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Goal

Improve ACE coreference resolution using automatically 
acquired semantic class (SC) information of NPs
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ACE Coreference
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semantic classes (entity types)



4

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON

� ORGANIZATION

� FACILITY

� GPE

� LOCATION



5

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON (human)
� George Bush, the postman, …

� ORGANIZATION

� FACILITY

� GPE

� LOCATION



6

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON (human)
� George Bush, the postman, …

� ORGANIZATION (corporation, agency, institution)
� Massachusetts Institute of Technology, the company, …

� FACILITY

� GPE

� LOCATION



7

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON (human)
� George Bush, the postman, …

� ORGANIZATION (corporation, agency, institution)
� Massachusetts Institute of Technology, the company, …

� FACILITY (man-made structure)
� Sapporo Convention Center, the building, the museum, …

� GPE

� LOCATION



8

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON (human)
� George Bush, the postman, …

� ORGANIZATION (corporation, agency, institution)
� Massachusetts Institute of Technology, the company, …

� FACILITY (man-made structure)
� Sapporo Convention Center, the building, the museum, …

� GPE (geo-political region)
� Prague, Czech Republic, the city, the province, …

� LOCATION



9

ACE Coreference

� ACE 2003 Coreference
� Resolve references to NPs that belong to one of the five 

semantic classes (entity types)

� PERSON (human)
� George Bush, the postman, …

� ORGANIZATION (corporation, agency, institution)
� Massachusetts Institute of Technology, the company, …

� FACILITY (man-made structure)
� Sapporo Convention Center, the building, the museum, …

� GPE (geo-political region)
� Prague, Czech Republic, the city, the province, …

� LOCATION (geographical area, landmass, body of water)
� River Rhine, the Himalayas, the mountain, …
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Given the SC of an NP, derive two knowledge sources:
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Using Semantic Class Information for Coreference
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Using Semantic Class Information for Coreference

Resolution

Given the SC of an NP, derive two knowledge sources:
1. Semantic class agreement (SCA)

� yes if and only if both NPs have the same SC
�Yes for President Bush and the girl
�No for Prague and the president
�disallow coreference between semantically incompatible NPs

2. Mention
�Defined on an NP
� yes if and only if the NP belongs to one of the five ACE SCs
�Yes for President Bush; No for the dictionary, the satellite …
�disallow coreference between two NPs if either (or both) of 

them is not a mention

Improve precision
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Resolution: System Architectures

� Architecture 1
1. Extract and classify the mentions simultaneously
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Using Semantic Class Information for Coreference

Resolution: System Architectures

� Architecture 1
1. Extract and determine the SCs of the mentions simultaneously
2. Train a coreference model on the mentions
3. Disallow coreference between semantically incompatible NPs

� Architecture 2
1. Extract all the NPs
2. Determine the SC of each extracted NP
3. Train a coreference model on all the NPs
4. Disallow coreference between semantically incompatible NPs
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Plan for the Talk

� Inducing semantic classes

� Using semantic class information for coreference resolution
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Inducing Semantic Classes
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Inducing Semantic Classes

� A supervised learning approach
� Train a six-class classifier to classify an NP as PERSON, 

ORGANIZATION, GPE, FACILITY, LOCATION or OTHERS
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Training Corpus

� BBN Entity Type Corpus (Weischedel and Brunstein, 2005)

� all the Penn Treebank WSJ articles with the ACE mentions 
manually identified and annotated with their SCs
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Training Instance Creation

� One instance for each automatically extracted NPi

� 310K instances created

� Class value derived from the training corpus
� labeled as OTHERS if the NP is not one of the five SCs

� Represented by seven types of features
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1. The WN-CLASS Feature
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Semantic Class WordNet Keywords 
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ORGANIZATION social group 

GPE 
country, province, government, town, city, administration, 
society, island, community 

FACILITY establishment, construction, building, facility, workplace 

LOCATION 
dry land, region, landmass, body of water, geographical area, 
geological formation 
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� Identify the WordNet keywords related to the five SCs



29

Semantic Class WordNet Keywords 

PERSON person 

ORGANIZATION social group 

GPE 
country, province, government, town, city, administration, 
society, island, community 

FACILITY establishment, construction, building, facility, workplace 

LOCATION 
dry land, region, landmass, body of water, geographical area, 
geological formation 

 

 

1. The WN-CLASS Feature

� Identify the WordNet keywords related to the five SCs



30

Semantic Class WordNet Keywords 

PERSON person 

ORGANIZATION social group 

GPE 
country, province, government, town, city, administration, 
society, island, community 

FACILITY establishment, construction, building, facility, workplace 

LOCATION 
dry land, region, landmass, body of water, geographical area, 
geological formation 

 

 

1. The WN-CLASS Feature

� Identify the WordNet keywords related to the five SCs

� Feature value is the keyword that is a hypernym of the head 
noun of NPi



31

Semantic Class WordNet Keywords 

PERSON person 

ORGANIZATION social group 

GPE 
country, province, government, town, city, administration, 
society, island, community 

FACILITY establishment, construction, building, facility, workplace 

LOCATION 
dry land, region, landmass, body of water, geographical area, 
geological formation 

 

 

1. The WN-CLASS Feature

� Identify the WordNet keywords related to the five SCs

� Feature value is the keyword that is a hypernym of the head 
noun of NPi

Bay of Bengal
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Semantic Class WordNet Keywords 

PERSON person 

ORGANIZATION social group 

GPE 
country, province, government, town, city, administration, 
society, island, community 

FACILITY establishment, construction, building, facility, workplace 

LOCATION 
dry land, region, landmass, body of water, geographical area, 
geological formation 

 

 

� Identify the WordNet keywords related to the five SCs

� Feature value is the keyword that is a hypernym of the head 
noun of NPi

� use only first sense to determine if hypernym relation exists
� no feature is created if no hypernym relation exists

1. The WN-CLASS Feature
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� Feature value is the induced class of NPi
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2. The INDUCED-CLASS Feature

� Feature value is the induced class of NPi

� Given a large, unannotated corpus

� Extract appositive relations
� <Eastern Airlines, carrier>, <George Bush, president>, …

� Use a named entity (NE) recognizer to find the semantic 
classes of the proper names

� Infer the semantic class of a common nouns from the 
associated proper name

BLLIP+Reuters

MINIPAR

Identifinder (MUC-style NER)
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Potential Problems

� IdentiFinder is not perfect
� Mislabels proper names

� MINIPAR is not perfect
� Extracts NP pairs that are not in apposition

� Need a more robust method of inferring the semantic class 
of a common noun
1. Compute the probability that the common noun co-occurs with 

each of the named entity types
2. If the most likely NE type has a probability above 0.7, label 

the common noun with the most likely NE type

a common noun 
could be labeled 
with more than one 
semantic class
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Other Problems

� Common nouns that do not belong to one of the seven MUC 
NE types will remain unlabeled

� Common nouns that do not co-occur with any NE type with a 
probability above 0.7 will remain unlabeled

� Solution: fall back on the first-sense heuristic
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3. The WORD Feature

� Create one feature for each word in NPi whose value is the 
word itself
� No features are created for stopwords

� Given “the red ball”, we create “red” and “ball” as features
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4. The NEIGHBOUR Features

� Feature values are NPi’s semantically similar words

� Adopt a distributional approach
� Use the similarity values provided by Lin’s (1998) 

dependency-based thesaurus

� Create one feature for each of the 10 words that are most 
semantically similar to NPi
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5. The NE Feature

� Feature value is the NE type of NPi as determined by 
IdentiFinder
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5. The NE Feature

� Feature value is the NE type of NPi as determined by 
IdentiFinder

� If NPi is determined to be a LOCATION, create an NE feature 
whose value is GPE
� most MUC LOCATIONs are ACE GPEs)
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6. The SUBJ-VERB Feature

� If NPi is involved in a subject-verb relation, create a feature 
whose value is the verb participating in the relation
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7. The Verb-Object Feature

� If NPi is involved in a verb-object relation, create a feature 
whose value is the verb participating in the relation
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Learning Algorithms

� Naïve Bayes

� Multi-class perceptron (Crammer and Singer, 2003)

� 1-nearest neighbour (Daelemans et al.’s TiMBL)

� Decision list (Collins and Singer, 1999)

� Maximum entropy (Och’s YASMET)
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Baseline SC Classification Method

� Motivated by Soon et al. (2001)

� Assign to a named entity its NE feature value

� Assign to any other NP the semantic class associated with its 
WN-CLASS feature value

� “Bay of Bengal” à “body of water” à LOCATION
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Classification Accuracies

 ACE Training Set ACE Test Set 
 Proper 

Noun 
Common 

NPs 
Overall Proper Common Overall 

Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 
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Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 
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 ACE Training Set ACE Test Set 
 Proper 

Noun 
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Overall Proper Common Overall 
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MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

Classification Accuracies

� 1-NN, Decision List, and MaxEnt outperform the baseline 
significantly
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Classification Accuracies

 ACE Training Set ACE Test Set 
 Proper 

Noun 
Common 

NPs 
Overall Proper Common Overall 

Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

� DLME: combines the output for Decision List and MaxEnt
� Uses Decision List for proper NP classification
� Uses MaxEnt for common NP classification
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 ACE Training Set ACE Test Set 
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Baseline 83.1 83.1 83.1 79.6 81.6 81.1 
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Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

� Results for the test set exhibit similar trends
� Decision List achieves the best accuracy on proper NPs
� MaxEnt achieves the best accuracy on common NPs
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Classification Accuracies

 ACE Training Set ACE Test Set 
 Proper 

Noun 
Common 

NPs 
Overall Proper Common Overall 

Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

� DLME has the highest overall accuracy for the test set
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Classification Accuracies

 ACE Training Set ACE Test Set 
 Proper 

Noun 
Common 

NPs 
Overall Proper Common Overall 

Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

� DLME has the highest overall accuracy for the test set

1. Which feature types are important for achieving this accuracy?
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Classification Accuracies

 ACE Training Set ACE Test Set 
 Proper 

Noun 
Common 

NPs 
Overall Proper Common Overall 

Baseline 83.1 83.1 83.1 79.6 81.6 81.1 

Naïve Bayes 65.5 73.8 71.3 64.4 72.6 70.3 

Perceptron 75.7 86.4 83.2 73.4 84.1 81.2 

1-NN 81.0 85.2 84.0 79.8 84.3 83.1 

Decision list 84.1 85.4 85.0 82.0 83.3 82.9 

MaxEnt 80.9 87.0 85.2 78.9 85.7 83.8 

DLME 84.1 87.0 86.1 82.0 85.7 84.7 

� DLME has the highest overall accuracy for the test set

1. Which feature types are important for achieving this accuracy?
2. Will this accuracy be sufficient for improving a coreference system?
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Feature Contribution

� Feature ablation experiments
� Train classifiers with all but one type of features
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Feature Contribution

� Feature ablation experiments
� Train classifiers with all but one type of features

� Key observations
� Accuracy for proper NPs drops significantly when the NE

features are left out

� Accuracy for proper NPs drops significantly (but to a lesser 
extent) when the NEIGHBOUR features are left out

� Accuracy for common NPs drops moderately (but not 
significantly) when the INDUCED-CLASS feature is left out
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� Inducing semantic classes

� Using semantic class information for coreference resolution

Plan for the Talk
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Coreference Resolution: 

Standard Machine Learning Approach

Step 1: Classification 
� classifies two NPs as coreferent or not coreferent

Step 2: Clustering
� coordinates pairwise classification decisions
� single-link clustering to find an antecedent for each NP
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Incorporating Semantic Class Information

� Two knowledge sources
� semantic class agreement (SCA): do two NPs agree in SC?
� mention: does the NP belong to one of the five ACE SCs?
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Incorporating Semantic Class Information

� Two knowledge sources
� semantic class agreement (SCA): do two NPs agree in SC?
� mention: does the NP belong to one of the five ACE SCs?

� Incorporate the two knowledge sources as
� Features affects classification
� Constraints affects clustering

� SCA: disallow coreference if the NPs disagree w.r.t. SC
� Mention: disallow coreference if at least one NP is not a mention
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Incorporating Semantic Class Information

� Eight ways of incorporating the two knowledge sources
� they can be applied in isolation or in combination
� each can be used as a constraint or as a feature
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Incorporating Semantic Class Information

� Eight ways of incorporating the two knowledge sources
� they can be applied in isolation or in combination
� each can be used as a constraint or as a feature

� The eight combinations:
1. Mention (C) 
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Experimental Setup

� The 2003 ACE coreference corpus
� train on training set and evaluate on test set
� NPs extracted automatically

� Evaluation metrics
� F-measure

� computed by MUC scoring program (Vilain et al., 1995)

� accuracy on resolving anaphoric NPs
� consider an NP correctly resolved if it appears in the same 

cluster as its closest antecedent (Ponzetto and Strube, 2006)
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The Baseline Coreference System

� Learning algorithm: C4.5

� Clustering: single-link clustering

� Training instance creation method: Soon et al. (2001)

� Feature set (33 features):
� String-matching features

� Exact string match, substring match, head noun match

� Grammatical features
� Agreement w.r.t. gender, number, animacy, grammatical role

� Positional feature
� Distance between the two NPs in sentences

� Semantic feature: Name alias
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Duplicated Soon et al. 56.1 54.4 55.3 53.4 45.7 16.9 41.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

Results (Baseline System)
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Duplicated Soon et al. 56.1 54.4 55.3 53.4 45.7 16.9 41.4 
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      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

Results (Baseline System)

� How strong is the baseline result? 
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 
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      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 
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Results (Baseline System)

� How strong is the baseline result?
� Compare the baseline with the Soon et al. (2001) coreference

system
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Results (Duplicated Soon et al. System)

 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Duplicated Soon et al. 56.1 54.4 55.3 53.4 45.7 16.9 41.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

� How strong is the baseline result?
� Compare the baseline with the Soon et al. (2001) coreference

system
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Results (Duplicated Soon et al. System)

 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Duplicated Soon et al. 56.1 54.4 55.3 53.4 45.7 16.9 41.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

� How strong is the baseline result?
� Compare the baseline with the Soon et al. (2001) coreference

system
� Performance difference is highly significant (p=0.002)
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Incorporating Semantic Class Information

� The SC of a proper or common NP is given by the DLME 
classifier. 
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Incorporating Semantic Class Information

� The SC of a proper or common NP is given by the DLME 
classifier. 

� The SC of a pronoun is UNCONSTRAINED (i.e., it is 
semantically compatible with all other NPs).

� Derive SCA and Mention from the induced SCs.

� Incorporate knowledge sources into coreference system. 
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Results (Using Induced SC Information)

 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

Results (Using Induced SC Information)

� Significant improvements over the baseline in six cases
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 

Baseline system 60.9 53.6 57.0 59.2 54.8 22.5 48.4 

Add to the Baseline system DLME classification DLME classification 

      Mention (C) only 58.7 72.0 64.7 58.9 53.3 19.1 46.8 

      Mention (F) only 61.3 53.7 57.3 59.2 55.7 22.7 48.8 

      SCA (C) only 57.3 72.0 63.8 57.8 51.0 17.0 45.1 

      SCA (F) only 62.9 54.9 58.6 59.4 57.1 29.9 51.2 

      Mention (C) + SCA (C) 57.5 72.2 64.0 57.9 51.2 17.1 45.2 

      Mention (C) + SCA (F) 61.0 69.6 65.0 59.4 56.3 27.2 50.2 

      Mention (F) + SCA (C) 57.6 72.2 64.1 57.9 51.5 17.1 45.4 

      Mention (F) + SCA (F) 63.2 53.4 57.9 59.7 57.7 30.1 51.5 

Results (Using Induced SC Information)

� In five cases, F-measure increases by about 7-8
� large gains in precision and smaller loss in recall 
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Results (Using Induced SC Information)

� At least one of the two knowledge sources are used as constraints
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 MUC Scorer Resolution Accuracy 
 R P F PRO PN CN All 
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� At least one of the two knowledge sources are used as constraints

Is SCA useful in the presence of Mention (C)?
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Results (Using Induced SC Information)

� Mention (C) + SCA (F) is better in terms of overall accuracy
� Outperforms Mention (C) by 3% in proper NP resolution and 

8% in common NP resolution
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Summary

� Mention and SCA can be usefully employed to improve the 
performance of a learning-based coreference system

� Experimental results suggest that Mention should be used 
as a constraint and SCA as a feature.


