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Chinese Common NP Resolution: Two Subtasks

� Given a Chinese common NP n,

1. determine whether n has an antecedent

2. if yes, determine which preceding NP is its antecedent
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Chinese Common NP Resolution: Two Subtasks

� Given a Chinese common NP n,

1. determine whether n has an antecedent

2. if yes, determine which preceding NP is its antecedent

� Most previous work addresses them in a pipeline fashion 

� Weakness: error propagates from 1st subtask to 2nd subtask 

� We perform the two subtasks in a joint fashion 
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Common NP Resolution is Challenging

� Requires lexical semantic and world knowledge

� Lanxin Wireless vs. the company   √

� money bank vs. river bank              ×

� Common NP resolution in Chinese is even more challenging

� scarcity of Chinese lexical knowledge bases for providing world 

knowledge

� This problem can be mitigated in part by using annotated data

� data where each common NP is annotated with its antecedent

� But.. we made it challenging by not using annotated data

� Unsupervised common NP resolution
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If we had annotated training data …

� we could adopt the standard supervised approach:

1. Train a pairwise model to determine the probability that a 

common NP n and a candidate antecedent c given their 

context k are coreferent, i.e., P(coref=+|n,c,k)

[Lanxin Wireless] lost [14 million dollars] in one year. 
[The company] is on [the verge of bankruptcy].

Training Instances:

coref? Common NP Candidate Antecedent
+ The company  Lanxin Wireless
- The company    14 million dollars
- the verge of bankruptcy Lanxin Wireless
- the verge of bankruptcy   14 million dollars
- the verge of bankruptcy    the company
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If we had annotated training data …

� we could adopt the standard supervised approach:

1. Train a pairwise model to determine the probability that a 

common NP n and a candidate antecedent c given their 

context k are coreferent, i.e., P(coref=+|n,c,k)

2. Apply the model to each common NP to select the candidate 

with the highest probability as its antecedent
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But we don’t have annotated data...

coref? Common NP Candidate Antecedent
? The company  Lanxin Wireless
? The company    14 million dollars
? the verge of bankruptcy Lanxin Wireless
? the verge of bankruptcy   14 million dollars
? the verge of bankruptcy    the company
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� Fill in missing values probabilistically (E-step)

� i.e., determine the probability each pair of NPs is coreferent

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
0.01 the verge of bankruptcy Lanxin Wireless
0.05 the verge of bankruptcy   14 million dollars
0.08 the verge of bankruptcy    the company
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� Idea: design a generative model and use EM to iteratively

� Fill in missing values probabilistically (E-step)

� Estimate model parameters using the filled values (M-step)

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
0.01 the verge of bankruptcy Lanxin Wireless
0.05 the verge of bankruptcy   14 million dollars
0.08 the verge of bankruptcy    the company
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� Recall that we jointly perform two subtasks

� Determine whether a common NP has an antecedent

� Find the antecedent 

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
0.01 the verge of bankruptcy Lanxin Wireless
0.05 the verge of bankruptcy   14 million dollars
0.08 the verge of bankruptcy    the company
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� How to perform them jointly?

� Introduce a dummy candidate antecedent for each common NP 

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
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0.05 the verge of bankruptcy   14 million dollars
0.08 the verge of bankruptcy    the company



22

� How to perform them jointly?

� Introduce a dummy candidate antecedent for each common NP 

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
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� How to perform them jointly?

� Introduce a dummy candidate antecedent for each common NP

� If, for a common NP, the dummy has a higher probability than 
all other candidates, we posit it as not having an antecedent 

But we don’t have annotated data...

coref? Common NP Candidate Antecedent
0.85 The company  Lanxin Wireless
0.15 The company    14 million dollars
0.01 the verge of bankruptcy Lanxin Wireless
0.05 the verge of bankruptcy   14 million dollars
0.08 the verge of bankruptcy    the company
0.01 The company dummy
0.86 the verge of bankruptcy dummy 
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Goal

� fill in the missing class values probabilistically

� i.e., compute P(coref=+|n,c,k)   n: common NP
c: candidate antecedent
k: context
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Goal

� fill in the missing class values probabilistically

� i.e., compute P(coref=+|n,c,k)   

� Using Chain Rule,

� is a normalization constant
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Goal

� fill in the missing class values probabilistically

� i.e., compute P(coref=+|n,c,k)   

� Using Chain Rule,

� Applying Chain Rule to the numerator,
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This is our generative model!

n: common NP
c: candidate antecedent
k: context
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Generative Model
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Generative Model
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How to estimate each of 

these parameters?
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How to estimate each of 

these parameters?
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Assumption: for each common NP, the contexts 

generated from different candidate antecedents 

have the same probability

• Effectively ignoring this term
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How to estimate each of 
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Prior probability of a candidate antecedent c given context k

• if c is an implausible candidate antecedent, we set P(c|k) to 0

• otherwise, we set P(c|k) to 1
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How to identify implausible candidate antecedents?

• Use linguistic constraints on coreference

• e.g., compatibility w.r.t. gender, number, semantic class

How to estimate each of 

these parameters?
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• if c is an implausible candidate antecedent, we set P(c|k) to 0

• otherwise, we set P(c|k) to 1
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How to estimate this probability?

• represent context k using 5 commonly-used features

• sentence distance between c and n

• whether the governing verbs of c and n are the same

• …

Prior probability that they are coreferent given candidate & context
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How to estimate each of 
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How to estimate this probability?

• represent context k using 5 commonly-used features

• sentence distance between c and n

• whether the governing verbs of c and n are the same

• …

• estimate probability in the M-step

Prior probability that they are coreferent given candidate & context
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The EM Algorithm

� E-step: 

� Fill in the missing class values probabilistically by computing 

P(coref=+|n,c,k) using the current model parameter values

� M-step:

� Re-estimate the model parameters using maximum likelihood 

estimation 
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Applying the Learned Model to Test Data

� Use the model to compute the probability that each common 
NP n is coreferent with each candidate antecedent c

� For each n, pick c with highest probability as its antecedent
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Plan for the talk

� Generative model

� EM training 

� Evaluation
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Evaluation

� Goal: evaluate our unsupervised model
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Evaluation Setup

� Corpus

� Chinese portion of the OntoNotes 5.0 corpus

� Unsupervised training of the common NP resolution model

� Chinese training and dev sets used in CoNLL 2012 shared task

� 1,563 documents

� Testing (Apply the model to resolve common NPs)

� Chinese test set used in the CoNLL 2012 shared task

� 166 documents

� Evaluation measures

� Recall (R), precision (P), and F-measure (F) on resolving 

common NPs
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Baseline Systems

� Heuristic baseline

� resolve to closest preceding NP with the same head

� State-of-the-art supervised resolver

� Björkelund and Kuhn (2014)
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Results

System R P F

Heuristic baseline 49.3 28.9 36.5

Supervised baseline 42.0 50.6 45.9

Our System 46.2 47.5 46.8
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Summary

� Proposed an unsupervised model for Chinese common NP 
resolution

� rivaled best existing supervised resolver in performance when 

evaluated on the Chinese portion of the OntoNotes 5.0 corpus


