Learning Noun Phrase Anaphoricity to Improve Coreference Resolution: Issues in Representation and Optimization

Vincent Ng

Department of Computer Science, Cornell University
Human Language Technology Research Institute, UT Dallas

Goal

Improve learning-based coreference systems using automatically acquired anaphoricity information

Plan for the Talk

- Noun phrase coreference resolution
 - standard machine learning approach
- Identification of anaphoric/non-anaphoric noun phrases (Anaphoricity determination)
 - why anaphoricity info can help coreference resolution
- Issues in computing and using anaphoricity information in coreference resolution

Identify all noun phrases (NPs) that refer to the same entity

Identify all noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

the King overcome his speech impediment...

Identify all noun phrases (NPs) that refer to the same entity

Identify all noun phrases (NPs) that refer to the same entity

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

the King overcome his speech impediment...

Standard Machine Learning Approach

u Classification

[Aone and Bennett (1995), McCarthy and Lehnert (1995), Soon et al., (2001), Ng and Cardie (2002), Strube et al. (2002)]

given a description of two noun phrases, NP_i and NP_j, classifies the pair as coreferent or not coreferent

Standard Machine Learning Approach

u Classification

[Aone and Bennett (1995), McCarthy and Lehnert (1995), Soon et al., (2001), Ng and Cardie (2002), Strube et al. (2002)]

given a description of two noun phrases, NP_i and NP_j, classifies the pair as coreferent or not coreferent

u Clustering

- coordinates pairwise classification decisions
- single-link clustering algorithm commonly employed to find an antecedent for each NP

Plan for the Talk

- Noun phrase coreference resolution
 - standard machine learning approach
- Identification of anaphoric/non-anaphoric noun phrases (Anaphoricity determination)
 - why anaphoricity info can help coreference resolution
- Issues in computing and using anaphoricity information in coreference resolution

Motivation

- u Currently
 - clustering algorithm attempts to resolve each NP

Motivation

- u Currently
 - clustering algorithm attempts to resolve each NP
- w What we really want
 - clustering algorithm attempts to resolve each anaphoric NP

Motivation

- u Currently
 - clustering algorithm attempts to resolve each NP
- w What we really want
 - clustering algorithm attempts to resolve each anaphoric NP
- Availability of anaphoricity info can potentially increase the precision of a coreference system

Previous Work on Anaphoricity Determination

- Tocus on identifying specific types of noun phrases
 - pleonastic pronouns
 - n Paice and Husk (1987), Lappin and Leass (1994), Kennedy and Boguraev (1996), Denber (1998)
 - definite descriptions
 - n Bean and Riloff (1999), Vieira and Poesio (2000), Poesio et al. (2004)
 - anaphoric and non-anaphoric uses of it
 - n Evans (2001) / Mitkov et al. (2002)

Anaphoricity Determination [Ng and Cardie, 2002; Uryupina, 2003]

For each noun phrase in a text, determine whether it is part of a coreference chain but is not the head of the chain.

For each noun phrase in a text, determine whether it is part of a coreference chain but is not the head of the chain.

For each noun phrase in a text, determine whether it is part of a coreference chain but is not the head of the chain.

For each noun phrase in a text, determine whether it is part of a coreference chain but is not the head of the chain.

Queen Elizabeth set about transforming her husband,

King George VI, into a viable monarch. Logue,

a renowned speech therapist, was summoned to help

the King overcome his speech impediment...

For each noun phrase in a text, determine whether it is part of a coreference chain but is not the head of the chain.

Plan for the Talk

- Noun phrase coreference resolution
 - standard machine learning approach
- Identification of anaphoric/non-anaphoric noun phrases (Anaphoricity determination)
 - why anaphoricity info can help coreference resolution
- Two issues in computing and using anaphoricity information in coreference resolution

- Representation of anaphoricity information for learningbased coreference systems
 - constraint-based representation
 - n clustering algorithm only attempts to resolve anaphoric NPs
 - n anaphoricity information serves as hard constraints
 - feature-based representation
 - n anaphoricity information represented as a feature

- Representation of anaphoricity information for learningbased coreference systems
 - constraint-based representation
 - n clustering algorithm only attempts to resolve anaphoric NPs
 - n anaphoricity information serves as hard constraints
 - feature-based representation
 - n anaphoricity information represented as a feature

Constraint-based or feature-based representation?

- u Optimization of the anaphoricity determination procedure
 - local optimization
 - n procedure developed independently of the coreference system
 - global optimization
 - n procedure optimized for coreference performance

- u Optimization of the anaphoricity determination procedure
 - local optimization
 - n procedure developed independently of the coreference system
 - global optimization
 - n procedure optimized for coreference performance

Local or global optimization?

Four Approaches to Anaphoricity Determination for Coreference Resolution

	Constraint-Based	Feature-Based
Locally-Optimized		
Globally-Optimized		

Four Approaches to Anaphoricity Determination for Coreference Resolution

Constraint-Rased

Locally-Optimized Globally-Optimized

Constraint Basea	T catale Basea
Ng and Cardie (2002)	

Feature-Rased

Four Approaches to Anaphoricity Determination for Coreference Resolution

Locally-Optimized Globally-Optimized

Constraint-Based	Feature-Based
Ng and Cardie (2002)	?
?	?

Goal

- Evaluate all four combinations of
 - local vs. global optimization and
 - constraint-based vs. feature-based representation of anaphoricity information in terms of their effectiveness in improving a learning-based coreference system

Goal

- u Evaluate all four combinations of
 - local vs. global optimization and
 - constraint-based vs. feature-based representation of anaphoricity information in terms of their effectiveness in improving a learning-based coreference system

The Locally-Optimized Approach to Anaphoricity Determination

- u Classification [Ng and Cardie, 2002]
 - given a description of a noun phrases, NP_i , classify NP_i as anaphoric or not anaphoric

```
non-
anaphoric
anaphoric anaphoric
```

[Queen Elizabeth] set about transforming [her] [husband], ...

The Locally-Optimized Approach to Anaphoricity Determination

- Classification [Ng and Cardie, 2002]
 - given a description of a noun phrases, NP_i, classify NP_i as anaphoric or not anaphoric

```
non-
anaphoric
anaphoric anaphoric
```

[Queen Elizabeth] set about transforming [her] [husband], ...

- Training data creation
 - texts annotated with coreference information
 - one instance for each noun phrase
 - n positive if the noun phrase is anaphoric
 - n negative otherwise

- u During classifier training
 - ▶ learn a classifier that maximizes classification accuracy

- u During classifier training
 - ▶ learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system

- u During classifier training
 - learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system
 - too conservative in classifying an NP as anaphoric
 - too liberal in classifying an NP as anaphoric

- u During classifier training
 - learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system
 - Given a constraint-based representation of anaphoricity info
 - too conservative in classifying an NP as anaphoric
 - too liberal in classifying an NP as anaphoric

- u During classifier training
 - learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system
 - Given a constraint-based representation of anaphoricity info
 - too conservative in classifying an NP as anaphoric
 - n clustering algorithm bypasses too many truly anaphoric NPs
 - too liberal in classifying an NP as anaphoric

Potential Problem with Local Optimization

- u During classifier training
 - learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system
 - Given a constraint-based representation of anaphoricity info
 - too conservative in classifying an NP as anaphoric
 - n clustering algorithm bypasses too many truly anaphoric NPs
 - too liberal in classifying an NP as anaphoric
 - n anaphoricity info not effective for improving coreference

Potential Problem with Local Optimization

- u During classifier training
 - learn a classifier that maximizes classification accuracy
- Classifier may be sub-optimal w.r.t. improving the coreference system

Given a constraint-based representation of anaphoricity info

- too conservative in classifying an NP as anaphoric
 clustering algorithm bypasses too many truly anaphoric NPs
- too liberal in classifying an NP as anaphoric
 - n anaphoricity info not effective for improving coreference

Want a classifier with the right degree of conservativeness

- construct anaphoricity classifiers with different degrees of conservativeness
- 2. pick the classifier that yields the best coreference performance on held-out data

u Idea

- construct anaphoricity classifiers with different degrees of conservativeness
- 2. pick the classifier that yields the best coreference performance on held-out data

How to implement step 1?

Method 1: Varying the cost ratio (cr)

 $cr = \frac{\text{Cost of misclassifying a positive instance}}{\text{Cost of misclassifying a negative instance}}$

Method 1: Varying the cost ratio (*cr*)

```
cr = \frac{\text{Cost of misclassifying a positive instance}}{\text{Cost of misclassifying a negative instance}}
```

= Cost of misclassifying an anaphoric NP
Cost of misclassifying a non-anaphoric NP

Method 1: Varying the cost ratio (*cr*)

```
    Cost of misclassifying a positive instance
    Cost of misclassifying a negative instance
    Cost of misclassifying an anaphoric NP
    Cost of misclassifying a non-anaphoric NP
```

u cr ↑==> more liberal in classifying an NP as anaphoric

Method 1: Varying the cost ratio (*cr*)

```
    Cost of misclassifying a positive instance
    Cost of misclassifying a negative instance
    Cost of misclassifying an anaphoric NP
    Cost of misclassifying a non-anaphoric NP
```

u cr ↑==> more liberal in classifying an NP as anaphoric

Train classifiers with different values of cr

Method 1: Varying the cost ratio (cr)

```
cr = Cost of misclassifying a positive instance
Cost of misclassifying a negative instance
```

= Cost of misclassifying an anaphoric NP
Cost of misclassifying a non-anaphoric NP

u cr ↑==> more liberal in classifying an NP as anaphoric

Train classifiers with different values of *cr* using RIPPER [Cohen, 1995]

- 1. Train a probabilistic model of anaphoricity $P_A(c \mid i)$
 - i is an instance representing an NP and
 - c is one of the two possible anaphoricity values using maximum entropy (ME)

- 1. Train a probabilistic model of anaphoricity $P_A(c \mid i)$
 - i is an instance representing an NP and
 - c is one of the two possible anaphoricity values using maximum entropy (ME)
- 2. Construct an anaphoricity classifier M^t from P_A $M^t(i) = non-anaphoric$ iff $P_A(c = non-anaphoric \mid i) >= t$

- 1. Train a probabilistic model of anaphoricity $P_A(c \mid i)$
 - i is an instance representing an NP and
 - c is one of the two possible anaphoricity values using maximum entropy (ME)
- 2. Construct an anaphoricity classifier M^t from P_A $M^t(i) = non-anaphoric$ iff $P_A(c = non-anaphoric \mid i) >= t$
- $t \uparrow ==> more liberal in classifying an NP as anaphoric$

Method 2: Varying the classification threshold

- 1. Train a probabilistic model of anaphoricity $P_A(c \mid i)$
 - i is an instance representing an NP and
 - c is one of the two possible anaphoricity values using maximum entropy (ME)
- 2. Construct an anaphoricity classifier M^t from P_A $M^t(i) = non-anaphoric$ iff $P_A(c = non-anaphoric \mid i) >= t$
- $t \uparrow ==> more liberal in classifying an NP as anaphoric$

Construct classifiers with different values of t

Idea

- 1. construct anaphoricity classifiers with different degrees of conservativeness (by varying cr or t)
 - 2. pick the classifier that yields the best coreference performance on held-out data

- 1. construct anaphoricity classifiers with different degrees of conservativeness (by varying *cr* or *t*)
- 2. pick the classifier that yields the best coreference performance on held-out data
- u cr or t ==> more liberal in classifying an NP as anaphoric

- construct anaphoricity classifiers with different degrees of conservativeness (by varying cr or t)
- 2. pick the classifier that yields the best coreference performance on held-out data

```
u cr or t \uparrow ==> more liberal in classifying an NP as anaphoric ==> recall and \downarrow precision of coreference system
```

- construct anaphoricity classifiers with different degrees of conservativeness (by varying cr or t)
- 2. pick the classifier that yields the best coreference performance on held-out data

```
u cr or t \uparrow ==> more liberal in classifying an NP as anaphoric ==> recall and \downarrow precision of coreference system
```

- u Idea 🥒
 - 1. construct anaphoricity classifiers with different degrees of conservativeness (by varying *cr* or *t*)
 - 2. pick the classifier that yields the best coreference performance on held-out data
- u cr or $t \uparrow ==>$ more liberal in classifying an NP as anaphoric ==> recall and \downarrow precision of coreference system

- u Idea 🇸
 - 1. construct anaphoricity classifiers with different degrees of conservativeness (by varying *cr* or *t*)
 - 2. pick the classifier that yields the best coreference performance on held-out data
- u cr or $t \uparrow \Rightarrow$ more liberal in classifying an NP as anaphoric ==> \uparrow recall and \downarrow precision of coreference system

- u Idea 🗸
 - 1. construct anaphoricity classifiers with different degrees of conservativeness (by varying *cr* or *t*)
 - 2. pick the classifier that yields the best coreference performance on held-out data

Relationship Between Local Optimization and Global Optimization

- The local approach is a special case of the global one
 - global approach: cr and t are tuned based on held-out data
 - local approach: default values of cr and t are used (cr is set to 1, t is set to 0.5)

Constraint-Based Feature-Based

Locally-Optimized

Globally-Optimized

	Constraint-Based	Feature-Based
Locally-Optimized		
Globally-Optimized		

Locally-Optimized Globally-Optimized

Constraint-Based	Feature-Based

Locally-Optimized Globally-Optimized

Constraint-Based	Feature-Based

Experimental Setup

- Coreference system [Ng and Cardie, ACL 2002]
 - implements the standard machine learning framework
- Features for anaphoricity determination [Ng and Cardie, COLING 2002]
 - 37 features per instance
- u Learning algorithms
 - RIPPER and ME

Experimental Setup (Cont')

- The ACE coreference corpus
 - 3 data sets (Broadcast News, Newspaper, Newswire)
 - each data set comprises a training set and a test set
- u NPs extracted automatically
- MUC scoring program
 - recall, precision, F-measure

		Broa	dcast	News	Ne	wspap	per	Newswire		
	L	R	P	F	R	R P F			P	F
Baseline	RIP	57.4	55.3	56.3	60.0	63.6	61.8	53.2	50.3	51.7
4.50	ME	60.9	52.1	56.2	65.4	58.6	61.8	54.9	46.7	50.4

		Broa	dcast	News	Ne	wspap	per	Newswire			
	L	R	P	F	R	R P F			P	F	
Baseline	RIP	57.4	55.3	56.3	60.0	63.6	61.8	53.2	50.3	51.7	
	ME	60.9	52.1	56.2	65.4	58.6	61.8	54.9	46.7	50.4	

		Broa	dcast	News	Ne	wspap	per	Newswire			
	L	R	P	F	R	P	F	R	P	F	
Baseline	RIP	57.4	55.3	56.3	60.0	63.6	61.8	53.2	50.3	51.7	
4.50	ME	60.9	52.1	56.2	65.4	58.6	61.8	54.9	46.7	50.4	

		Broad	dcast	News	Ne	wspa	per	Newswire			
	L	R	P	F	R	P	F	R	P	F	
Baseline	RIP	57.4	55.3	56.3	60.0	63.6	61.8	53.2	50.3	51.7	
4.50	ME	60.9	52.1	56.2	65.4	58.6	61.8	54.9	46.7	50.4	

		Broa	dcast N	News	Ne	wspap	er	Newswire			
	L	R	P	F	R	R P F			P	F	
Baseline	RIP	57.4	55.3	56.3	60.0	63.6	61.8	53.2	50.3	51.7	
	ME	60.9	52.1	56.2	65.4	58.6	61.8	54.9	46.7	50.4	

Results on the Constraint-Based, Locally-Optimized Approach (CBLO)

		Bro	oadca	st Ne	:WS		News	pape	٢	Newswire			
	L	R	P	F	C	R	P	F	C	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

Results on the Constraint-Based, Locally-Optimized Approach (CBLO)

		Bro	oadca	st Ne	ws		News	pape	٢	Newswire				
	L	R	P	F	C	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1	
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5	
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1	
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5	

Results on the Constraint-Based, Locally-Optimized Approach (CBLO)

		Bro	oadca	st Ne	ws		News	pape	٢	Newswire			
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	oadca	st Ne	ews		News	pape	٢		News	swire	
	L	R	P	F	C	R	P	F	C	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	oadca	st Ne	ws		News	pape	٢		News	swire	
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	oadca	st Ne	ws		News	pape	٢		News	swire	
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	oadca	st Ne	ews		News	pape	٢		News	swire	
	L	R	P	F	C	R	P	F	C	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	padca	st Ne	ws	I	News	pape	٢		News	swire	
	L	R	P	F	C	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	padca	st Ne	ws		News	paper	•		News	swire	
	L	R	P	F	C	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

		Bro	oadca	st Ne	ws		News	pape	٢		News	swire	
	L	R	P	F	C	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
-	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

u large gains in precision at the expense of recall

		Bro	oadca	st Ne	ews		News	pape	r		News	swire	
	L	R	P	F	C	R	P	F	C	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
-	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
CBLO	RIP	42.5	77.2	54.8	<i>cr</i> =1	46.7	79.3	58.8	<i>cr</i> =1	42.1	64.2	50.9	<i>cr</i> =1
	RIP	45.4	72.8	55.9	<i>t</i> =.5	52.2	75.9	61.9	<i>t</i> =.5	36.9	61.5	46.1	<i>t</i> =.5
	ME	44.4	76.9	56.3	<i>cr</i> =1	50.1	75.7	60.3	<i>cr</i> =1	43.9	63.0	51.7	<i>cr</i> =1
	ME	47.3	70.8	56.7	<i>t</i> =.5	57.1	70.6	63.1	<i>t</i> =.5	38.1	60.0	46.6	<i>t</i> =.5

- u large gains in precision at the expense of recall
- u not very effective at improving the baseline

		Bro	oadca	st Ne	ws		News	pape	٢		News	swire	
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
FBLO	RIP	53.5	61.3	57.2	<i>cr</i> =1	58.7	69.7	63.7	<i>cr</i> =1	54.2	46.8	50.2	<i>cr</i> =1
	RIP	58.3	58.3	58.3	<i>t</i> =.5	63.5	57.0	60.1	<i>t</i> =.5	63.4	35.3	45.3	<i>t</i> =.5
	ME	59.6	51.6	55.3	<i>cr</i> =1	65.6	57.9	61.5	<i>cr</i> =1	55.1	46.2	50.3	<i>cr</i> =1
	ME	59.6	51.6	55.3	t=.5	66.0	57.7	61.6	<i>t</i> =.5	54.9	46.7	50.4	<i>t</i> =.5

		Bro	oadca	st Ne	ws		News	pape	7		News	swire	
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
FBLO	RIP	53.5	61.3	57.2	<i>cr</i> =1	58.7	69.7	63.7	<i>cr</i> =1	54.2	46.8	50.2	<i>cr</i> =1
	RIP	58.3	58.3	58.3	<i>t</i> =.5	63.5	57.0	60.1	<i>t</i> =.5	63.4	35.3	45.3	<i>t</i> =.5
	ME	59.6	51.6	55.3	<i>cr</i> =1	65.6	57.9	61.5	<i>cr</i> =1	55.1	46.2	50.3	<i>cr</i> =1
	ME	59.6	51.6	55.3	t=.5	66.0	57.7	61.6	<i>t</i> =.5	54.9	46.7	50.4	<i>t</i> =.5

u results using RIPPER are mixed

		Bro	oadca	st Ne	:WS		News	pape	٢		News	swire	
	L	R	P	F	С	R	P	F	C	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
FBLO	RIP	53.5	61.3	57.2	<i>cr</i> =1	58.7	69.7	63.7	<i>cr</i> =1	54.2	46.8	50.2	<i>cr</i> =1
	RIP	58.3	58.3	58.3	<i>t</i> =.5	63.5	57.0	60.1	<i>t</i> =.5	63.4	35.3	45.3	<i>t</i> =.5
	ME	59.6	51.6	55.3	<i>cr</i> =1	65.6	57.9	61.5	<i>cr</i> =1	55.1	46.2	50.3	<i>cr</i> =1
	ME	59.6	51.6	55.3	t=.5	66.0	57.7	61.6	<i>t</i> =.5	54.9	46.7	50.4	<i>t</i> =.5

u results using RIPPER are mixed; results using ME are poor

		Bro	oadca	st Ne	ws		News	pape	7		News	swire	
	L	R	P	F	С	R	P	F	С	R	P	F	С
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7	
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4	
FBLO	RIP	53.5	61.3	57.2	<i>cr</i> =1	58.7	69.7	63.7	<i>cr</i> =1	54.2	46.8	50.2	<i>cr</i> =1
	RIP	58.3	58.3	58.3	<i>t</i> =.5	63.5	57.0	60.1	<i>t</i> =.5	63.4	35.3	45.3	<i>t</i> =.5
	ME	59.6	51.6	55.3	<i>cr</i> =1	65.6	57.9	61.5	<i>cr</i> =1	55.1	46.2	50.3	<i>cr</i> =1
	ME	59.6	51.6	55.3	t=.5	66.0	57.7	61.6	<i>t</i> =.5	54.9	46.7	50.4	<i>t</i> =.5

- results using RIPPER are mixed; results using ME are poor
- u not very effective at improving the baseline either

		Bro	oadca	st Ne	ws	l	News	pape	r	Newswire				
	L	R	P	F	С	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
at many	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBGO	RIP	54.5	68.6	60.8	<i>cr</i> =5	58.4	68.8	63.2	cr=4	50.5	56.7	53.4	cr=3	
	RIP	54.1	67.1	59.9	<i>t</i> =.7	56.5	68.1	61.7	<i>t</i> =.65	50.3	53.8	52.0	<i>t</i> =.7	
	ME	54.8	62.9	58.5	<i>cr</i> =5	62.4	65.6	64.0	<i>cr</i> =3	52.2	57.0	54.5	<i>cr</i> =3	
	ME	54.1	60.6	57.2	t=.7	61.7	64.0	62.8	<i>t</i> =.7	52.0	52.8	52.4	t=.7	

		Bro	oadca	st Ne	ws		News	pape	٢	Newswire				
	L	R	P	F	С	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBGO	RIP	54.5	68.6	60.8	<i>cr</i> =5	58.4	68.8	63.2	cr=4	50.5	56.7	53.4	<i>cr</i> =3	
	RIP	54.1	67.1	59.9	<i>t</i> =.7	56.5	68.1	61.7	<i>t</i> =.65	50.3	53.8	52.0	<i>t</i> =.7	
	ME	54.8	62.9	58.5	<i>cr</i> =5	62.4	65.6	64.0	<i>cr</i> =3	52.2	57.0	54.5	<i>cr</i> =3	
	ME	54.1	60.6	57.2	t=.7	61.7	64.0	62.8	<i>t</i> =.7	52.0	52.8	52.4	t=.7	

u 2/3 of training texts for acquiring classifiers; 1/3 for development

u parameter tuning: 1,2, ..., 10 and their reciprocals for *cr* 0.05, 0.1, ..., 1.0 for *t*

		Bro	oadca	st Ne	:WS		News	pape	r	Newswire				
	L	R	P	F	С	R	P	F	C	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBGO	RIP	54.5	68.6	60.8	<i>cr</i> =5	58.4	68.8	63.2	cr=4	50.5	56.7	53.4	<i>cr</i> =3	
	RIP	54.1	67.1	59.9	<i>t</i> =.7	56.5	68.1	61.7	<i>t</i> =.65	50.3	53.8	52.0	<i>t</i> =.7	
	ME	54.8	62.9	58.5	<i>cr</i> =5	62.4	65.6	64.0	<i>cr</i> =3	52.2	57.0	54.5	<i>cr</i> =3	
	ME	54.1	60.6	57.2	t=.7	61.7	64.0	62.8	<i>t</i> =.7	52.0	52.8	52.4	<i>t</i> =.7	

no significantly worse results; 9 indicate significant improvements

		Bro	oadca	st Ne	:WS		News	pape	٢	Newswire				
	L	R	P	F	С	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBGO	RIP	54.5	68.6	60.8	<i>cr</i> =5	58.4	68.8	63.2	cr=4	50.5	56.7	53.4	<i>cr</i> =3	
	RIP	54.1	67.1	59.9	<i>t</i> =.7	56.5	68.1	61.7	<i>t</i> =.65	50.3	53.8	52.0	<i>t</i> =.7	
	ME	54.8	62.9	58.5	<i>cr</i> =5	62.4	65.6	64.0	<i>cr</i> =3	52.2	57.0	54.5	<i>cr</i> =3	
	ME	54.1	60.6	57.2	t=.7	61.7	64.0	62.8	<i>t</i> =.7	52.0	52.8	52.4	t=.7	

- u no significantly worse results; 9 indicate significant improvements
- u yields our best results on all three data sets

		Bro	oadca	st Ne	ews	I	News	pape	٢	Newswire				
	L	R	P	F	C	R	P	F	C	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
CBGO	RIP	54.5	68.6	60.8	<i>cr</i> =5	58.4	68.8	63.2	cr=4	50.5	56.7	53.4	<i>cr</i> =3	
	RIP	54.1	67.1	59.9	<i>t</i> =.7	56.5	68.1	61.7	<i>t</i> =.65	50.3	53.8	52.0	<i>t</i> =.7	
	ME	54.8	62.9	58.5	<i>cr</i> =5	62.4	65.6	64.0	<i>cr</i> =3	52.2	57.0	54.5	<i>cr</i> =3	
	ME	54.1	60.6	57.2	t=.7	61.7	64.0	62.8	<i>t</i> =.7	52.0	52.8	52.4	t=.7	

- no significantly worse results; 9 indicate significant improvements
- u yields our best results on all three data sets
- locally-optimized classifiers are too conservative in classifying an NP as anaphoric

		Bro	oadca	st Ne	ews		News	pape	٢	Newswire				
	L	R	P	F	C	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
FBGO	RIP	60.8	56.1	58.4	<i>cr</i> =8	62.2	61.3	61.7	<i>cr</i> =6	54.6	49.4	51.9	<i>cr</i> =8	
	RIP	59.7	57.0	58.3	<i>t</i> =.6	63.6	59.1	61.3	<i>t</i> =.8	56.7	48.4	52.3	t=.7	
	ME	59.9	51.0	55.1	<i>cr</i> =9	66.5	57.1	61.4	<i>cr</i> =1	56.3	46.9	51.2	<i>cr</i> =10	
	ME	59.6	51.6	55.3	t=.95	65.9	57.5	61.4	<i>t</i> =.95	56.5	46.7	51.1	<i>t</i> =.5	

		Bro	oadca	st Ne	ews		News	pape	٢	Newswire				
	L	R	P	F	С	R	P	F	С	R	P	F	С	
Baseline	RIP	57.4	55.3	56.3		60.0	63.6	61.8		53.2	50.3	51.7		
	ME	60.9	52.1	56.2		65.4	58.6	61.8		54.9	46.7	50.4		
FBGO	RIP	60.8	56.1	58.4	<i>cr</i> =8	62.2	61.3	61.7	<i>cr</i> =6	54.6	49.4	51.9	<i>cr</i> =8	
	RIP	59.7	57.0	58.3	<i>t</i> =.6	63.6	59.1	61.3	<i>t</i> =.8	56.7	48.4	52.3	<i>t</i> =.7	
	ME	59.9	51.0	55.1	<i>cr</i> =9	66.5	57.1	61.4	<i>cr</i> =1	56.3	46.9	51.2	<i>cr</i> =10	
	ME	59.6	51.6	55.3	t=.95	65.9	57.5	61.4	<i>t</i> =.95	56.5	46.7	51.1	<i>t</i> =.5	

u not very effective at improving the baseline

Summary

- u Evaluated four combinations of
 - local vs. global optimization and
 - constraint-based vs. feature-based representation
 of anaphoricity information in terms of their effectiveness in improving a learning-based coreference system
- Showed that the constraint-based, globally-optimized approach is the most effective

Future Work

- Investigate better features for anaphoricity determination[Poesio et al, 2004]
 - e.g., definite probability of an NP [Bean and Riloff, 1999; Uryupina, 2003]

Summary

- u Evaluated four combinations of
 - local vs. global optimization and
 - constraint-based vs. feature-based representation
 of anaphoricity information in terms of their effectiveness in improving a learning-based coreference system
- Showed that the constraint-based, globally-optimized approach is the most effective
- a Approach can be used in conjunction with
 - knowledge-based coreference systems
 - anaphora/coreference resolution systems for spoken dialogues [Strube and Müller, 2003]