Human Language Technology Research Institute

Chinese Overt Pronoun Resolution: A Bilingual Approach

Chen Chen and Vincent Ng

Human Language Technology Research Institute
University of Texas at Dallas

- Find an antecedent for each anaphoric pronoun
 - a preceding mention in the text the pronoun refers to

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

Overt pronouns

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

The English pronoun resolution task is the same as the overt Chinese pronoun resolution task

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Can Chinese pronoun resolution be tackled in the same way as English pronoun resolution?

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Can Chinese pronoun resolution be tackled in the same way as English pronoun resolution?

Can we train a resolver on Chinese texts and use it to resolve Chinese pronouns?

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Can Chinese pronoun resolution be tackled in the same way as English pronoun resolution?

Can we train a resolver on Chinese texts and use it to resolve Chinese pronouns?

Yes, but ...

Find an antecedent for each anaphoric pronoun

Mary told John that she liked him a lot.

玛丽告诉约翰她非常喜欢他。

Can Chinese pronoun resolution be tackled in the same way as English pronoun resolution?

Can we train a resolver on Chinese texts and use it to resolve Chinese pronouns?

Yes, but ... it may not work as well for Chinese

 Less coreference-annotated data available in Chinese than in English for training resolvers

- Less coreference-annotated data available in Chinese than in English for training resolvers
- Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

- Less coreference-annotated data available in Chinese than in English for training resolvers
- Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

- Less coreference-annotated data available in Chinese than in English for training resolvers
- Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

 Less coreference-annotated data available in Chinese than in English for training resolvers

Exploit English coreference data

 Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

 Less coreference-annotated data available in Chinese than in English for training resolvers

Exploit English coreference data

 Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

 Less coreference-annotated data available in Chinese than in English for training resolvers

Exploit English coreference data

 Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

Exploit English
Gender and
Number wordlists

 Less coreference-annotated data available in Chinese than in English for training resolvers

Exploit English coreference data

 Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

Exploit English
Gender and
Number wordlists

Goal: improve Chinese pronoun resolution by addressing these two issues

Exploit Chinese coreference data

A Bilingual Approach

Why?

 Less coreference-annotated data available in Chinese than in English for training resolvers

Exploit English coreference data

 Lack of publicly-available Chinese resources essential for pronoun resolution, such as Gender and Number wordlists.

Exploit English
Gender and
Number wordlists

Goal: improve Chinese pronoun resolution by addressing these two issues

Exploit Chinese coreference data

Bilingual Approach

Training

train the pronoun resolution models

Testing

resolve Chinese pronouns using the models

Bilingual Approach

- Training
 - train the pronoun resolution models
- Testing
 - resolve Chinese pronouns using the models

Model Training

- Train 3 maximum-entropy-based pronoun resolution models
 - The Chinese model
 - The English model
 - The mixed model
- Each model returns the probability that a pronoun and a candidate antecedent are coreferent

The Chinese Model (CM)

- Trained on the Chinese training data
 - Each training instance corresponds to a Chinese anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for Chinese

The Chinese Model (CM)

- Trained on the Chinese training data
 - Each training instance corresponds to a Chinese anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for Chinese

Pros

exploits Chinese training data

Cons

exploits neither English training data nor English wordlists

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

29

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

Annotation projection

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?
 玛丽告诉约翰她非常喜欢他。

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?
 玛丽告诉约翰她非常喜欢他。

Step 1: Machine-translate Chinese text into English

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?
 玛丽告诉约翰她非常喜欢他。

Mary told John that she liked him a lot.

Step 1: Machine-translate Chinese text into English

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?
 玛丽告诉约翰她非常喜欢他。

Mary told John that she liked him a lot.

Step 2: Identify and align the Chinese and English mentions

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。

[Máry] told [John] that [she] liked [him] a lot.

Step 2: Identify and align the Chinese and English mentions

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。

[Máry] told [John] that [she] liked [him] a lot.

Step 3: Use EM to resolve English pronouns

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。

[Máry] told [John] that [she] liked [him] a lot.

Step 3: Use EM to resolve English pronouns

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。

[Máry] told [John] that [she] liked [him] a lot.

Step 4: Project annotations from English to Chinese

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。 [Mary] told [John] that [she] liked [him] a lot.

Step 4: Project annotations from English to Chinese

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。
[Mary] told [John] that [she] liked [him] a lot.

What are the pros and cons of the English model?

- Trained on the English training data
 - Each training instance corresponds to an English anaphoric pronoun and one of its candidate antecedents
 - Class value is 1 if they are coreferent; and 0 otherwise
 - Represented using features designed for English
- How to use it to resolve Chinese pronouns in the test set?

[玛丽]告诉[约翰][她]非常喜欢[他]。

- Pros: exploits English training data and English wordlists
- Cons: doesn't exploit Chinese training data

- Trained on Chinese training data
 - Training instance creation
 - Translate the Chinese training data into English
 - Map Chinese mentions to English mentions in translated text
 - Create an instance between a Chinese pronoun and one of its candidate antecedents if and only if each of them can be mapped to some English mention

- Trained on Chinese training data
 - Training instance creation
 - Translate the Chinese training data into English
 - Map Chinese mentions to English mentions in translated text
 - Create an instance between a Chinese pronoun and one of its candidate antecedents if and only if each of them can be mapped to some English mention
 - Features are computed from both the Chinese pronoun and the candidate antecedent, as well as the mapped English pronoun and the mapped English candidate antecedent

- Trained on Chinese training data
 - Training instance creation
 - Translate the Chinese training data into English
 - Map Chinese mentions to English mentions in translated text
 - Create an instance between a Chinese pronoun and one of its candidate antecedents if and only if each of them can be mapped to some English mention
 - Features are computed from both the Chinese pronoun and the candidate antecedent, as well as the mapped English pronoun and the mapped English candidate antecedent

Feature-augmented model: exploits English and Chinese features

- Trained on Chinese training data
 - Training instance creation
 - Translate the Chinese training data into English
 - Map Chinese mentions to English mentions in translated text
 - Create an instance between a Chinese pronoun and one of its candidate antecedents if and only if each of them can be mapped to some English mention
 - Features are computed from both the Chinese pronoun and the candidate antecedent, as well as the mapped English pronoun and the mapped English candidate antecedent.

Feature-augmented model: exploits English and Chinese features

- Pros: exploits Chinese training data and English wordlists
- Cons: doesn't exploit English training data

Bilingual Approach

Training

train the pronoun resolution models

Testing

resolve Chinese pronouns using the models

Which of the 3 models should be used to resolve Chinese pronouns?

Which of the 3 models should be used to resolve Chinese pronouns?

- Since each model has its own pros and cons, we adopt an ensemble approach
 - combine their decisions when resolving a Chinese pronoun
 - 4 resolution methods
 - Differ in terms of how the decisions of the models are combined

- Given a Chinese pronoun to be resolved,
 - Map it to the English pronoun p in translated text
 - Use EM to resolve p to the candidate antecedent having the highest coreference probability with p among the candidates
 - Project English resolution result back to Chinese

- Given a Chinese pronoun to be resolved,
 - Map it to the English pronoun p in translated text
 - Use EM to resolve p to the candidate antecedent having the highest coreference probability with p among the candidates
 - Project English resolution result back to Chinese
 - If the Chinese pronoun is not mapped to an English pronoun, use CM to resolve it to the most likely candidate antecedent

- Given a Chinese pronoun to be resolved,
 - Map it to the English pronoun p in translated text
 - Use EM to resolve p to the candidate antecedent having the highest coreference probability with p among the candidates
 - Project English resolution result back to Chinese
 - If the Chinese pronoun is not mapped to an English pronoun, use CM to resolve it to the most likely candidate antecedent

Use EM for resolution and CM as a backoff model

 Same as resolution method 1 except that EM is replaced with MM

 Same as resolution method 1 except that EM is replaced with MM

Use MM for resolution and CM as a backoff model

Same as resolution method 1 except that EM is replaced with MM

Use MM for resolution and CM as a backoff model

Hypothesis: Method 2 would be better than Method 1, since MM is a feature-augmented model representing an instance using both English and Chinese features

 Same as the previous two resolution methods except that the coreference probability between a pronoun and a candidate antecedent is given by the unweighted average of the probabilities returned by CM, EM, and MM

 Same as the previous two resolution methods except that the coreference probability between a pronoun and a candidate antecedent is given by the unweighted average of the probabilities returned by CM, EM, and MM

Combine the decisions of all 3 models for resolution and use CM as a backoff model

 Same as the previous two resolution methods except that the coreference probability between a pronoun and a candidate antecedent is given by the unweighted average of the probabilities returned by CM, EM, and MM

Combine the decisions of all 3 models for resolution and use CM as a backoff model

Hypothesis: Method 3 would be better than Method 2 because it uses three rather than two models

- Same as resolution method 3 except that we do weighted averaging of coreference probabilities of the three models
 - Weights are determined using held-out development data

- Same as resolution method 3 except that we do weighted averaging of coreference probabilities of the three models
 - Weights are determined using held-out development data

Combine the decisions of all 3 models for resolution in a weighted manner and use CM as a backoff model

- Same as resolution method 3 except that we do weighted averaging of coreference probabilities of the three models
 - Weights are determined using held-out development data

Combine the decisions of all 3 models for resolution in a weighted manner and use CM as a backoff model

Hypothesis: Method 4 would be better than Method 3 because weighted averaging might be better than unweighted averaging

Evaluation

- Goal: evaluate our bilingual approach
 - The 4 resolution methods

Experimental Setup

Corpus

Coreference data used in the CoNLL 2012 shared task

Training

- 1391 Chinese documents (750K words)
- 1940 English documents (1.3M words)

Development

172 Chinese documents (110K words)

Test

166 Chinese dcouments (90K words)

Experimental Setup

Corpus

- Coreference data used in the CoNLL 2012 shared task
- Training
 - 1391 Chinese documents (750K words)
 - 1940 English documents (1.3M words)
- Development
 - 172 Chinese documents (110K words)
- Test
 - 166 Chinese dcouments (90K words)
- Evaluation measures
 - recall (R), precision (P), and F-measure (F) on resolving anaphoric pronouns

Three Baseline Systems

- Monolingual approach
 - Uses the Chinese model to resolve pronouns
- Best Chinese resolver in CoNLL-2012 shared task
 - Chen & Ng (2012): combines rules and machine learning
- Rahman & Ng (2012)
 - Annotation projection approach
 - Uses the English model to resolve pronouns in translated text
 - Same as resolution method 1 except that there is no backoff

Results: Baseline Systems

	R	P	F
Monolingual	71.7	65.3	68.4
Best shared task system	63.8	67.5	65.6
Rahman and Ng's (2012) approach	64.3	65.2	64.7

Results: Baseline Systems

	R	P	F
Monolingual	71.7	65.3	68.4
Best shared task system	63.8	67.5	65.6
Rahman and Ng's (2012) approach	64.3	65.2	64.7

- Best baseline: Monolingual Baseline
 - owing to its considerably higher recall

Results: Our Resolution Methods

	R	P	F
Monolingual	71.7	65.3	68.4
Best shared task system	63.8	67.5	65.6
Rahman and Ng's (2012) approach	64.3	65.2	64.7
Method 1 (EM, but use CM as backoff)	65.6	64.4	65.0
Method 2 (MM, but use CM as backoff)	73.0	65.1	68.8
Method 3 (unweighted averaging of 3 models)	71.5	70.5	71.0
Method 4 (weighted averaging of 3 models)	71.1	71.5	71.3

- Method 4 > Method 3 > Method 2 > Method 1
 - Method 4 outperforms the best baseline by 2.9% in F-score
 - Our bilingual approach improves Chinese pronoun resolution

Summary

 Presented a bilingual approach to Chinese overt pronoun resolution that exploits not only Chinese coreference data but also English coreference data and English wordlists