

Chinese Overt Pronoun Resolution: A Bilingual Approach

Chen Chen and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

AAAI-2014

Task: Chinese Overt Pronoun Resolution (PR)

Find an antecedent for each anaphoric overt pronoun in a Chinese text

An Illustrative Example

Resolve pronouns她(she) and他(him) to their antecedents, which are玛丽(Mary) and约翰(John) respectively.

Why is it more Challenging than English PR?

- Less coreference-annotated data available for training resolvers in Chinese than in English
- Lack of publicly-available linguistic resources in Chinese that are essential for overt PR, such as Gender and Number wordlists

Goal: Improve Chinese PR

Address the two challenges above by exploiting

- English coreference-annotated data, and
- English Gender and Number wordlists

in addition to Chinese coreference-annotated data

How?

- Idea 1: Feature augmentation
 - Machine-translate Chinese text to English text
 - Align the Chinese and English mentions
 - Train a Chinese pronoun resolver on Chinese data, where instances are represented by features derived from Chinese mentions and those derived from the mapped English mentions
 - Pros: use Chinese training data; use English wordlists
- Cons: does not use English training data
- Idea 2: Annotation projection
 - > Train an English pronoun resolver on English data
 - > Apply resolver on English text machine-translated from Chinese
 - Pros: use English training data; use English wordlists
- Cons: does not use Chinese training data
- Idea 3: Our bilingual approach
 - Combine ideas 1 and 2 via an ensemble approach

Related Work

- All existing approaches to Chinese overt PR or coreference resolution are monolingual, training models on either
- Chinese data (e.g., Luo and Zitouni (2005); Wang and Ngai (2006); Kong and Zhou (2012); Kong and Ng (2013)); or
- ➤ **English** data (by adopting Idea 2) (Rahman and Ng, 2012), but none of them exploits resources in both languages

Bilingual Approach: Implementation Details

Document preprocessing

Step 1: Machine-translate each training and test document from Chinese to English using Google Translate

玛丽告诉约翰她非常喜欢他。

Mary told John that she liked him a lot.

Step 2: Align the words in each pair of sentences using BerkeleyAligner

Step 3: Align Chinese mentions to English mentions heuristically

Classifier training (3 classifiers, all mention-pair models)

- English pronoun resolver (*PR^E*)
- Trained on English training data
- Training instances created from English anaphoric pronouns
- > Employs the English features from Björkelund and Farkas (2012)
- Chinese pronoun resolver (*PR^C*)
- Trained on Chinese training data
- > Training instances created from Chinese anaphoric pronouns
- ➤ Employs the Chinese features from Björkelund and Farkas (2012)
- Mixed pronoun resolver (*PR^M*)
 - > Trained on Chinese training data and translated English data
 - Training instances created from the subset of Chinese anaphoric pronouns that have been aligned to some English pronouns
 - \triangleright Employs the features used in both PR^E and PR^C

Resolution methods

- Method 1
 - Resolve pronoun m_k to the closest preceding mention m_j whose coreference probability with m_k according to PR^E is at least 0.5
 - If m_k is not aligned to any English pronoun or PR^E does not resolve m_k apply PR^C to resolve m_k
- Method 2
- \triangleright Same as method 1 except that PR^{E} is replaced with PR^{M}
- Method 3
 - Same as method 1, except that the coreference probability between m_k and m_j is computed as the unweighted average of the probabilities returned by PR^E , PR^M and PR^C (which we will refer to as P^E , P^M , and P^C respectively)
- Method 4
 - Resolve m_k to the closest preceding mention if at least one of four conditions is satisfied: (1) $P^c > t_{ci}$ (2) $P^m > t_{Mi}$ (3) $P^E > t_E$ and $P^{norm} \ge 0.5$

$$P_{jk}^{norm} = \frac{P_{jk}^C + P_{jk}^E w_e(P_a)^{w_{ae}} + P_{jk}^M w_m(P_a)^{w_{am}}}{1 + w_e(P_a)^{w_{ae}} + w_m(P_a)^{w_{am}}}.$$

Note: P_a is the mention alignment probability, and t_C , t_M , t_E , w_{er} , w_{aer} , w_{mr} , w_{am} are parameters tuned using the development set

Evaluation

Corpus: CoNLL-2012 shared task data

- Training set: 1,391 Chinese docs (750K words); 1,940 English docs (1.3M words)
- Development set: 172 Chinese docs (110K words)
- Test set: 166 Chinese docs (90K words)

Baseline systems

- Monolingual approach
 - Supervised mention-pair model trained only on Chinese data
- Best Chinese coreference system in the CoNLL-2012 shared task
- > Hybrid model combining rules and machine learning (Chen and Ng, 2012)
- Rahman and Ng's (2012) approach
 - Annotation projection approach (method 1 without using **PR**^C as backoff)

Evaluation metrics

- Recall (R), precision (P), and F-score (F) on resolving anaphoric pronouns
- Accuracies: A^a is the percentage of anaphoric pronouns correctly resolved; A^{na} is the percentage of non-anaphoric pronouns not resolved; A^o is overall accuracy

Results on CoNLL-2012 shared task test set

Resolution Method	R	Р	F	Aa	Ana	Ao
Monolingual Approach (Closest-first)	71.7	65.3	68.4	71.7	59.3	67.4
Monolingual Approach (Best-first)	72.0	65.6	68.7	72.0	59.3	67.6
Best Shared Task System	63.8	67.5	65.6	63.8	76.7	68.2
Rahman and Ng's (2012) Approach	64.3	65.2	64.7	64.3	68.5	65.8
Method 1	65.6	64.4	65.0	65.6	66.0	65.8
Method 2	73.0	65.1	68.8	73.0	56.7	67.4
Method 3	71.5	70.5	71.0	71.5	67.6	70.2
Method 4	71.1	71.5	71.3	71.1	70.4	70.8

Methods 3 and 4 significantly outperform the baselines w.r.t. both F-score and accuracy.

Impact of Machine Translation Quality

5-fold cross-validation results on a 400-document parallel corpus

	Machine	Translat	ion (MT)	Human	Translation	on (HT)
Resolution Method	R	Р	F	R	Р	F
Monolingual Approach (Closest-first)	63.0	62.7	62.8	63.0	62.7	62.8
Monolingual Approach (Best-first)	62.3	62.0	62.2	62.3	62.0	62.2
Best Shared Task System	55.2	65.8	60.1	55.2	65.8	60.1
Rahman and Ng's (2012) Approach	54.7	58.1	56.4	46.1	59.9	52.1
Method 1	55.6	57.4	56.5	56.3	59.8	58.0
Method 2	65.6	59.8	62.5	65.7	61.7	63.7
Method 3	61.7	66.9	64.2	63.6	66.7	65.1
Method 4	63.8	65.3	64.5	64.5	67.0	65.7

When MT is replaced with HT, the F-scores of all four methods increase significantly by 0.9-1.5%, but their relative performance does not change.