Semantic Class Induction and Coreference Resolution

Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

Goal

Improve ACE coreference resolution using automatically acquired semantic class (SC) information of NPs

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON
- ORGANIZATION
- FACILITY
- GPE
- LOCATION

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON (human)
 - · George Bush, the postman, ...
- ORGANIZATION
- FACILITY
- GPE
- LOCATION

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON (human)
 - George Bush, the postman, ...
- ORGANIZATION (corporation, agency, institution)
 - Massachusetts Institute of Technology, the company, ...
- FACILITY
- GPE
- LOCATION

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON (human)
 - George Bush, the postman, ...
- ORGANIZATION (corporation, agency, institution)
 - Massachusetts Institute of Technology, the company, ...
- FACILITY (man-made structure)
 - Sapporo Convention Center, the building, the museum, ...
- GPE
- LOCATION

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON (human)
 - George Bush, the postman, ...
- ORGANIZATION (corporation, agency, institution)
 - Massachusetts Institute of Technology, the company, ...
- FACILITY (man-made structure)
 - Sapporo Convention Center, the building, the museum, ...
- GPE (geo-political region)
 - Prague, Czech Republic, the city, the province, ...
- LOCATION

- ACE 2003 Coreference
 - Resolve references to NPs that belong to one of the five semantic classes (entity types)
- PERSON (human)
 - George Bush, the postman, ...
- ORGANIZATION (corporation, agency, institution)
 - Massachusetts Institute of Technology, the company, ...
- FACILITY (man-made structure)
 - Sapporo Convention Center, the building, the museum, ...
- GPE (geo-political region)
 - Prague, Czech Republic, the city, the province, ...
- LOCATION (geographical area, landmass, body of water)
 - River Rhine, the Himalayas, the mountain, ...

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

Given the SC of an NP, derive two knowledge sources:

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

2. Mention

Given the SC of an NP, derive two knowledge sources:

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

2. Mention

- Defined on an NP
- yes if and only if the NP belongs to one of the five ACE SCs

Given the SC of an NP, derive two knowledge sources:

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

2. Mention

- Defined on an NP
- yes if and only if the NP belongs to one of the five ACE SCs
- Yes for President Bush; No for the dictionary, the satellite ...

Given the SC of an NP, derive two knowledge sources:

- 1. Semantic class agreement (SCA)
 - determines whether the SCs of two NPs agree or not
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

2. Mention

- defined on an NP
- yes if and only if the NP belongs to one of the five ACE SCs
- Yes for President Bush; No for the dictionary, the satellite ...
- disallow coreference between two NPs if either (or both) of them is not a mention

18

Using Semantic Class Information for Coreference Resolution Improve precision

Given the SC of an NP, derive two knowledge sources:

- 1. Semantic class agreement (SCA)
 - yes if and only if both NPs have the same SC
 - Yes for President Bush and the girl
 - No for Prague and the president
 - disallow coreference between semantically incompatible NPs

2. Mention

- Defined on an NP
- yes if and only if the NP belongs to one of the five ACE SCs
- Yes for President Bush; No for the dictionary, the satellite ...
- disallow coreference between two NPs if either (or both) of them is not a mention

19

Using Semantic Class Information for Coreference Resolution: System Architectures

- Architecture 1
 - 1. Extract and classify the mentions simultaneously
 - 2. Train a coreference model on the mentions
 - 3. Disallow coreference between semantically incompatible NPs

Using Semantic Class Information for Coreference Resolution: System Architectures

Architecture 1

- 1. Extract and determine the SCs of the mentions simultaneously
- 2. Train a coreference model on the mentions
- 3. Disallow coreference between semantically incompatible NPs

Architecture 2

- 1. Extract all the NPs
- 2. Determine the SC of each extracted NP
- 3. Train a coreference model on all the NPs
- 4. Disallow coreference between semantically incompatible NPs

Plan for the Talk

Inducing semantic classes

Using semantic class information for coreference resolution

Inducing Semantic Classes

Inducing Semantic Classes

- A supervised learning approach
 - Train a six-class classifier to classify an NP as PERSON, ORGANIZATION, GPE, FACILITY, LOCATION or OTHERS

Training Corpus

- BBN Entity Type Corpus (Weischedel and Brunstein, 2005)
 - all the Penn Treebank WSJ articles with the ACE mentions manually identified and annotated with their SCs

Training Instance Creation

- One instance for each automatically extracted NP_i
 - 310K instances created
- Class value derived from the training corpus
 - labeled as OTHERS if the NP is not one of the five SCs
- Represented by seven types of features

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

 Feature value is the keyword that is a hypernym of the head noun of NP_i

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

Feature value is the keyword that is a hypernym of the head noun of NP;

Bay of Bengal

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

- Feature value is the keyword that is a hypernym of the head noun of NP_i
 - use only first sense to determine if hypernym relation exists

Identify the WordNet keywords related to the five SCs

Semantic Class	WordNet Keywords
PERSON	person
ORGANIZATION	social group
GPE	country, province, government, town, city, administration, society, island, community
FACILITY	establishment, construction, building, facility, workplace
LOCATION	dry land, region, landmass, body of water, geographical area, geological formation

- Feature value is the keyword that is a hypernym of the head noun of NP_i
 - use only first sense to determine if hypernym relation exists
 - no feature is created if no hypernym relation exists

2. The INDUCED-CLASS Feature

Feature value is the induced class of NP_i

2. The INDUCED-CLASS Feature

- Feature value is the induced class of NP_i
- Given a large, unannotated corpus
 - Extract appositive relations
 - <Eastern Airlines, carrier>, <George Bush, president>, ...
 - Use a named entity (NE) recognizer to find the semantic classes of the proper names
 - Infer the semantic class of a common nouns from the associated proper name

2. The INDUCED-CLASS Feature

- Feature value is the induced class of NP_i
- Given a large, unannotated corpus

- Extract appositive relations
 - <Eastern Airlines, carrier>, <George Bush, president>, ...
- Use a named entity (NE) recognizer to find the semantic classes of the proper names
- Infer the semantic class of a common nouns from the associated proper name

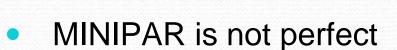
2. The INDUCED-CLASS Feature

- Feature value is the induced class of NP_i
- Given a large, unannotated corpus

Extract appositive relations

- <Eastern Airlines, carrier>, <George Bush, president>, ...
- Use a named entity (NE) recognizer to find the semantic classes of the proper names
- Infer the semantic class of a common nouns from the associated proper name

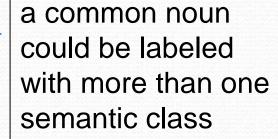
2. The INDUCED-CLASS Feature


- Feature value is the induced class of NP_i
- Given a large, unannotated corpus
- **BLLIP+Reuters**

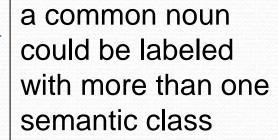
Extract appositive relations

- **MINIPAR**
- <Eastern Airlines, carrier>, <George Bush, president>, ...
- Use a named entity (NE) recognizer to find the semantic classes of the proper names
 Identifinder (MUC-style NER)
- Infer the semantic class of a common nouns from the associated proper name

- IdentiFinder is not perfect
 - Mislabels proper names
- MINIPAR is not perfect
 - Extracts NP pairs that are not in apposition


- IdentiFinder is not perfect
 - Mislabels proper names

a common noun could be labeled with more than one semantic class


Extracts NP pairs that are not in apposition

- IdentiFinder is not perfect
 - Mislabels proper names

- MINIPAR is not perfect
 - Extracts NP pairs that are not in apposition
- Need a more robust method of inferring the semantic class of a common noun

- IdentiFinder is not perfect
 - Mislabels proper names

- MINIPAR is not perfect
 - Extracts NP pairs that are not in apposition
- Need a more robust method of inferring the semantic class of a common noun
 - Compute the probability that the common noun co-occurs with each of the named entity types
 - 2. If the most likely NE type has a probability above 0.7, label the common noun with the most likely NE type

Other Problems

 Common nouns that do not belong to one of the seven MUC NE types will remain unlabeled

Other Problems

- Common nouns that do not belong to one of the seven MUC NE types will remain unlabeled
- Common nouns that do not co-occur with any NE type with a probability above 0.7 will remain unlabeled

Other Problems

- Common nouns that do not belong to one of the seven MUC NE types will remain unlabeled
- Common nouns that do not co-occur with any NE type with a probability above 0.7 will remain unlabeled
- Solution: fall back on the first-sense heuristic

3. The WORD Feature

- Create one feature for each word in NP_i whose value is the word itself
 - No features are created for stopwords

3. The WORD Feature

- Create one feature for each word in NP_i whose value is the word itself
 - No features are created for stopwords
- Given "the red ball", we create "red" and "ball" as features

Feature values are NP_i's semantically similar words

- Feature values are NP_i's semantically similar words
- Adopt a distributional approach

- Feature values are NP_i's semantically similar words
- Adopt a distributional approach
 - Use the similarity values provided by Lin's (1998) dependency-based thesaurus

- Feature values are NP_i's semantically similar words
- Adopt a distributional approach
 - Use the similarity values provided by Lin's (1998) dependency-based thesaurus
- Create one feature for each of the 10 words that are most semantically similar to NP_i

5. The NE Feature

 Feature value is the NE type of NP_i as determined by IdentiFinder

5. The NE Feature

- Feature value is the NE type of NP_i as determined by IdentiFinder
 - If NP_i is determined to be a LOCATION, create an NE feature whose value is GPE
 - most MUC LOCATIONs are ACE GPEs)

6. The SUBJ-VERB Feature

 If NP_i is involved in a subject-verb relation, create a feature whose value is the verb participating in the relation

7. The Verb-Object Feature

 If NP_i is involved in a verb-object relation, create a feature whose value is the verb participating in the relation

Learning Algorithms

- Naïve Bayes
- Multi-class perceptron (Crammer and Singer, 2003)
- 1-nearest neighbour (Daelemans et al.'s TiMBL)
- Decision list (Collins and Singer, 1999)
- Maximum entropy (Och's YASMET)

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

- Evaluation corpus: the ACE 2003 coreference corpus
 - comprises a training set and a test set
- Test instances created in the same way as training instances
 - one instance for each automatically extracted NP
 - training set: 54.6K instances; test set: 13.4K instances
- Class distribution (in percentages):

	PER	ORG	GPE	FAC	LOC	ОТН
ACE Training Set (54.6K)	19.8	9.6	11.4	1.6	1.2	56.3
ACE Test Set (13.4K)	19.5	9.0	9.6	1.8	1.1	59.0

Motivated by Soon et al. (2001)

- Motivated by Soon et al. (2001)
 - Assign to a named entity its NE feature value

- Motivated by Soon et al. (2001)
 - Assign to a named entity its NE feature value
 - Assign to any other NP the semantic class associated with its WN-CLASS feature value

- Motivated by Soon et al. (2001)
 - Assign to a named entity its NE feature value
 - Assign to any other NP the semantic class associated with its WN-CLASS feature value
 - "Bay of Bengal" "body of water" LOCATION

Classification Accuracies

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

Classification Accuracies

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

Classification Accuracies

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

ACE Training Set

Proper 83.1 65.5 75.7	Common 83.1 73.8	Overall 83.1 71.3
65.5		
	73.8	71.3
75.7		
13.1	86.4	83.2
81.0	85.2	84.0
84.1	85.4	85.0
80.9	87.0	85.2

ACE Training Set

	8		
	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

 1-NN, Decision List, and MaxEnt outperform the baseline significantly

ACE Training Set

Proper	Common	Overall
83.1	83.1	83.1
65.5	73.8	71.3
75.7	86.4	83.2
81.0	85.2	84.0
84.1	85.4	85.0
80.9	87.0	85.2
	83.1 65.5 75.7 81.0 84.1	83.1 83.1 65.5 73.8 75.7 86.4 81.0 85.2 84.1 85.4

Decision List achieves the highest accuracy on proper NPs

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2

MaxEnt achieves the highest accuracy on proper NPs

ACE Training Set

	Proper	Common	Overall
Baseline	83.1	83.1	83.1
Naïve Bayes	65.5	73.8	71.3
Perceptron	75.7	86.4	83.2
1-NN	81.0	85.2	84.0
Decision list	84.1	85.4	85.0
MaxEnt	80.9	87.0	85.2
DLME	84.1	87.0	86.1

- DLME: combines the output for Decision List and MaxEnt
 - Uses Decision List for proper NP classification
 - Uses MaxEnt for common NP classification

	AC	ACE Training Set			ACE Test So	et
	Proper	Common	Overall	Proper	Common	Overall
Baseline	83.1	83.1	83.1	79.6	81.6	81.1
Naïve Bayes	65.5	73.8	71.3	64.4	72.6	70.3
Perceptron	75.7	86.4	83.2	73.4	84.1	81.2
1-NN	81.0	85.2	84.0	79.8	84.3	83.1
Decision list	84.1	85.4	85.0	82.0	83.3	82.9
MaxEnt	80.9	87.0	85.2	78.9	85.7	83.8
DLME	84.1	87.0	86.1	82.0	85.7	84.7

Results for the test set exhibit similar trends

	AC	ACE Training Set			ACE Test So	et
	Proper	Common	Overall	Proper	Common	Overall
Baseline	83.1	83.1	83.1	79.6	81.6	81.1
Naïve Bayes	65.5	73.8	71.3	64.4	72.6	70.3
Perceptron	75.7	86.4	83.2	73.4	84.1	81.2
1-NN	81.0	85.2	84.0	79.8	84.3	83.1
Decision list	84.1	85.4	85.0	82.0	83.3	82.9
MaxEnt	80.9	87.0	85.2	78.9	85.7	83.8

86.1

82.0

85.7

84.7

Results for the test set exhibit similar trends

87.0

84.1

DLME

- Decision List achieves the best accuracy on proper NPs
- MaxEnt achieves the best accuracy on common NPs

	AC	ACE Training Set			ACE Test So	et
	Proper	Common	Overall	Proper	Common	Overall
Baseline	83.1	83.1	83.1	79.6	81.6	81.1
Naïve Bayes	65.5	73.8	71.3	64.4	72.6	70.3
Perceptron	75.7	86.4	83.2	73.4	84.1	81.2
1-NN	81.0	85.2	84.0	79.8	84.3	83.1
Decision list	84.1	85.4	85.0	82.0	83.3	82.9
MaxEnt	80.9	87.0	85.2	78.9	85.7	83.8
DLME	84.1	87.0	86.1	82.0	85.7	84.7

DLME has the highest overall accuracy for the test set

	AC	ACE Training Set			ACE Test Se	et
	Proper	Common	Overall	Proper	Common	Overall
Baseline	83.1	83.1	83.1	79.6	81.6	81.1
Naïve Bayes	65.5	73.8	71.3	64.4	72.6	70.3
Perceptron	75.7	86.4	83.2	73.4	84.1	81.2
1-NN	81.0	85.2	84.0	79.8	84.3	83.1
Decision list	84.1	85.4	85.0	82.0	83.3	82.9
MaxEnt	80.9	87.0	85.2	78.9	85.7	83.8
DLME	84.1	87.0	86.1	82.0	85.7	84.7

- DLME has the highest overall accuracy for the test set
- 1. Which feature types are important for achieving this accuracy?

	AC	ACE Training Set			ACE Test So	et
	Proper	Common	Overall	Proper	Common	Overall
Baseline	83.1	83.1	83.1	79.6	81.6	81.1
Naïve Bayes	65.5	73.8	71.3	64.4	72.6	70.3
Perceptron	75.7	86.4	83.2	73.4	84.1	81.2
1-NN	81.0	85.2	84.0	79.8	84.3	83.1
Decision list	84.1	85.4	85.0	82.0	83.3	82.9
MaxEnt	80.9	87.0	85.2	78.9	85.7	83.8
DLME	84.1	87.0	86.1	82.0	85.7	84.7

- DLME has the highest overall accuracy for the test set
- 1. Which feature types are important for achieving this accuracy?
- 2. Will this accuracy be sufficient for improving a coreference system?

83

Feature Contribution

- Feature ablation experiments
 - Train classifiers with all but one type of features

Feature Contribution

- Feature ablation experiments
 - Train classifiers with all but one type of features
- Key observations
 - Accuracy for proper NPs drops significantly when the NE features are left out
 - Accuracy for proper NPs drops significantly (but to a lesser extent) when the NEIGHBOUR features are left out
 - Accuracy for common NPs drops moderately (but not significantly) when the INDUCED-CLASS feature is left out

Plan for the Talk

Inducing semantic classes

Using semantic class information for coreference resolution

Coreference Resolution: Standard Machine Learning Approach

Step 1: Classification

classifies two NPs as coreferent or not coreferent

Step 2: Clustering

- coordinates pairwise classification decisions
- single-link clustering to find an antecedent for each NP

- Two knowledge sources
 - semantic class agreement (SCA): do two NPs agree in SC?
 - mention: does the NP belong to one of the five ACE SCs?

- Two knowledge sources
 - semantic class agreement (SCA): do two NPs agree in SC?
 - mention: does the NP belong to one of the five ACE SCs?
- Incorporate the two knowledge sources as
 - Features
 - Constraints

- Two knowledge sources
 - semantic class agreement (SCA): do two NPs agree in SC?
 - mention: does the NP belong to one of the five ACE SCs?
- Incorporate the two knowledge sources as
 - Features
 - Constraints
 - SCA: disallow coreference if the NPs disagree w.r.t. SC
 - Mention: disallow coreference if at least one NP is not a mention.

- Two knowledge sources
 - semantic class agreement (SCA): do two NPs agree in SC?
 - mention: does the NP belong to one of the five ACE SCs?
- Incorporate the two knowledge sources as
 - Features affects classification
 - Constraints affects clustering
 - SCA: disallow coreference if the NPs disagree w.r.t. SC
 - Mention: disallow coreference if at least one NP is not a mention.

- Eight ways of incorporating the two knowledge sources
 - they can be applied in isolation or in combination
 - each can be used as a constraint or as a feature

- Eight ways of incorporating the two knowledge sources
 - they can be applied in isolation or in combination
 - each can be used as a constraint or as a feature
- The eight combinations:
 - 1. Mention (C)
 - 2. Mention (F)
 - 3. SCA (C)
 - 4. SCA (F)
 - 5. Mention (C) + SCA (C)
 - 6. Mention (C) + SCA (F)
 - 7. Mention (F) + SCA (C)
 - 8. Mention (F) + SCA (F)

- Eight ways of incorporating the two knowledge sources
 - they can be applied in isolation or in combination
 - each can be used as a constraint or as a feature
- The eight combinations:
 - 1. Mention (C)
 - 2. Mention (F)
 - 3. SCA (C)
 - 4. SCA (F)
 - 5. Mention (C) + SCA (C)
 - 6. Mention (C) + SCA (F)
 - 7. Mention (F) + SCA (C)
 - 8. Mention (F) + SCA (F)

- Eight ways of incorporating the two knowledge sources
 - they can be applied in isolation or in combination
 - each can be used as a constraint or as a feature
- The eight combinations:
 - 1. Mention (C)
 - 2. Mention (F)
 - 3. SCA (C)
 - 4. SCA (F)
 - 5. Mention (C) + SCA (C)
 - 6. Mention (C) + SCA (F)
 - 7. Mention (F) + SCA (C)
 - 8. Mention (F) + SCA (F)

- Eight ways of incorporating the two knowledge sources
 - they can be applied in isolation or in combination
 - each can be used as a constraint or as a feature
- The eight combinations:
 - 1. Mention (C)
 - 2. Mention (F)
 - 3. SCA (C)
 - 4. SCA (F)
 - 5. Mention (C) + SCA (C)
 - 6. Mention (C) + SCA (F)
 - 7. Mention (F) + SCA (C)
 - 8. Mention (F) + SCA (F)

Experimental Setup

- The 2003 ACE coreference corpus
 - train on training set and evaluate on test set
 - NPs extracted automatically

Experimental Setup

- The 2003 ACE coreference corpus
 - train on training set and evaluate on test set
 - NPs extracted automatically
- Evaluation metrics
 - F-measure
 - computed by MUC scoring program (Vilain et al., 1995)

Experimental Setup

- The 2003 ACE coreference corpus
 - train on training set and evaluate on test set
 - NPs extracted automatically
- Evaluation metrics
 - F-measure
 - computed by MUC scoring program (Vilain et al., 1995)
 - accuracy on resolving anaphoric NPs
 - consider an NP correctly resolved if it appears in the same cluster as its closest antecedent (Ponzetto and Strube, 2006)

The Baseline Coreference System

- Learning algorithm: C4.5
- Clustering: single-link clustering
- Training instance creation method: Soon et al. (2001)
- Feature set (33 features):
 - String-matching features
 - Exact string match, substring match, head noun match
 - Grammatical features
 - Agreement w.r.t. gender, number, animacy, grammatical role
 - Positional feature
 - Distance between the two NPs in sentences
 - Semantic feature: Name alias

Baseline system

MUC Scorer

R	P	F
60.9	53.6	57.0

	MU	JC Sco	rer
	R	P	F
Baseline system	60.9	53.6	57.0

MUC Scorer			
R	P	F	

Baseline system 60.9 **53.6 57.0**

	MU	C Sco	orer
	R	P	F
Baseline system	60.9	53.6	57.0

 MUC Scorer

 R
 P
 F

 Baseline system
 60.9
 53.6
 57.0

• How strong is the baseline result?

	MUC Scorer		
	R	P	F
Baseline system	60.9	53.6	57.0

- How strong is the baseline result?
 - Compare the baseline with the Soon et al. (2001) coreference system

Results (Duplicated Soon et al. System)

	MUC Scorer		
	R	P	F
Baseline system	60.9	53.6	57.0
Duplicated Soon et al.	56.1	54.4	55.3

- How strong is the baseline result?
 - Compare the baseline with the Soon et al. (2001) coreference system

Results (Duplicated Soon et al. System)

	MUC Scorer		
	R	P	F
Baseline system	60.9	53.6	57.0
Duplicated Soon et al.	56.1	54.4	55.3

- How strong is the baseline result?
 - Compare the baseline with the Soon et al. (2001) coreference system
 - Performance difference is highly significant (p=0.002)

Incorporating Semantic Class Information

 The SC of a proper or common NP is given by the DLME classifier.

Incorporating Semantic Class Information

The SC of a proper or common NP is given by the DLME classifier.

• The SC of a pronoun is UNCONSTRAINED (i.e., it is semantically compatible with all other NPs).

Incorporating Semantic Class Information

- The SC of a proper or common NP is given by the DLME classifier.
- The SC of a pronoun is UNCONSTRAINED (i.e., it is semantically compatible with all other NPs).
- Derive SCA and Mention from the induced SCs.
- Incorporate knowledge sources into coreference system.

MUC Scorer

	R	Р	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

MU	C Sco	rer
D	D	- 17

	R	Р	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

Significant improvements over the baseline in six cases

M			S	co	r	er
TAT.	\mathbf{c}	\smile		CU		

	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

- In five cases, F-measure increases by about 7-8
 - large gains in precision and smaller loss in recall

	IVIC	C SCC	11 61
	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

At least one of the two knowledge sources are used as constraints

MUC Scorer

	MU	C Sco	orer
	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

At least one of the two knowledge sources are used as constraints

	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

At least one of the two knowledge sources are used as constraints

MUC Scorer

	MU	C Sco	orer
	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

At least one of the two knowledge sources are used as constraints

	MU	C Sco	orer
	R	P	F
Baseline system	60.9	53.6	57.0
Add to the Baseline system			
Mention (C) only	58.7	72.0	64.7
Mention (F) only	61.3	53.7	57.3
SCA (C) only	57.3	72.0	63.8
SCA (F) only	62.9	54.9	58.6
Mention (C) + SCA (C)	57.5	72.2	64.0
Mention (C) + SCA (F)	61.0	69.6	65.0
Mention (F) + SCA (C)	57.6	72.2	64.1
Mention (F) + SCA (F)	63.2	53.4	57.9

At least one of the two knowledge sources are used as constraints

Is SCA useful in the presence of Mention (C)?

	MUC Scorer			Resolution Accuracy			
	R	P	F	PRO	PN	CN	All
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4
Add to the Baseline system							1
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5

	MUC Scorer			Resolution Accuracy			
	R	P	F	PRO	PN	CN	All
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4
Add to the Baseline system							
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5

	MUC Scorer			Reso	olution Accuracy			
	R	P	F	PRO	PN	CN	All	
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4	
Add to the Baseline system								
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8	
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8	
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1	
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2	
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2	
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2	
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4	
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5	

	MU	JC Sco	orer	Reso	olution Accuracy			
	R	P	F	PRO	PN	CN	All	
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4	
Add to the Baseline system							1	
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8	
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8	
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1	
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2	
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2	
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2	
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4	
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5	

	MUC Scorer			Reso	olution Accuracy			
	R	P	F	PRO	PN	CN	All	
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4	
Add to the Baseline system							1	
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8	
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8	
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1	
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2	
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2	
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2	
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4	
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5	

		MU	C Sco	rer	Reso	Resolution Accuracy			
		R	P	F	PRO	PN	CN	All	
Ba	seline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4	
Ad	d to the Baseline system							1	
	Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8	
	Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8	
	SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1	
	SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2	
	Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2	
	Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2	
	Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4	
	Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5	

	MUC Scorer			Resolution Accuracy			
	R	P	F	PRO	PN	CN	All
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4
Add to the Baseline system							1
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5

Mention (C) + SCA (F) is better in terms of overall accuracy

	MUC Scorer			Resolution Accuracy			
	R	P	F	PRO	PN	CN	All
Baseline system	60.9	53.6	57.0	59.2	54.8	22.5	48.4
Add to the Baseline system							1
Mention (C) only	58.7	72.0	64.7	58.9	53.3	19.1	46.8
Mention (F) only	61.3	53.7	57.3	59.2	55.7	22.7	48.8
SCA (C) only	57.3	72.0	63.8	57.8	51.0	17.0	45.1
SCA (F) only	62.9	54.9	58.6	59.4	57.1	29.9	51.2
Mention (C) + SCA (C)	57.5	72.2	64.0	57.9	51.2	17.1	45.2
Mention (C) + SCA (F)	61.0	69.6	65.0	59.4	56.3	27.2	50.2
Mention (F) + SCA (C)	57.6	72.2	64.1	57.9	51.5	17.1	45.4
Mention (F) + SCA (F)	63.2	53.4	57.9	59.7	57.7	30.1	51.5

- Mention (C) + SCA (F) is better in terms of overall accuracy
 - Outperforms Mention (C) by 3% in proper NP resolution and 8% in common NP resolution

Summary

- Mention and SCA can be usefully employed to improve the performance of a learning-based coreference system
- Experimental results suggest that Mention should be used as a constraint and SCA as a feature.