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Automatic Text Summarization
 Produce a summary of either

 one document (single-document summarization)

 or a set of documents (multi-document summarization)
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Why Automati Text Summarization?
 Alleviate user information overload
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How?
 Extractive Summarization

 Select a subset of sentences in the source document(s) for 
inclusion in the summary

 Abstractive Summarization
 Generate sentences that may contain words/phrases not 

present in the source document(s)
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Abstractive Summarization: Example

The Sri Lanka government on Wednesday announced

the closure of government schools with immediate 

effect as a military campaign against Tamil 

separationists escalated in the north of the country.  

Sri Lanka closes schools as the war escalates.  

Source

Summary
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Plan for the Talk
 Evaluation methods

 Datasets

 Approaches

 The state of the art
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Evaluation Methods
 Manual evaluation

 Human judges rate a summary along multiple dimensions of 
quality, such as content, grammaticality, and coherence

 Automatic evaluation
 BLEU (Papineni et al., 2002)

 METEOR (Denkowski and Lavie, 2014)

 Pyramid (Nenkova and Passoneau, 2004)

 ROUGE (Lin and Hovy, 2003)



8

ROUGE

 Variants: ROUGE-N, ROUGE-SU, ROUGE-L, …
 All ROUGE variants compute the degree of lexical overlap 

between a reference summary and a candidate summary
 More overlap  higher ROUGE score  better summary
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ROUGE

 Variants: ROUGE-N, ROUGE-SU, ROUGE-L, …
 All ROUGE variants compute the degree of lexical overlap 

between a reference summary and a candidate summary
 More overlap  higher ROUGE score  better summary

 Adequate for abstractive summarization?

 Designing appropriate evaluation metrics is challenging
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Datasets
 DUC (Document Understanding Conference, 2000-2007)

 Pros: popularly used to evaluate abstractive summaries

 Cons: corpora are relatively small
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Datasets
 DUC (Document Understanding Conference, 2000-2007)

 Pros: popularly used to evaluate abstractive summaries

 Cons: corpora are relatively small

 Annotated English Gigaword (Rush et al., 2015)
 Pros: considerably larger than DUC (10 million documents)

 Cons: input is composed of a single sentence (first sentence of 
article), summary is not generated by human (just the headline)

 CNN/Daily Mail (Nallapati et al., 2016)
 Human summary for each story in the corpus

 Pros: large (286K for training, 13K for validation, 11K for test), 
each story is longer than those in DUC and Gigaword (781 
tokens on average) and contains multiple sentences
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Approaches to Abstractive Summarization
 Classical approaches

 Neural approaches
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Neural Approaches
 Originally developed for neural machine translation

 Key advantage:
 Provide an end-to-end approach

 Learning how to (1) abstract from the source document and (2) 
generate words to form an abstractive summary in one shot

 … unlike classical approaches where the key steps are 
performed in a pipeline fashion
 Many (potentially suboptimal) heuristic decisions are involved

 Errors may propagate from one step to the next 
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The Encoder-Decoder Framework
source 

document
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The Encoder-Decoder Framework
source 

document

man

woman

table

 Each word in the source document is 
represented as a low-dimensional vector
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The Encoder-Decoder Framework
source 

document

Word vectors better 
capture word meaning

man

woman

table

 Each word in the source document is 
represented as a low-dimensional vector
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The Encoder-Decoder Framework

Encoder

source 
document

 Encodes the source document into an internal 
representation, often a fixed-length vector 
known as the context vector

 Each word in the source document is 
represented as a low-dimensional vector
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The Encoder-Decoder Framework

Encoder

Decoder

source 
document

summary

 Encodes the source document into an internal 
representation, often a fixed-length vector 
known as the context vector

 Outputs a summary by generating a word in 
each timestep

 Each word in the source document is 
represented as a low-dimensional vector
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The Encoder-Decoder Framework

Encoder

Decoder

source 
document

summary

 Encodes the source document into an internal 
representation, often a fixed-length vector 
known as the context vector

 In each timestep:
 takes as input (1) the context vector and (2) the 

words generated so far as a summary

 generates a distribution over the vocabulary
 Outputs most probable word or keeps k-best paths

 Each word in the source document is 
represented as a low-dimensional vector
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Implementing the Framework

Encoder

Decoder

source 
document

summary

 CNNs (convolutional neural nets)

 LSTMs: better at encoding long sequences

 GRUs: fewer parameters, faster to train

 Encoding long documents remains challenging 

 RNNs (recurrent neural nets)
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Implementing the Framework

Encoder

Decoder

source 
document

summary

 CNNs (convolutional neural nets)

 LSTMs: better at encoding long sequences

 GRUs: fewer parameters, faster to train

 Encoding long documents remains challenging 

 RNNs (recurrent neural nets)

Joint training
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The Encoder-Decoder Framework
 Recent work has focused on improving this framework
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Improvement 1: Attention
 identifies the important words in a document 

 Intuition: they are more likely to appear in a summary

 Idea: learn a weight for each word indicating its importance
 More important words are given higher weights



25

Improvement 2: Distraction/Coverage
 Motivation: attention may cause some content to be overly 

focused, leading to redundancy in the resulting summary

 Distraction avoids focusing on the same content by reducing 
probability of repeated content or weight associated with it
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Improvement 3: Pointers and Copying
 Motivation: neural models are poor at generating rare words 

and out-of-vocabulary (OOV) words, but some of these words 
could be important to have in a summary

 Pointer networks and copying mechanisms copy a word or a 
text segment directly from the source to the summary
 can be viewed as an extension of attention to rare or OOV 

words that are important



27

Improvement 4: Reinforcement Learning
 Motivation: the encoder-decoder framework has 2 weaknesses

 Network minimizes maximum-likelihood loss, but this is not 
equivalent to optimizing the evaluation metric (e.g., ROUGE)

 Decoder has an exposure bias
 Training: predict next word assuming previous words are all correct

 Application: predict next word using previously generated words

 Reinforcement Learning (RL) addresses both issues
 Can be used to optimize objectives that are not differentiable

 Doesn’t need gold summaries for training [no exposure bias]
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The State of the Art (CNN/Daily Mail)

System ROUGE-1 ROUGE-2 ROUGE-L

words-lvt2k-temp-att (2016) 35.5 13.3 32.7

pointer-generator (2017) 36.4 15.7 33.4

pointer-generator+coverage (2017) 39.5 17.3 36.4

MLE (2017) 38.3 14.8 35.5

RL (2017) 41.2 15.8 39.1

DCA MLE+SEM+RL (2018) 41.7 19.5 37.9

SummaRuNNer (2017) 39.6 16.2 35.3

lead-3 (2017) 40.3 17.7 36.8

REFRESH (2018) 40.0 18.2 36.6
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Future Directions
 Text simplification

 Encoding long sentences remains a challenge

 Apply text simplification to simplify/shorten long sentences?
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 Text simplification

 Phrase-based models
 Use phrase-based (rather than word-based) encoders and 

decoders to better capture text semantics

Future Directions
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 Text simplification

 Phrase-based models

 Multi-document abstractive summarization

Future Directions



42

 Text simplification

 Phrase-based models

 Multi-document abstractive summarization

 Evaluation on different text types
 Most work was evaluated on news articles because (1) they 

are well-organized and (2) training data is abundant

 Perform evaluations on meetings and conversations

Future Directions


