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Abstract

We describe UTD’s participating system in the
event nugget detection and coreference task
at TAC-KBP 2017. We designed and imple-
mented a pipeline system that consists of three
components: event nugget identification and
subtyping, REALIS value identification, and
event coreference resolution. We proposed us-
ing an ensemble of 1-nearest-neighbor classi-
fiers for event nugget identification and sub-
typing, a 1-nearest-neighbor classifier for RE-
ALIS value identification, and a learning-
based multi-pass sieve approach consisting of
1-nearest-neighbor classifiers for event coref-
erence resolution. Though conceptually sim-
ple, our system compares favorably with other
participating systems, achieving F1 scores of
50.37, 40.91, and 33.87 on these three tasks
respectively on the English dataset, and F1
scores of 46.76, 35.19, and 28.01 on the Chi-
nese dataset. In particular, it ranked first on
Chinese event nugget coreference.

1 Introduction

This year UTD participated in the event nugget de-
tection and coreference task at TAC-KBP 2017. The
task aims to identify (1) the explicit mentioning of
events in text for three languages (English, Chinese
and Spanish); (2) the event types/subtypes and three
REALIS values for each event mention following
the Rich ERE annotation standard; and (3) all full
event coreference links. We participated in this task
for English and Chinese.

In this paper, we present the system we devel-
oped for this task. We designed and implemented

a pipeline system that consists of three components:
event nugget identification and subtyping, REALIS
value identification and event coreference. We de-
scribe each of them in detail in Section 2. The results
of official evaluation are shown in Section 3.

2 UTD’s System

In this section, we describe our system, which op-
erates in three steps. First, it performs event nugget
identification and subtyping, which involves detect-
ing all explicit mentioning of events with certain
specified types in text (Section 2.1). Second, it
performs REALIS value identification on the event
mentions extracted in the first step (Section 2.2).
Third, it performs event coreference resolution on
the event mentions extracted in the first step (Sec-
tion 2.3).

2.1 Event nugget Identification and Subtyping

We employ multiple 1-nearest neighbor models for
event nugget identification and subtyping. In each
model, different features are used to represent an in-
stance. To identify event mentions and their sub-
types in a document, we first apply the 1-nearest
neighbor models independently to the document.
Then, we collect the union of event mentions and
their subtypes identified by each model. If an event
mention is classified as subtype A by model i and
subtype B by model j, we collect both subtypes in
the final result. In this way, we can assign multiple
subtypes to each event mention.

To train the English system, we use each single
word as a training instance. Additionally, we use
as training instances those phrases that are true trig-



gers according to the training data. If the word or
phrase is not a trigger, the class label of the corre-
sponding training instance is None. We create test
instances from (1) the words and phrases in the test
documents that also appeared in the training data as
true triggers, as well as (2) all the verbs and nouns
in the test documents. We apply each model to a
test instance as follows. First, we pick the training
instances whose lemmatized triggers are the same
as the lemmatized trigger of the test instance as its
neighbors. Then, we use Jaccard to measure the dis-
tance between the test instance and each of its neigh-
bors identified in the previous step.

We implement five 1-nearest neighbor models
for English system: Model 1: For candidate trig-
gers that are verbs, we use the entity type of their
subjects and objects as features, where the sub-
jects and objects are extracted from the dependency
parse trees obtained using the Stanford CoreNLP
toolkit (Manning et al., 2014). For candidate trig-
gers that are nouns, we employ heuristics to extract
their agents and patients and use their entity type as
features. These entity types are obtained from Stan-
ford CoreNLP NER tagger. Model 2: For candi-
date triggers that are verbs, we use the head words
of their subjects and objects as features. For candi-
date triggers that are nouns, we use the head words
of their heuristically extracted agents and patients as
features. Model 3: We use the WordNet synset ids
of the candidate trigger and its hypernym as features.
Model 4: We use the entity types of the syntacti-
cally/physically nearest entity to the trigger in syn-
tax parse tree as features. Model 5: We use the uni-
grams in the sentence in which the candidate trigger
appears as features.

The Chinese system is similar to its English coun-
terpart. We follow the strategy used in Chen and
Ng’s (2012) Chinese event extraction system to gen-
erate training and test instances. Specifically, we use
each single word as a training instance and assign its
class label as its gold subtype or None. To create test
instances, we posit a word in a test document as a
test instance if it appears in a training document as a
true event trigger or if it contains a character that ap-
pears within a verb trigger in the training set. We im-
plement five 1-nearest neighbor models for the Chi-
nese system: Models 1,4 and 5: they are the same
as those used in the English system. Model 2: We

use the characters of the candidate trigger and the
entry number of the candidate trigger in a Chinese
synonym dictionary as features.1 Model 3: For can-
didate triggers that are verbs, we use the head words
of their subjects and objects as features. For candi-
date triggers that are nouns, we use the head words
of their heuristically extracted agents and patients as
features.

2.2 REALIS value identification
This component determines the REALIS value for
each event mention, each of which is created from a
candidate trigger extracted in the previous step. We
implement a 1-nearest neighbor model. For each
test instance, we pick the training instances who
have the same lemmatized triggers and subtype as
its neighbors. Then, we use Jaccard to measure the
distance between the test instance and each of its
neighbors. We use the following features to repre-
sent each training and testing instance: the part-of-
speech (POS) of the trigger; the auxiliary verb of a
verb trigger and its POS tag; the negative word and
its POS tag if it exists in the clause; the main verb
within the clause containing the trigger word and its
POS tag.

2.3 Event Coreference Resolution
We employ a multi-pass sieve approach to event
coreference resolution. Each sieve is composed of
a 1-nearest neighbor model for classifying whether
two event mentions are coreferent or not. Sieves
are ordered by their precision, with the most pre-
cise sieve appearing first. To resolve a set of event
mentions in a document, the resolver makes multi-
ple passes over them: in the i-th pass, it uses only
the 1-nearest neighbor model in the i-th sieve to find
an antecedent for each event mention. The candi-
date antecedents are ordered by their positions in the
document. The partial clustering of event mentions
generated in the i-th sieve is then passed to the i+1-
th sieve. Specifically, the i+1-th sieve will not clas-
sify event mention pairs which are already classified
as coreferent in the earlier sieves. In this way, later
passes can exploit the information computed by pre-
vious passes, but the decisions made earlier cannot
be overridden later.

1The Chinese synonym dictionary is HIT-SCIR’s Tongyici
cilin (extended).



We use the pairs of event mentions that have the
same subtype as training instances. For each test
document, we generate pairs of event mentions that
have the same subtype, where subtype information
was determined by the trigger component described
in Section 2.1. In each sieve, the unigrams of the
two sentences containing the two triggers involved
are used as features. We use Jaccard to measure the
distance between a pair of instances.

In each sieve, we use different strategies to choose
the neighbors of each test instance. The English
resolver and the Chinese resolver both employ the
same two sieves described below:

Sieve 1: Given a test mention pair, we choose as
its neighbors those training mention pairs that sat-
isfy the following conditions: (1) their lemmatized
triggers are the same as the lemmatized trigger pair
of test mention pair; (2) their trigger subtype is the
same as that of the test mention pair; and (3) the sen-
tence distance dtrain between the two mentions in a
training mention pair must be in the range [dtest-m1,
dtest+m1], where dtest is the sentence distance be-
tween the two mentions in the test mention pair, and
m1 is a tunable parameter.

Sieve 2: This sieve only classifies a test mention
pair if the two triggers it contains have the same
lemma. Given a test mention pair, we choose as its
neighbors those training mention pairs where their
triggers have the same lemma, their trigger subtype
is the same as that of the test mention pair, and the
sentence distance dtrain is in the range [dtest-m2,
dtest+m2].

Also in each sieve, we implement heuristics to
find out test mention pairs with incompatible sub-
jects or objects and then force those test mention
pairs to be not coreferent. If the subject pair or ob-
ject pair of a test mention pair satisfy any of the fol-
lowing conditions, we consider them as incompat-
ible: (1) we calculate the entity coreference prob-
ability from the training data. If the probability of
the subject pair or object pair to be coreferent are
below a certain threshold, they are not compatible.
The threshold is tuned on the development set. (2)
If the subject pair or object pair are named entities,
but their NER labels are not matched, they are not
compatible.

3 Evaluation

3.1 Data

For the English system, we use LDC2015E29,
LDC2015E68, LDC2015E73, LDC2015E94 and
LDC2016E72 as training datasets. For the Chinese
system, we use LDC2015E78, LDC2015E105,
LDC2015E112 and LDC2016E72 as training
datasets. For both systems, 80% of the documents
are used for model training, and the remaining 20%
are used for development, specifically for tuning
parameters mi in the event coreference resolution
component and the threshold for the heuristic. All
three components are evaluated on LDC2017E51.
We only evaluate on the 18 event subtypes selected
by the KBP 2017 organizers.

3.2 Evaluation Metrics

We report event nugget detection performance in
terms of recall, precision and F-score for four nugget
detection metrics, namely span, mention subtype
only, REALIS value only and joint metric for span,
mention subtype and REALIS value.

To evaluate event coreference performance, we
employ four commonly-used coreference scoring
measures as implemented in the official scorer
provided by the KBP 2017 organizers, namely
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), CEAFe (Luo, 2005) and BLANC (Recasens
and Hovy, 2011). Each of these evaluation measures
reports results in terms of recall, precision, and F-
score.

3.3 Results and Analysis

Table 1 shows the results of event nugget detection,
which includes the first two steps of our pipeline
system. For nugget identification and subtyping,
we achieve F-scores of 50.37 on the English dataset
and 46.76 on the Chinese dataset. When examin-
ing the result of each type, we find that events of
types “Contact” have lower performance, especially
lower recall. In the discussion forum documents,
our system failed to identify a lot of event mentions
with subtype “contact.correspondence”. Many event
mentions with this subtype are just discussions be-
tween threads. Without understanding the context
but just the sentence, it is difficult to find triggers.
For example, just from the sentence “Thanks for



Metric English Chinese
Prec Rec F1 Prec Rec F1

Span 61.74 57.66 59.63 52.69 53.02 52.85
Subtype 52.16 48.71 50.37 46.61 46.91 46.76
REALIS 42.36 39.56 40.91 35.08 35.30 35.19

All 35.01 32.70 33.81 31.07 31.27 31.17

Table 1: Event Nugget Detection performance on the KBP 2017 official evaluation.

Metric English Chinese
Run 1 Run 2 Run 1 Run 2

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
B3 39.60 39.55 39.57 40.60 39.18 39.88 34.99 33.42 34.18 35.63 33.02 34.28

CEAFe 35.76 34.66 35.20 35.68 35.78 35.73 30.76 33.82 32.22 30.86 34.65 32.64
MUC 36.73 31.58 33.96 38.29 30.24 33.79 29.89 24.73 27.07 30.08 23.52 26.40

BLANC 28.47 23.78 25.91 29.24 23.53 26.06 21.03 17.04 18.57 21.13 16.79 18.40
Average = 33.66 Average = 33.87 Average = 28.01 Average = 27.93

Table 2: Event Coreference Resolution performance on the KBP 2017 official evaluation.

quick reply, what shipping company did you use?
”, little information can be used to identify “reply”
as the trigger. Also, our system failed to distinguish
between mentions with subtype “contact.broadcast”
and “contact.contact”, especially those with a trig-
ger “said”. Another source of precision error can be
attributed to the mismatch in the class distributions
between training and testing set. For example, in
the training set, all mentions with trigger “rally” are
annotated as having subtype “conflict.demonstrate”.
But in the test set, the mentions with trigger “rally”
are annotated as “contact.broadcast”.

For the REALIS value identification component,
we achieve F-scores of 40.91 on the English dataset
and 35.19 on the Chinese dataset. A closer exam-
ination of the results reveals that some conditional
events that should have the value “Other” are mis-
classified as “Actual”. Also, some events with sim-
ple present tense should be “Actual” but are misclas-
sified as “Other”. Additional work should be per-
formed to disambiguate these cases.

For the event coreference resolution task, we sub-
mitted the following two runs:

Run 1: The resolver employs all two sieves with-
out heuristics.

Run 2: The resolver employs all two sieves with
heuristics.

Table 2 shows the results of our event corefer-
ence resolution system. The best English result is

obtained from Run 2, where we achieve an average
F-score of 33.87. The best Chinese result is obtained
from Run 1, where we achieve an average F-score of
28.01.

The major source of precision error can be at-
tributed to the fact that our system tends to posit
all event mentions having the same trigger word as
coreferent to form a long coreference link. The ma-
jor source of recall error can be attributed to un-
seen coreferent trigger pairs. Because of the way we
choose neighbors in the 1-nearest neighbor model,
a test mention pair will not have any neighbors and
will therefore not be posited as coreferent if its trig-
ger pair is unseen in the original training data. The
final source of recall error can be attributed to the
missing triggers. For both languages, the trigger
classifier failed to identify trigger words/phrases that
are unseen or rarely-occurring in the training data.
As a result of these missing triggers, many event
coreference links cannot be established.

4 Conclusion

We presented UTD’s participating system in the
2017 TAC-KBP event nugget detection and coref-
erence task. We implemented a pipeline system that
first identified event triggers and their subtypes us-
ing multiple 1-nearest neighbor models, then clas-
sified the REALIS value and finally employed a
multi-pass sieve approach to identify event corefer-



ence links. Our system ranked first in Chinese event
nugget coreference.
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