
Semi-Supervised Cause Identification from 

Aviation Safety Reports

Isaac Persing and Vincent Ng

Human Language Technology Research Institute

University of Texas at Dallas



2

Develop a set of data mining and text analysis 
methods for systematic, multidimensional 

analysis of the ASRS database

Project Mission

Aviation Safety Reporting System

• established in 1967
• voluntarily submitted reports about 

aviation safety incidents written by 
flight crews, attendants, controllers, …
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Cause Identification

� determines why the incident described in a report occurred

� Not a sentence or phrase extraction task

� A text categorization task
� Experts at NASA have identified 14 causes (or shaping 

factors) that could explain why an incident occurred
� Goal: given an incident report, determine which of a set of 

14 shapers contributed to the occurrence of the incident
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Shaping Factors (Posse et al., 2005)

� Proficiency
� general deficit in capabilities

� inexperience, lack of training, not qualified, …

� Attitude
� unprofessional attitude by a controller or flight crew member

� complacency, in a hurry to get home, …

� Physical Factors
� pilot ailment that could impair flying 

� being tired, drugged, ill, dizzy, …
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Shaping Factors (Cont’)

� Physical Environment
� physical conditions that could impair flying

� snow, hurricane, …

� Communication Environment
� interferences with communications in the cockpit 

� noise, auditory interference, radio frequency congestion, …
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Shaping Factors (Cont’)

� Resource Deficiency
� absence, insufficient number, or poor quality of a resource

� overworked or unavailable controller, insufficient or out-of-date 
chart, malfunctioning or missing equipment

� Unexpected
� something sudden and surprising that is not expected

� Other
� anything else that could be a shaper

� shift change, passenger discomfort, disorientation, …

� Familiarity, Pressure, Preoccupation, Taskload,                      
Duty Cycle, Illusion
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Cause Identification is Challenging

� No publicly available labeled data
� NASA researchers hand-annotated 20 reports only

� Multi-label categorization
� an incident may be caused by more than one factor
� categories not mutually exclusive

� Skewed class distributions
� some shapers occur a lot more frequently than the others
� some shapers cover a broad range of issues
� 10 of the 14 shapers are minority classes

� May require a deeper understanding of the text than 
topic-based classification



8

Goal

� Improve cause identification 

� via a bootstrapping algorithm that augments a training set
� learning from labeled data and unlabeled data

� focus on improving minority class prediction
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Plan for the Talk

� Dataset
� Preprocessing, human annotation

� Two baseline cause identification methods

� Our bootstrapping algorithm

� Evaluation
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Dataset

� ~140K aviation safety reports in the ASRS database

� Each report is a free narrative, describing
� why the incident happened
� what happened
� where the incident happened
� how the reporter felt about the incident
� the reporter’s opinions of other people involved in the incident

Lots of information irrelevant to cause identification
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Data Preprocessing

� Reports are informally written
� domain-specific abbreviations and acronyms
� poor grammar
� capitalization information removed

� Example sentence

“HAD BEEN CLRED FOR APCH BY ZOA AND HAD BEEN 
HANDED OFF TO SANTA ROSA TWR.”
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Data Preprocessing

� Reports are informally written
� domain-specific abbreviations and acronyms
� poor grammar
� no capitalization information

� Example sentence

“HAD BEEN CLRED FOR APCH BY ZOA AND HAD BEEN 
HANDED OFF TO SANTA ROSA TWR.”
l Grammatically incorrect
l Many abbreviations and acronyms
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Three Preprocessing Steps

1. Dictionary-based acronym and abbreviation expansion
� list taken from NASA’s website

2. Heuristic-based case restoration
3. Stemming
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Human Annotation

� Randomly picked 1,333 preprocessed reports

� Two graduate students annotated them with shapers
� based solely on the definition of the shapers
� Kappa value: 0.45

� task is difficult
� definition is vague

� Same two annotators re-examined each report for which 
there was a disagreement and reach an agreement



16

Dataset Statistics

0.1Illusion

0.6Unexpected

1.8Duty Cycle

1.8Pressure

1.9Taskload

2.2Physical Factors

2.4Attitude

3.2Familiarity

5.5Communication Environment

6.7Preoccupation

13.3Other

14.4Proficiency

16.0Physical Environment

30.0Resource Deficiency
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Dataset Statistics

0.1Illusion

0.6Unexpected

1.8Duty Cycle

1.8Pressure

1.9Taskload

2.2Physical Factors

2.4Attitude

3.2Familiarity

5.5Communication Environment

6.7Preoccupation

13.3Other

14.4Proficiency

16.0Physical Environment

30.0Resource Deficiency

Minority 
Shapers
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Dataset Statistics (Con’t)

� Percentage of reports with n labels

0.16

0.25

2.74

10.33

33.22

53.61
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Plan for the Talk

� Dataset
� Preprocessing, human annotation

� Two baseline cause identification methods

� Our bootstrapping algorithm

� Evaluation
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Baseline Approaches

� Hypothesis
� our bootstrapping algorithm for augmenting the labeled data 

can improve performance of the cause identification task

� Baselines
� learn from labeled data only
� recast problem as a set of 14 binary classification tasks

� train one classifier for predicting whether a report has a 
particular shaper or not
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Learning the Binary Classification Tasks 

� Goal: train a classifier ci for identifying shaper factor si

� Training data creation (“one versus all” method)
� create one training instance from each training document        
� label the instance as 

� positive if document has si as one of its labels 
� negative otherwise

� Features
� Top 50 unigrams selected according to information gain

� Learning algorithm
� LIBSVM
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Baseline 1

� All learning parameters are set to their default values

� 5-fold cross validation

� Results in terms of overall recall, precision, F1

 Σi no. of positive reports w.r.t. shaper i in gold standard
Recall =

 Σ Σ Σ Σi no. of reports correctly labeled as positive for shaper i

 Σi no. of reports labeled as positive by classifier i
Precision =

 Σ Σ Σ Σi no. of reports correctly labeled as positive for shaper i
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Baseline 2

� Similar to Baseline 1, except that we tune the classification 
threshold (CT) to optimize F-measure

� Motivation
� a classifier trained by LIBSVM by default employs a CT of 0.5

� instance is classified as positive if and only if CT at least 0.5

� may not be optimal threshold, especially for minority classes

� 5-fold CV:1 fold for tuning, 3 folds for training, 1 fold for testing

� 14 CTs are jointly tuned to optimize F-measure
� computationally expensive
� employ a local search algorithm that alters one parameter at a 

time and holds the remaining parameters fixed 
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� Dataset
� Preprocessing, human annotation

� Two baseline cause identification methods

� Our bootstrapping algorithm

� Evaluation

Plan for the Talk
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Our Bootstrapping Algorithm

� Goal
� Improve the baseline classifiers by training them on training 

data augmented using the bootstrapping algorithm
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Idea

� Given a training set created for shaper s, iteratively

� identify words that are strong indicators of the positive or 
negative examples of shaper s

� automatically label unlabeled documents that contain a 
sufficient number of such indicators

Mutually bootstrap the feature set and the labeled data
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Algorithm for augmenting training data for shaper s

� Input arguments
� L+: set of positively labeled training examples of shaper s
� L–: set of negatively labeled training examples of shaper s
� U: set of unlabeled documents
� k: number of bootstrapping iterations

� Variables
� W+: words that are strong indicators of positive examples
� W–: words that are strong indicators of negative examples

Repeat for k iterations
if |L+| > |L–|

Expand L– and W–

else
Expand L+ and W+

Expand the smaller of L+ and L–
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Expanding L+ and W+

1. Find the four words in the labeled data (L+ ∪ L–) that are the 
strongest indicators of the positive examples                   
according to the log likelihood ratio 

2. Expand W+ with these four words

3. Label all documents in U containing at least 3 words in W+

as positive and add them to L+

(number of reports in L– containing w) + 1
LL(w) =

(number of reports in L+ containing w)
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Expanding L+ and W+

1. Find the four words in the labeled data (L+ ∪ L–) that are the 
strongest indicators of the positive examples                   
according to the log likelihood ratio 

2. Expand W+ with these four words

3. Label all documents in U containing at least 3 words in W+

as positive and add them to L+

(number of reports in L– containing w) + 1
LL(w) =

(number of reports in L+ containing w)

?

Want to prevent the algorithm from selecting words that 
appear frequently in L+ and not at all in L–



32

1. Find the four words in the labeled data (L+ ∪ L–) that are the 
strongest indicators of the positive examples                   
according to the log likelihood ratio 

2. Expand W+ with these four words

3. Label all documents in U containing at least 3 words in W+

as positive and add them to L+

Expanding L+ and W+

(number of reports in L– containing w) + 1

?

(number of reports in L– containing w) + 1
LL(w) =

(number of reports in L+ containing w)Want to ensure with a reasonable level of confidence that 
the newly added documents should be labeled as positive
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1. Find the four words in the labeled data (L+ ∪ L–) that are the 
strongest indicators of the positive examples                   
according to the log likelihood ratio 

2. Expand W+ with these four words

3. Label all documents in U containing at least 3 words in W+

as positive and add them to L+

Expanding L+ and W+

?

(number of reports in L– containing w) + 1
LL(w) =

(number of reports in L+ containing w)Want to prevent the algorithm from selecting words that are 
too specific to one subcategory of a shaping factor             

(e.g., for Physical Environment, after choosing “snow”, 
“plow” will more likely to be chosen than “hot”)
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Number of Bootstrapping Iterations

� Between 0 and 5
� decided against running for more than 5 iterations, as the 

quality of bootstrapped data deteriorates rapidly

� to be tuned on held-out data
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Plan for the Talk

� Dataset
� Preprocessing, human annotation

� Two baseline cause identification methods

� Our bootstrapping algorithm

� Evaluation
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Evaluation

� Goal
� evaluate the effectiveness of bootstrapping (with a focus on 

minority class prediction)
� determine whether the baseline classifiers can be improved 

when trained on the augmented training data

� 5-fold cross validation
� results are micro-averaged over the five folds
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Baselines

� train 14 SVM classifiers, one for predicting each shaper

� Baseline 1 
� uses default values for all learning parameters
� 4 folds for classifier training, 1 fold for testing

� Baseline 2
� tunable parameters are the 14 CTs from the 14 classifiers
� allowable values for each CT are 0.1, 0.2, …, 1.0
� jointly tuned to optimize F-measure on held-out data
� 3 folds for classifier training, 1 fold for tuning, 1 fold for testing  
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Results (Baseline 1)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 
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Results (Baseline 1)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� F-measure using all 14 shapers are higher than using 10 shapers
� due to improvements in recall
� small number of positive instances for minority classes,    

yielding a bias towards classifying an instance as negative
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Results (Baseline 2)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� In comparison to the Baseline 1
� F-measure rises by 7.4% (14 shapers) and 4.5% (10 shapers)

� Employing the right CT is important
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Bootstrapping Experiments

� Train the baselines, B0.5 and BCT, on the expanded training 
data to produce two systems, E0.5 and ECT, respectively

� For both systems, k (number of iterations) is a tunable 
parameter with allowable values ranging from 0 to 5

� E0.5: k is the only parameter to be tuned
� the 14 values of k tuned jointly using a local search algorithm

� ECT: both k and CT need to be tuned
� use local search
� in each search step, adjust both k and CT for exactly one of               

the 14 classifiers to optimize overall F-score
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Results (Bootstrapping Experiments)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 
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Results (Bootstrapping Experiments)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� In comparison to Baseline 1 (B0.5)
� F-measure rises by 3.2% (14 shapers) and 7.0% (10 shapers)
� due to a large gain in recall and a smaller drop in precision

� recall can be improved with a larger training set
� precision can be hampered when learning from noisy data

� Learning from augmented training set is useful, especially for 
minority classes
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Results (Bootstrapping Experiments)
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Results (Bootstrapping Experiments)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� In comparison to Baseline 2 (BCT)
� F-measure drops by 0.1% for 14 shapers but rises by 3.8% 

for 10 shapers

� When CT is tunable, bootstrapping helps minority classes but 
hurts the remaining classes
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Results (Bootstrapping Experiments)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� For the 4 non-minority classes, slight drop in F-measure 
� due to a large drop in recall and a smaller gain in precision
� automatically labeled data either provides little new knowledge 

or are too noisy to be useful
� decent classifiers can be trained using the original labeled data
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Results (Bootstrapping Experiments)

 All 14 Classes Minority Classes 
 R P F R P F 

Baseline 1 (B0.5) 34.4 67.0 45.4 23.9 68.3 35.4 

Baseline 2 (BCT) 59.2 47.4 52.7 34.3 47.8 39.9 

E0.5 40.4 60.9 48.6 35.3 53.2 42.4 

ECT 54.9 50.5 52.6 39.4 49.1 43.7 

� For the 10 minority classes, gain in F-measure 
� due to a simultaneous gain in recall and precision
� bootstrapped documents have provided useful knowledge, 

particularly in the form of positive examples, for the classifiers
� classifiers trained on the original training data were not good, as 

the number of positive examples is typically too small
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Summary

� Introduced a new problem: cause identification

� Hand-annotated 1,333 reports with shaping factors; see
http://www.hlt.utdallas.edu/~persingq/asrsDataset.html

� Presented a bootstrapping algorithm for improving minority 
classes in the presence of a small training set


