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1 Discriminativevs. Generative Models training (Blum and Mitchell, 1998), and transduc-
_tive SVM (Joachims, 1999). However, none of them

An interesting question surrounding = seMi-seems to outperform the others across different do-

sgpe_rvi_sed_ learning for NLP iS:_ should we US&njins, and each has its pros and cons. Self-training
discriminative models or generative models? Degan pe used in combination with any discriminative
spite the fact that generative models have beqBaring model, but it does not take into account the
frequently employed in a semi-supervised settingonfigence associated with the label of each data
since the early days of the statistical revolution irboint, for instance, by placing more weight on the
NLP, we advocate the use of discriminative modelgperfectly labeled) seeds than on the (presumably
The ability of discriminative models to handle sy |abeled) bootstrapped data during the learn-
complex, high-dimensional feature spaces and thejg process. Co-training is a natural choice if the
strong theoretical guarantees have made them s possesses two independent, redundant feature
very appealing alternative to their generative coung|its However, this conditional independence as-
terparts. Perhaps more importantly, discriminativgmption is a fairly strict assumption and can rarely
models have been shown to offer competitive pee satisfied in practice; worse still, it is typically not
formance on a variety of sequential and structuregdysy o determine the extent to which a dataset sat-
learning tasks in NLP that are traditionally tackledsfies this assumption. Transductive SVM tends to
via generative models, such as letter-to-phonemgarn petter max-margin hyperplanes with the use
conversion (Jiampojamam et al., 2008), semantigt njabeled data, but its optimization procedure is
role labeling (Toutanova et al., 2005), syntactiGon.trivial and its performance may deteriorate if a

parsing (Taskar et al., 2004), language modelingiiciently large amount of unlabeled data is used.
(Roark et al., 2004), and machine translation (Liang

et al., 2006). While generative models allow the Recently, Brefeld and Scheffer (2004) have pro-
seamless integration of prior knowledge, discrimP0Sed a new semi-supervised leaming technique,
inative models seem to outperform generativé-M-SVM, which is interesting in that it incorpo-
models in a “no prior”, agnostic learning setting."ates & dlsgrl_mlnatlve model in an EM setting. Un-
See Ng and Jordan (2002) and Toutanova (2006) f§ke Self-training, EM-SVM takes into account the
insightful comparisons between generative modefonfidence of the new labels, ensuring that the in-

and discriminative models. stances that are labeled with less confidence by the
SVM have less impact on the training process than
2 Discriminative EM? the confidently-labeled instances. So far, EM-SVM

has been tested on text classification problems, out-
A number of semi-supervised learning systems caoerforming transductive SVM. It would be interest-
bootstrap from small amounts of labeled data usingg to see whether EM-SVM can beat existing semi-
discriminative learners, including self-training, co-supervised learners for other NLP tasks.
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