL 
Challenge on Unsupervised Segmentation of 
Words into Morphemes1  has further intensified 
interest in this problem, selecting as target lan-
guages English as well as two highly agglutinative 
languages, Turkish and Finnish. However, the 
evaluation of the Challenge reveals that (1) the 
success of existing unsupervised morphological 
parsers does not carry over to the two agglutinative 
languages, and (2) no segmentation algorithm 
achieves good performance for all three languages. 

Motivated by these state-of-the-art results, our 
goal in this paper is to develop an unsupervised  
morphological segmentation algorithm that can 
work well across different languages. With this 
goal in mind, we evaluate our algorithm on four 
languages with different levels of morphological 
complexity, namely English, Turkish, Finnish and 
Bengali. It is worth noting that Bengali is an under-
investigated Indo-Aryan language that is highly 
inflectional and lies between English and Turk-
ish/Finnish in terms of morphological complexity. 
Experimental results demonstrate the robustness of 
our algorithm across languages: it not only outper-
forms Goldsmith’s (2001) Linguistica and Creutz 
and Lagus’s (2005) Morphessor for English and 
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when 
evaluated on all three datasets in the Challenge.  

The performance improvements of our segmen-
tation algorithm over existing morphological ana-
lyzers can be attributed to our extending Keshava 
and Pitler’s (2006) segmentation method, the best 
performer for English in the aforementioned 
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PASCAL Challenge, with the capability of han-
dling two under-investigated problems: 
Detecting incorrect attachments. Many existing 
morphological parsers incorrectly segment “candi-
date” as “candid”+“ate”, since they fail to identify 
that the morpheme “ate” should not attach to the 
word “candid”. Schone and Jurafsky’s (2001) work 
represents one of the few attempts to address this 
inappropriate morpheme attachment problem, in-
troducing a method that exploits the semantic re-
latedness between word pairs. In contrast, we 
propose two arguably simpler, yet effective tech-
niques that rely on relative corpus frequency and 
suffix level similarity to solve the problem. 
Inducing orthographic rules and allomorphs.  
One problem with Keshava and Pitler’s algorithm 
is that it fails to segment words where the roots 
exhibit spelling changes during attachment to mor-
phemes (e.g. “denial” = “deny”+“al”). To address 
this problem, we automatically acquire allomorphs 
and orthographic change rules from an unannotated 
corpus. These rules also allow us to output the ac-
tual segmentation of the words that exhibit spelling 
changes during morpheme attachment, thus avoid-
ing the segmentation of “denial” as “deni”+”al”, as 
is typically done in existing morphological parsers. 
    In addition to addressing the aforementioned 
problems, our segmentation algorithm has two ap-
pealing features. First, it can segment words with 
any number of morphemes, whereas many analyz-
ers can only be applied to words with one root and 
one suffix (e.g. DéJean (1998), Snover and Brent 
(2001)). Second, it exhibits robust performance 
even when inducing morphemes from a very large 
vocabulary, whereas Goldsmith’s (2001) and 
Freitag’s (2005) morphological analyzers perform 
well only when a small vocabulary is employed, 
showing deteriorating performance as the vocabu-
lary size increases.  

The rest of this paper is organized as follows. 
Section 2 presents related work on unsupervised 
morphological analysis. In Section 3, we describe 
our basic morpheme induction algorithm. We then 
show how to exploit the induced morphemes to (1) 
detect incorrect attachments by using relative cor-
pus frequency (Section 4) and suffix level similar-
ity (Section 5) and (2) induce orthographic rules 
and allomorphs (Section 6). Section 7 describes 
our algorithm for segmenting a word using the in-
duced morphemes. We present evaluation results 
in Section 8 and conclude in Section 9. 

2 Related Work 

As mentioned in the introduction, the problem of 
unsupervised morphological learning has been ex-
tensively studied for English and many other 
European languages. In this section, we will give 
an overview of the related work on this problem. 

Harris (1955) develops a strategy for identifying 
morpheme boundaries that checks whether the 
number of different letters following a sequence of 
letters exceeds some given threshold. DéJean 
(1998) improves Harris’s segmentation algorithm 
by first inducing a list of 100 most frequent mor-
phemes and then using those morphemes for word 
segmentation. The aforementioned PASCAL Chal-
lenge on Unsupervised Word Segmentation has 
undoubtedly intensified interest in this problem. 
Among the participating groups, Keshava and Pit-
ler’s (2006) segmentation algorithm combines the 
ideas of DéJean and Harris and achieves the best 
result for the English dataset, but it only offers me-
diocre performance for Finnish and Turkish.   

There is another class of unsupervised morpho-
logical learning algorithms whose design is driven 
by the Minimum Description Length (MDL) prin-
ciple. Specifically, EM is used to iteratively seg-
ment a list of words using some predefined 
heuristics until the length of the morphological 
grammar converges to a minimum. Brent et al. 
(1995) are the first to introduce an information-
theoretic notion of compression to represent the 
MDL framework. Goldsmith (2001) also adopts 
the MDL approach, providing a new compression 
system that incorporates signatures when measur-
ing the length of the morphological grammar. 
Creutz (2003) proposes a probabilistic maximum a 
posteriori formulation that uses prior distributions 
of morpheme length and frequency to measure the 
goodness of an induced morpheme, achieving bet-
ter results for Finnish but worse results for English 
in comparison to Goldsmith’s Linguistica. 

3 The Basic Morpheme Induction Algo-
rithm 

Our unsupervised segmentation algorithm is com-
posed of two steps: (1) inducing prefixes, suffixes 
and roots from a vocabulary that consists of words 
taken from a large corpus, and (2) segmenting a 
word using these induced morphemes. This section 
describes our basic morpheme induction method. 



3.1 Extracting a List of Candidate Affixes 

The first step of our morpheme induction method 
involves extracting a list of candidate prefixes and 
suffixes. We rely on a fairly simple idea originally 
proposed by Keshava and Pitler (2006) for extract-
ing candidate affixes. Assume that �  and 

�
 are two 

character sequences and � �
 is the concatenation of 

�  and 
�

. If � �
 and �  are both found in the vocabu-

lary, then we extract 
�

 as a candidate suffix. Simi-
larly, if � �

 and 
�

 are both found in the vocabulary, 
then we extract �  as a candidate prefix.  

The above affix induction method is arguably 
overly simplistic and therefore can generate many 
spurious affixes. To filter spurious affixes, we (1) 
score each affix by multiplying its frequency (i.e. 
the number of distinct words to which each affix 
attaches) and its length2, and then (2) retain only 
the K top-scoring affixes, where K is set differently 
for prefixes and suffixes. The value of K is some-
what dependent on the vocabulary size, as the af-
fixes in a larger vocabulary system are generated 
from a larger number of words.  For example, we 
set the thresholds to 70 for prefixes and 50 for suf-
fixes for English; on the other hand, since the Fin-
nish vocabulary is almost six times larger than that 
of English, we set the corresponding thresholds to 
be approximately six times larger (400 and 300 for 
prefixes and suffixes respectively).3  

3.2 Detecting Composite Suffixes 

Next, we detect and remove composite suffixes (i.e. 
suffixes that are formed by combining multiple 
suffixes [e.g. “ers” = “er”+“s”]) from our induced 
suffix list, because their presence can lead to un-
der-segmentation of words (e.g. “walkers”, whose 
correct segmentation is “walk”+“er”+“s”, will be 
erroneously segmented as “walk”+“ers”). Compos-
ite suffix detection is a particularly important prob-
lem for languages like Bengali in which composite 
suffixes are abundant (see Dasgupta and Ng 
(2007)). Note, however, that simple concatenation 
of multiple suffixes does not always produce a 
composite suffix. For example, “ent”, “en” and “t” 
all are valid suffixes in English, but “ent” is not a 

                                                           
2 The dependence on frequency and length is motivated by the observation that 
less-frequent and shorter affixes (especially those of length 1) are more likely to 
be erroneous (see Goldsmith (2001)). 
3 Since this method for setting our vocabulary-dependent thresholds is fairly 
simple, the use of these thresholds should not be viewed as rendering our seg-
mentation algorithm language-dependent.    

composite suffix. Hence, we need a more sophisti-
cated method for composite suffix detection.  

 Our detection method is motivated by the fol-
lowing observation: if xy is a composite suffix and 
a word w combines with xy, then it is highly likely 
that w will also combine with its first component 
suffix x. Note that this property does not hold for 
non-composite suffixes. For instance, words that 
combine with the non-composite suffix “ent” (e.g. 
“absorb”) do not combine with its first component 
suffix “en”. Consequently, given two suffixes x 
and y, our method posits xy as a composite suffix if 
xy and x are similar in terms of the words to which 
they attach. Specifically, we consider xy and x to 
be similar if their similarity value as computed by 
the formula below is greater than 0.6: 

||
|'|)|(),(

W

W
xyxPxxySimilarity == , 

where |W � | is the number of distinct words that 
combine with both xy and x, and |W| is the number 
of  distinct words that combine with xy. 

3.3 Extracting a List of Candidate Roots 

Finally, we extract a list of candidate roots using 
the induced list of affixes as follows. For each 
word, w, in the vocabulary, we check whether w is 
divisible, i.e. whether w can be segmented as r+x 
or p+r, where p is an induced prefix, x is an in-
duced suffix, and r is a word in the vocabulary. We 
then add w to the root list if it is not divisible. 
Note, however, that the resulting root list may con-
tain compound words (i.e. words with multiple 
roots). Hence, we make another pass over our root 
list to remove any word that is a concatenation of 
multiple words in the vocabulary. 

4 Detecting Incorrect Attachments Using 
Relative Frequency 

Our induced root list is not perfect: many correct 
roots are missing due to over-segmentation. For 
example, since “candidate” and “candid” are in the 
vocabulary and “ate” is an induced suffix, our root 
induction method will incorrectly segment “candi-
date” as “candid”+“ate”; as a result, it does not 
consider “candidate” as a root. So, to improve the 
root induction method, we need to determine that 
the attachment of the morpheme “ate” to the root 
word “candid” is incorrect. In this section, we pro-
pose a simple yet novel idea of using relative cor-



pus frequency to determine whether the attachment 
of a morpheme to a root word is plausible or not.  

Consider again the two words “candidate” and 
“candid”. While “candidate” occurs 6380 times in 
our corpus, “candid” occurs only 119 times. This 
frequency disparity can be an important clue to 
determining that there is no morphological relation 
between “candidate” and “candid”. Similar obser-
vation is also made by Yarowsky and Wicentowski 
(2000), who successfully employ relative fre-
quency similarity or disparity to rank candidate 
VBD/VB pairs (e.g. “sang”/“sing”) that are irregu-
lar in nature. Unlike Yarowsky and Wicentowski, 
however, our goal is to detect incorrect affix at-
tachments and improve morphological analysis.  

Our incorrect attachment detection algorithm, 
which exploits frequency disparity, is based on the 
following hypothesis: if a word w is formed by 
attaching an affix m to a root word r, then the cor-
pus frequency of w is likely to be less than that of r 
(i.e. the frequency ratio of w to r is less than one). 
In other words, we hypothesize that the inflectional 
or derivational forms of a root word occur less fre-
quently in a corpus than the root itself.  

To illustrate this hypothesis, Table 1 shows 
some randomly chosen English words together 
with their word-root frequency ratios (WRFRs).  
The <word, root> pairs in the left side of the table 
are examples of correct attachments, whereas those 
in the right side are not. Note that only those words 
that represent correct attachments have a WRFR 
less than 1. 

The question, then, is: to what extent does our 
hypothesis hold? To investigate this question, we 
generated examples of correct attachments by ran-
domly selecting 400 words from our English vo-
cabulary and then removing those that are root 
words, proper nouns, or compound words. We then 
manually segmented each of the remaining 378 
words as Prefix+Root or Root+Suffix with the aid 
of the CELEX lexical database (Baayean et al., 
1996). Somewhat surprisingly, we found that the 
WRFR is less than 1 in only 71.7% of these at-
tachments. When the same experiment was re-
peated on 287 hand-segmented Bengali words, the 
hypothesis achieves a higher accuracy of 83.6%.  

To better understand why our hypothesis does 
not work well for English, we measured its accu-
racy separately for the Root+Suffix words and the 
Prefix+Root words, and found that the hypothesis 
fails mostly on the suffixal attachments (see Table 

2).  Though surprising at first glance, the relatively 
poor accuracy on suffixal attachments can be at-
tributed to the fact that many words in English 
(e.g. “amusement”, “winner”) appear more fre-
quently in our corpus than their corresponding root 
forms (e.g. “amuse”, “win”). For Bengali, our hy-
pothesis fails mainly on verbs, whose inflected 
forms occur more often in our corpus than their 
roots. This violation of the hypothesis can be at-
tributed to the grammatical rule that the main verb 
of a Bengali sentence has to be inflected according 
to the subject in order to maintain sentence order. 

To improve the accuracy of our hypothesis on 
detecting correct attachments, we relax our initial 
hypothesis as follows: if an attachment is correct, 
then the corresponding WRFR is less than some 
predefined threshold t, where t > 1. However, we 
do not want t to be too large, since our algorithm 
may then determine many incorrect attachments as 
correct. In addition, since our hypothesis has a high 
accuracy for prefixal attachments than suffixal at-
tachments, the threshold we employ for prefixes 
can be smaller than that for suffixes. Taking into 
account these considerations, we use a threshold of 
10 for suffixes and 2 for prefixes for all the lan-
guages we consider in this paper. 
 

Correct Parses Incorrect Parses 
Word Root WRFR Word Root WRFR 
bear-able bear 0.01 candid-ate candid 53.6 
attend-ance attend 0.24 medic-al medic 483.9 
arrest-ing arrest 0.06 prim-ary prim 327.4 
sub-group group 0.0002 ac-cord cord 24.0 
re-cycle cycle 0.028 ad-diction diction 52.7 
un-settle settle 0.018 de-crease crease 20.7 

Table 1: Word-root frequency ratios 
 
 Root+Suffix Prefix+Root Overall 
 # of words 344 34 378 
WRFR < 1 70.1% 88.2% 71.7% 

Table 2: Hypothesis validation for English 
 

Now we can employ our hypothesis to detect in-
correct attachments and improve root induction as 
follows. For each word, w, in the vocabulary, we 
check whether (1) w can be segmented as r+x or 
p+r, where p and x are valid prefixes and suffixes 
respectively and r is another word in the vocabu-
lary, and (2) the WRFR for w and r is less than our 
predefined thresholds (10 for suffixes and 2 for 
prefixes). If both conditions are satisfied, it means 
that w is divisible. Hence, we add w into the list of 
roots if at least one of the conditions is violated. 



5 Suffix Level Similarity 

Many of the incorrect suffixal attachments have a 
WRFR between 1 and 10, but the detection algo-
rithm described in the previous section will deter-
mine all of them as correct attachments. Hence, in 
this section, we propose another technique, which 
we call suffix level similarity, to identify some of 
these incorrect attachments. 

Suffix level similarity is motivated by the fol-
lowing observation: if a word w combines with a 
suffix x, then w should also combine with the suf-
fixes that are “morphologically similar” to x. To 
exemplify, consider the suffix “ate” and the root 
word “candid”. The words that combine with the 
suffix “ate” (e.g. “alien”, “fabric”, “origin”) also 
combine with suffixes like “ated”, “ation” and “s”. 
Given this observation, the question of whether 
“candid” combines with the suffix “ate” then lies 
in whether or not “candid” combines with “ated”, 
“s” and “ation”. The fact that “candid” does not 
combine with many of the above suffixes provides 
suggestive evidence that “candidate” cannot be 
derived from “candid”.  

More specifically, to check whether a word w 
combines with a suffix x using suffix level simial-
rity, we (1) find the set of words Wx that can com-
bine with x; (2) find the set of suffixes Sx that 
attach to all of the words in Wx under the constraint 
that Sx does not contain x; and (3) find the 10 suf-
fixes in Sx that are most “similar” to x. The ques-
tion, then, is how to define similarity. Intuitively, a 
good similarity metric should reflect, for instance, 
the fact that “ated” is a better suffix to consider in 
the attachment decision for “ate” than “s” (i.e. 
“ated” is more similar to “ate” than “s”), since “s” 
attaches to most nouns and verbs in English and 
hence should not be a distinguishing feature for 
incorrect attachment detection.  

We employ a probabilistic measure (PM) that 
computes the similarity between suffixes x and y as 
the product of (1) the probability of a word com-
bining with y given that it combines with x and (2) 
the probability of a word combining with x given 
that it combines with y. More specifically, 

,*)|(*)|(),(
21 n

n

n

n
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where n1 is the number of distinct words that com-
bine with x, n2 is the number of distinct words that 

combine with y, and n is the number of distinct 
words that combine with both x and y.4  

After getting the 10 suffixes that are most simi-
lar to x, we employ them as features and use the 
associated similarity values (we scale them linearly 
between 1 and 10) as the weights of these 10 fea-
tures. The decision of whether a suffix x can attach 
to a word w depends on whether the following ine-
quality is satisfied: 

,
10

1
twf ii >�  

where fi is a boolean variable that has the value 1 if 
w combines with xi, where xi is one of the 10 suf-
fixes that are most similar to x; wi is the scaled 
similarity between x and xi; and t is a predefined 
threshold that is greater than 0. 

One potential problem with suffix level similar-
ity is that it is an overly strict condition for those 
words that combine with only one or two suffixes 
in the vocabulary. For example, if the word “char-
acter” has just one variant in the vocabulary (e.g. 
“characters”), suffix level similarity will determine 
the attachment of “s” to “character” as incorrect, 
since the weighted sum in the above inequality will 
be 0. To address this sparseness problem, we rely 
on both relative corpus frequency and suffix level 
similarity to identify incorrect attachments. Spe-
cifically, if the WRFR of a <word, root> pair is 
between 1 and 10, we determine that an attachment 
to the root is incorrect if 

 

-WRFR + �  * (suffix level similarity) < 0, 
 

where �  is set to 0.15. 
Finally, since long words have a higher chance 

of getting segmented, we do not apply suffix level 
similarity to words whose length is greater than 10. 

6 Inducing Orthographic Rules and Al-
lomorphs 

The biggest drawback of the system, described 
thus far, is its failure to segment words where the 
roots exhibit spelling changes during attachment to 
morphemes (e.g. “denial” = “deny”+“al”). The 
reasons are (1) the system does not have any 
knowledge of language-specific orthographic rules 
(e.g. in English, the character ‘y’ at the morpheme 
boundary is changed to ‘i’ when the root combines 

                                                           
4 Note that this metric has the desirable property of returning a low similarity 
value for “s”: while n is likely to be large, it will be offset by a large n2. 



with the suffix “al”), and (2) the vocabulary we 
employ for morpheme induction does not normally 
contain the allomorphic variations of the roots 
(e.g. “deni” is allomorphic variation of “deny”). To 
segment these words correctly, we need to generate 
the allomorphs and orthographic rules automati-
cally given a set of induced roots and affixes.  

Before giving the details of the generation 
method, we note that the induction of orthographic 
rules is a challenging problem, since different lan-
guages exhibit orthographic changes in different 
ways. For some languages (e.g. English) rules are 
mostly predictable, whereas for others (e.g. Fin-
nish) rules are highly irregular. It is hard to obtain 
a generalized mapping function that aligns every 
<root, allomorph> pair, considering the fact that 
our system is unsupervised. An additional chal-
lenge is to ensure that the incorporation of these 
orthographic rules will not adversely affect system 
performance (i.e. they will not be applied to regu-
lar words and thus segment them incorrectly). 
Yarowsky and Wicentowski (2000) propose an 
interesting algorithm that employs four similarity 
measures to successfully identify the most prob-
able root of a highly irregular word. Unlike them, 
however, our goal is to (1) check whether the 
learned rules can actually improve an unsupervised 
morphological system, not just to align <root, al-
lomorph> pair, and (2) examine whether our sys-
tem is extendable to different languages.  

Taking into consideration the aforementioned 
challenges, our induction algorithm will (1) handle 
orthographic character changes that occur only at 
morpheme boundaries; (2) generate allomorphs for 
suffixal attachments only5, assuming that roots ex-
hibit the character changes during attachment, not 
suffixes; and (3) learn rules that aligns <root, allo-
morph> pairs of edit distance 1 (which may in-
volve 1-character replacement, deletion or 
insertion). Despite these limitations, we will see 
that the incorporation of the induced rules im-
proves segmentation accuracy significantly. 

 Let us first discuss how we learn a replacement 
rule, which identifies <allomorph, root> pairs 
where the last character of the root is replaced by 
another character. The steps are as follows: 
(1) Inducing candidate allomorphs 
If � A

�
 is a word in the vocabulary (e.g. “denial”, 

where � =“den”, A=“i”, and 
�

=“al”), 
�

 is an in-
                                                           
5 We only learn rules for suffixes of length greater than 1, since most suffixes of 
length 1 do not participate in orthographic changes.  

duced suffix, � B is an induced root (e.g. “deny”, 
where B=“y”), and the attachment of 

�
 to � B is 

correct according to relative corpus frequency (see 
Section 4), then we hypothesize that � A is an allo-
morph of � B. For each induced suffix, we use this 
hypothesis to generate the allomorphs and identify 
those that are generated from at least two suffixes 
as candidate allomorphs. We denote the list of 
<candidate allomorph, root, suffix> tuples by L. 
(2) Learning orthographic rules 
Every <candidate allomorph, root, suffix> tuple as 
learned above is associated with an orthographic 
rule. For example, from the words “denial”, “deny” 
and suffix “al”, we learn the rule “y:i / _ + al”6; 
from “social”, “sock” and “al”, we learn the rule 
“k:i / _ + al”, which, however, is erroneous. So, we 
check whether each of the learned rules occurs fre-
quently enough for all the <allomorph, root> pairs 
associated with a suffix, with the goal of filtering 
the low-frequency orthographic rules. Specifically, 
for each suffix 

�
, we repeat the following steps: 

(a) Counting the frequency of rules. Let L�  be the 
list of <candidate allomorph, root> pairs in L that 
are associated with the suffix 

�
. For each pair p in 

L� , we first check whether its candidate allomorph 
appears in any other <candidate allomorph, root> 
pairs in L� . If not, we increment the frequency of 
the orthographic rule associated with p by 1. For 
example, the pair <“deni”, “deny”> increases the 
frequency of the rule “y:i” by 1 on condition that 
“deni” does not appear in any other pairs.  
(b) Filtering the rules. We first remove the infre-
quent rules, specifically those that are induced by 
less than 15% of the tuples in L� . Then we check 
whether there exists two rules of the form A:B and 
A:C in the induced rule list. If so, then we have a 
morphologically undesirable situation where the 
character A changes to B and C under the same 
environment (i.e. 

�
). To address this problem, we 

first calculate the strength of a rule as follows: 

�
=

@
@):(
):():(

Afrequency

BAfrequency
BAstrength  

We then retain only those rules whose fre-
quency*strength is greater than some predefined 
threshold. We denote the list of rules that satisfy 
the above constraints by R� . 
(c) Identifying valid allomorphs. For each rule in 
R� , we identify the associated <candidate allo-
                                                           
6 This is the Chomsky and Halle notation for representing orthographic rules. a:b 
/ c _ d means a changes to b when the left context is c and the right context is d. 



morph, root> pairs in L� . We refer to the candidate 
allomorphs in each of those pairs as valid allo-
morphs and add them to the list of roots. We also 
remove from the original root list the words that 
can be segmented by the induced allomorphs and 
the associated rules (e.g. “denial”). 
(d) Identifying composite suffixes. For each rule 
in R� , we also check whether it can identify com-
posite suffixes where the first component suffix’s 
last character is replaced during attachment to the 
second component suffix (e.g.  “liness” = 
“ly”+“ness”). Specifically, if (1) A:B / _ 

�
 is a rule 

in R� , (2) � A
�

 (say “liness”), 
�

 (say “ness”) and � B 
(say “ly”) are induced suffixes, and (3) � A

�
 satis-

fies the requirements of a composite suffix (see 
Section 3.2), then we determine that � A

�
 is a com-

posite suffix composed of � B and 
�

. 
We employ the same procedure for learning in-

sertion and deletion rules, except that strength is 
always set to 1 for these two types of rules. The 
threshold we set at step (b) is somewhat dependent 
on the vocabulary size, since the frequency count 
of each rule will naturally be larger when a larger 
vocabulary is used. Following our method for set-
ting vocabulary-dependent thresholds (see Section 
3.1), we set the threshold to 4 for English and 25 
for Finnish, for instance. 

Finally, we adapt our candidate allomorph de-
tection method described above to induce allo-
morphs that are generated through orthographic 
changes of edit distance greater than 1. Specifi-
cally, if � �

 is a word in the induced root list (e.g. 
“stability”7, where � =“stabil” and 

�
=“ity”), 

�
 is an 

induced suffix, and the attachment of 
�

 to �  is cor-
rect according to suffix level similarity, then we 
hypothesize that �  (“stabil”) is a candidate allo-
morph. For each induced suffix, we use this hy-
pothesis to generate candidate allomorphs and 
consider as valid allomorphs only those that are 
generated from at least three different suffixes.8 

7 Word Segmentation 

After inducing the morphemes, we can use them to 
segment a word w in the test set. Specifically, we 
                                                           
7 The correct segmentation of “stability” is “stable”+“ity”.  The “stabil”-“stable” 
allomorph-root pair is an example of an orthographic change of edit distance 2. 
8 This technique can also be used to induce out-of-vocabulary (OOV) roots. For 
example, the presence of “perplexity”, “perplexed” and “perplexing” in a vo-
cabulary allows us to induce the root “perplex”. OOV root induction is particu-
larly important for languages like Bengali, where verb roots mostly take the 
imperative form and hence are absent in a vocabulary created from a newspaper 
corpus, which normally comprises only the first and third person verb forms. 

(1) generate all possible segmentations of w using 
only the induced affixes and roots, and (2) apply a 
sequence of tests to remove candidate segmenta-
tions until we are left with only one candidate, 
which we take to be the final segmentation of w. 

Our first test involves removing any candidate 
segmentation m1m2 … mn that violates any of the 
linguistic constraints below: 

• At least one of m1, m2, …, mn is a root. 
• For 1 ≤ i < n, if mi is a prefix, then mi+1 must 

be a root or a prefix. 
• For 1 < i ≤ n, if mi is a suffix, then mi-1 must 

be a root or a suffix. 
• m1 can’t be a suffix and mn can’t be a prefix.  
Next, we apply our second test, in which we re-

tain only those candidate segmentations that have 
the smallest number of morphemes. For example, 
if “friendly” has two candidate segmentations 
“friend”+“ly” and “fri”+“end”+“ly”, we will select 
the first one to be the segmentation of w. 

If more than one candidate segmentation still ex-
ists, we score each remaining candidate using the 
heuristic below, selecting the highest-scoring can-
didate to be the final segmentation of w.  Basically, 
we score each candidate segmentation by adding 
the strength of each morpheme in the segmenta-
tion, where (1) the strength of an affix is the num-
ber of distinct words in the vocabulary to which 
the affix attaches, multiplied by the length of the 
affix, and (2) the strength of a root is the number of 
distinct morphemes with which the root combines, 
again multiplied by the length of the root. 

8 Evaluation 

In this section, we will first evaluate our segmenta-
tion algorithm for English and Bengali, and then 
examine its performance on the PASCAL datasets. 

8.1 Experimental Setup 

Vocabulary creation. We extracted our English 
vocabulary from the Wall Street Journal corpus of 
the Penn Treebank and the BLLIP corpus, preproc-
essing the documents by first tokenizing them and 
then removing capitalized words, punctuations and 
numbers. In addition, we removed words of fre-
quency 1 from BLLIP, because many of them are 
proper nouns and misspelled words. The final Eng-
lish vocabulary consists of approximately 60K dis-
tinct words. We applied the same pre-processing 



steps to five years of articles taken from the Ben-
gali newspaper Prothom Alo to generate our Ben-
gali vocabulary, which consists of 140K words. 
Test set preparation. To create our English test 
set, we randomly chose �000 words from our vo-
cabulary that are at least 4-character long9 and also 
appear in CELEX. Although 95% of the time we 
adopted the segmentation proposed by CELEX, in 
some cases the CELEX segmentations are errone-
ous (e.g. “rolling” and “lodging” remain unseg-
mented in CELEX). As a result, we cross-check 
with the online version of Merriam-Webster to 
make the necessary changes. To create the Bengali 
test set, we randomly chose 5000 words from our 
vocabulary and manually removed proper nouns 
and misspelled words from the set before giving it 
to two of our linguists for hand-segmentation. The 
final test set contains 4191 words. 
Evaluation metrics.  We use two standard metrics 
-- exact accuracy and F-score -- to evaluate the 
performance of our segmentation algorithm on the 
test sets. Exact accuracy is the percentage of the 
words whose proposed segmentation is identical to 
the correct segmentation. F-score is the harmonic 
mean of recall and precision, which are computed 
based on the placement of morpheme boundaries.10   

8.2 Results for English and Bengali 

The baseline systems. We use two publicly avail-
able and widely used unsupervised morphological 
learning systems -- Goldsmith’s (2001) Linguis-
tica11 and Creutz and Lagus’s (2005) Morphessor 
1.012 -- as our baseline systems. The first two rows 
of Table 3 show the results of these systems for our 
test sets (with all the training parameters set to 
their default values). As we can see, Linguistica 
performs substantially better for English in terms 
of both exact accuracy and F-score, whereas Mor-
phessor outperforms Linguistica for Bengali.   
Our segmentation algorithm. Results of our 
segmentation algorithm are shown in rows 3-6 of 
Table 3. Specifically, row 3 shows the results of 
our basic segmentation system as described in Sec-
tion 3. Rows 4-6 show the results where our three 
techniques (i.e. relative frequency, suffix level 

                                                           
9 Words of length less than 4 do not have any morphological segmentation in 
English. Hence, by imposing this length restriction on the words in our test set, 
we effectively make the evaluation more challenging. This is also the reason for 
our using words that are at least 3-character long in the Bengali test set.  
10 See http://www.cis.hut.fi/morphochallenge2005/evaluation.shtml for details. 
11 http://humanities.uchicago.edu/faculty/goldsmith/Linguistica2000/ 
12 http://www.cis.hut.fi/projects/morpho/ 

similarity and allomorph detection) are incorpo-
rated into the basic system one after the other. It is 
worth mentioning that (1) our basic algorithm al-
ready outperforms the baseline systems in terms of 
both exact accuracy and F-score; and (2) while 
each of our additions to the basic algorithm boosts 
system performance, relative corpus frequency and 
allomorph detection contribute to performance im-
provements particularly significantly. As we can 
see, the best segmentation performance is achieved 
when all of our three additions are applied to the 
basic algorithm.  

 
 English 

 
Bengali 

 A P R F A P R F 
Linguistica 68.9 

 
84.8 75.7 80.0 36.3 58.2 63.3 60.6 

Morphessor 64.9 
 

69.6 85.3 76.6 56.5 89.7 67.4 76.9 

Basic in-
duction 

68.1 79.4 82.8 81.1 57.7 79.6 81.2 80.4 

Relative 
frequency 

74.0 86.4 82.5 84.4 63.2 85.6 79.9 82.7 

Suffix level 
similarity 

74.9 88.6 82.3 85.3 66.1 89.7 78.8 83.9 

Allomorph 
detection 

78.3 88.3 86.4 87.4 68.3 89.3 81.3 85.1 

Table 3: Results (reported in terms of exact accu-
racy (A), precision (P), recall (R) and F-score (F)) 

8.3 PASCAL Challenge Results 

To get an idea of how our algorithm performs in 
comparison to the PASCAL participants, we con-
ducted evaluations on the PASCAL datasets for 
English, Finnish and Turkish. Table 4 shows the F-
scores of four segmentation algorithms for these 
three datasets: the best-performing PASCAL sys-
tem (Winner), Morphessor, our system that uses 
the basic morpheme induction algorithm (Basic), 
and our system with all three extensions incorpo-
rated (Complete). Below we discuss these results. 
English. There are 533 test cases in this dataset. 
Using the vocabulary created as described in Sec-
tion 8.1, our Complete algorithm achieves an F-
score of 79.4%, which outperforms the winner 
(Keshava and Pitler, 2006) by 2.6%. Although our 
basic morpheme induction algorithm is similar to 
that of Keshava and Pitler, a closer examination of 
the results reveals that F-score increases signifi-
cantly with the incorporation of relative frequency 
and allomorph detection. 
Finnish and Turkish. The real challenge in the 
PASCAL Challenge is the evaluation on Finnish 



and Turkish due to their morphological richness. 
We use the 400K and 300K most frequent words 
from the Finnish and Turkish datasets provided by 
the organizers as our vocabulary. When tested on 
the gold standard of 661 Finnish and 775 Turkish 
words, our Complete system achieves F-scores of 
65.2% and 66.2%, which are better than the win-
ner’s scores (Bernhard (2006)). In addition, Com-
plete outperforms Basic by 3-6% in F-score; these 
results suggest that the new techniques proposed in 
this paper (especially allomorph detection) are also 
very effective for Finnish and Turkish. 
 

 English Finnish Turkish 
Winner 76.8 64.7 65.3 
Morphessor 66.2 66.4 70.1 
Basic 75.8 59.2 63.4 
Complete 79.4 65.2 66.2 

Table 4: F-scores for the PASCAL gold standards 
 
   As mentioned in the introduction, none of the 
participating PASCAL systems offers robust per-
formance across different languages. For instance, 
Keshava and Pitler’s algorithm, the winner for 
English, has F-scores of only 47% and 54% for 
Finnish and Turkish respectively, whereas Bern-
hard’s algorithm, the winner for Finnish and Turk-
ish, achieves an F-score of only 66% for English. 
On the other hand, our algorithm outperforms the 
winners for all the languages in the competition, 
demonstrating its robustness across languages.  

Finally, although Morphessor achieves better re-
sults for Turkish and Finnish than our Complete 
system, it performs poorly for English, having an 
F-score of only 66.2%. On the other hand, our re-
sults for Finnish and Turkish are not significantly 
poorer than those of Morphessor. 

9 Conclusions 

We have presented an unsupervised word segmen-
tation algorithm that offers robust performance 
across languages with different levels of morpho-
logical complexity. Our algorithm not only outper-
forms Linguistica and Morphessor for English and 
Bengali, but also compares favorably to the best-
performing PASCAL morphological parsers when 
evaluated against all three target languages --
English, Turkish, and Finnish -- in the Challenge. 
Experimental results indicate that the use of rela-
tive corpus frequency for incorrect attachment de-
tection and the induction of orthographic rules and 

allomorphs have contributed to the performance of 
our algorithm particularly significantly. 
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