Supervised Noun Phrase Coreference Research: The First Fifteen Years

Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

My first ACL talk

- "Improving Machine Learning Approaches to Coreference Resolution" (Ng & Cardie, 2002)
 - Proposed linguistic and extra-linguistic extensions to Soon et al.'s (2001) system
 - The mention-pair model

Goal

Survey the major milestones in supervised noun phrase coreference research in the past fifteen years (1994-2009)

Goal

Survey the major milestones in supervised noun phrase coreference research in the past fifteen years (1994-2009)

Focuses on:

Within-document coreference (no cross-doc coreference)

Identity coreference (no bridging references, ..)

Areas Covered

- Supervised models
- Linguistic features
- Publicly-available annotated coreference corpora
- Evaluation issues

Areas Covered

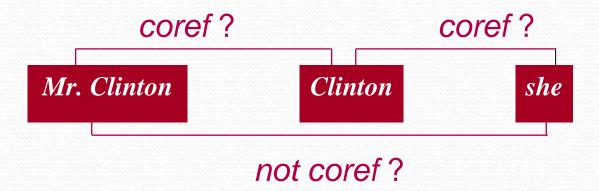
- Supervised models
- Linguistic features
- Publicly-available annotated coreference corpora
- Evaluation issues

Noun Phrase Coreference Resolution

- Identify the noun phrases (NPs) in a text that refer to the same real-world entity
- Inherently a clustering problem
 - Goal: produce a partition of the NPs

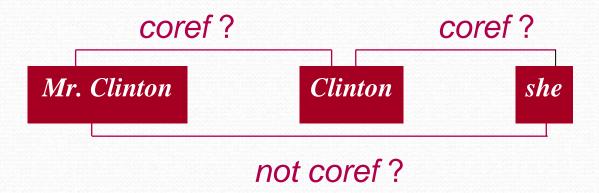
Standard Supervised Approach

- Step 1: Learn a coreference model
 - *CM*: NP_i X NP_j [0, 1] from **annotated** data



Standard Supervised Approach

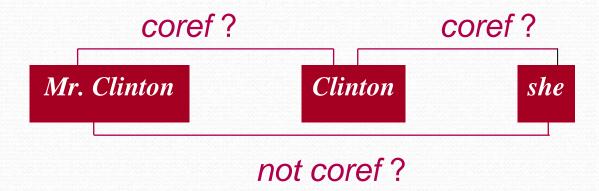
- Step 1: Learn a coreference model
 - *CM*: NP_i X NP_j [0, 1] from **annotated** data



- Step 2: Apply a clustering algorithm
 - coordinates the pairwise classification decisions

Standard Supervised Approach

- Step 1: Learn a coreference model
 - *CM*: NP_i X NP_i [0, 1] from **annotated** data



- Step 2: Apply a clustering algorithm
 - coordinates the pairwise classification decisions

Mention-Pair Model

- a classifier that determines whether two NPs are coreferent
- Train the model using any off-the-shelf machine learner
- Apply the model to a test text to determine whether two NPs are coreferent

Mention-Pair Model

- a classifier that determines whether two NPs are coreferent
- Train the model using any off-the-shelf machine learner
- Apply the model to a test text to determine whether two NPs are coreferent
- Need a clustering algorithm to coordinate the pairwise coreference decisions
 - many clustering algorithms have been used
 - three types of clustering algorithms

Really Greedy Clustering Algorithms

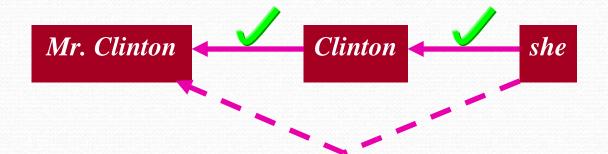
- Single-link clustering (Soon et al., 2001)
 - For each NP_j, select as its antecedent the closest preceding NP that is determined as coreferent with it
 - Posit NP_j as non-anaphoric if no preceding NP is coreferent with it
- Best-first clustering (Ng & Cardie, 2002)
 - Same as single-link clustering, except that we select as the antecedent the NP that has the highest coreference likelihood

Why are they really greedy?

- Clusters are formed based on a small subset of the pairwise coreference decisions
 - Many pairwise decisions are not used in the clustering process

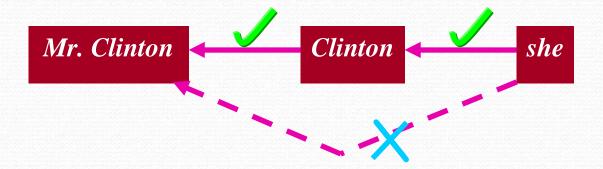
Why are they really greedy?

- Clusters are formed based on a small subset of the pairwise coreference decisions
 - Many pairwise decisions are not used in the clustering process



Why are they really greedy?

- Clusters are formed based on a small subset of the pairwise coreference decisions
 - Many pairwise decisions are not used in the clustering process



Less Greedy Clustering Algorithms

Use all the pairwise coreference decisions

Graph partitioning algorithms

- each text is represented as a graph
 - each vertex corresponds to a NP; edge weight is coref likelihood
 - Goal: partition the graph nodes to form coreference clusters

Less Greedy Clustering Algorithms

Use all the pairwise coreference decisions

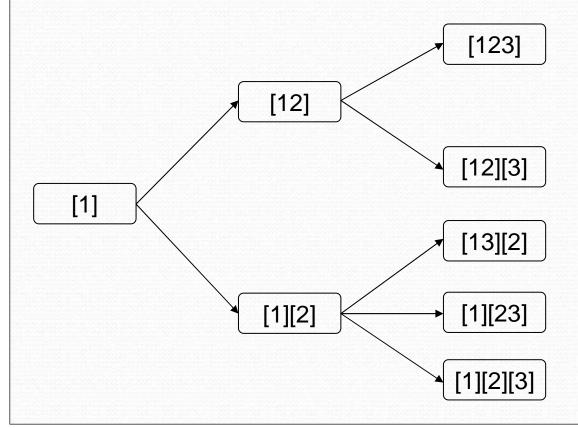
Graph partitioning algorithms

- each text is represented as a graph
 - each vertex corresponds to a NP; weight of an edge indicates the likelihood that the two NPs are coreferent
 - Goal: partition the graph nodes to form coreference clusters
- Correlation clustering (e.g., McCallum & Wellner (2004))
 - cluster that respects as many pairwise decisions as possible
- Minimum-cut-based clustering (Nicolae & Nicolae, 2006)
 - Find the mincut of the graph and partition the graph nodes;
 repeat until some stopping criterion is reached

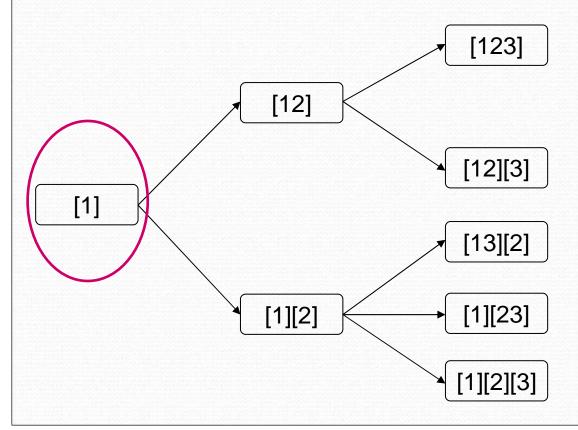
Later coreference decisions depend on the earlier ones

- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions

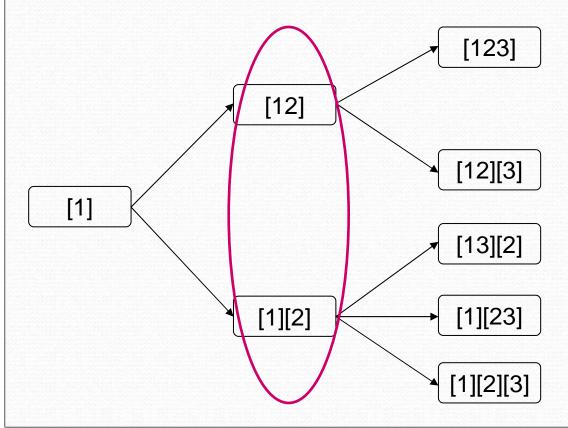
- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



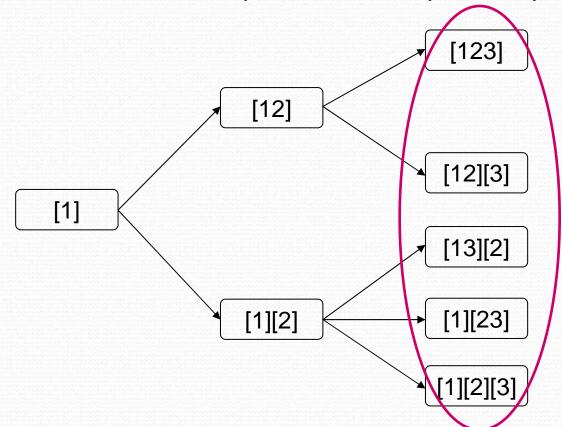
- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



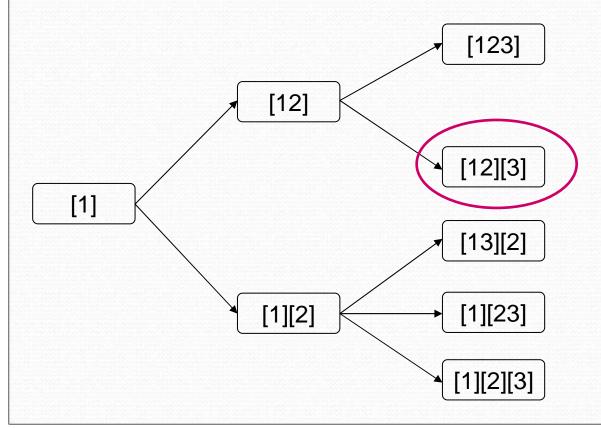
- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



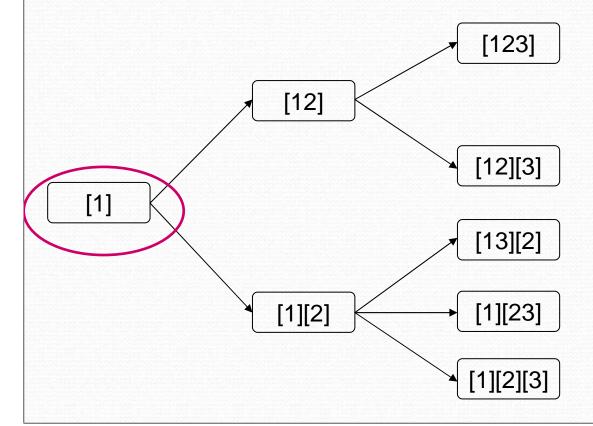
- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions

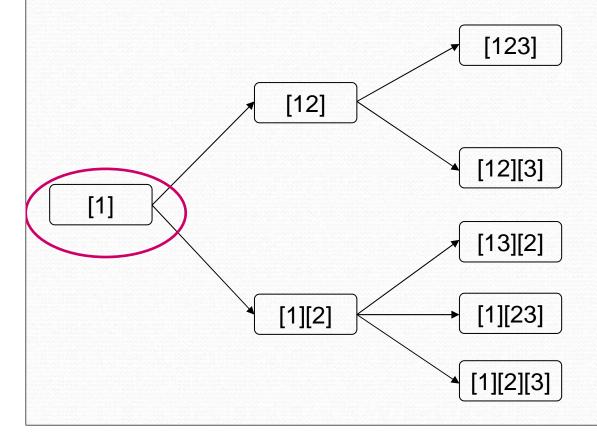


- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



Recast as a search problem

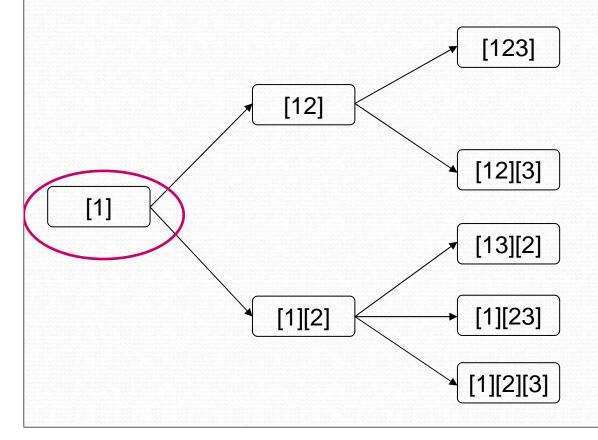
- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



Recast as a search problem

Expands the most promising paths

- Later coreference decisions depend on the earlier ones
- Luo et al. (2004): Bell-tree clustering
 - Bell tree: represents the space of possible NP partitions



Recast as a search problem

Expands the most promising paths

Scores a path based on pairwise probabilities

Which clustering algorithm is the best?

- Few empirical comparisons
- Luo et al. (2004) didn't compare their Bell-tree approach against the really greedy algorithms

Which clustering algorithm is the best?

- Few empirical comparisons
- Luo et al. (2004) didn't compare their Bell-tree approach against the really greedy algorithms
 - Klein (2005, pc): search space is too large, need to apply a lot of heuristics to prune the space, making it a greedy algorithm

Which clustering algorithm is the best?

- Few empirical comparisons
- Luo et al. (2004) didn't compare their Bell-tree approach against the really greedy algorithms
 - Klein (2005, pc): search space is too large, need to apply a lot of heuristics to prune the space, making it a greedy algorithm
 - Nicolae & Nicolae (2006): not much difference in performance between Bell tree clustering and the really greedy algorithms

Supervised Coreference (Recap)

Step 1: Learn a coreference model

Step 2: Apply a clustering algorithm

Supervised Coreference (Recap)

- Step 1: Learn a coreference model
 - Mention-pair model

- Step 2: Apply a clustering algorithm
 - Really greedy algorithms
 - Less greedy algorithms
 - Time-aware algorithms

Weaknesses of the Mention-Pair Model

Limited expressiveness

 information extracted from two NPs may not be sufficient for making an informed coreference decision

Can't determine which candidate antecedent is the best

 only determine how good a candidate is relative to NP to be resolved, not how good it is relative to the others

Weaknesses of the Mention-Pair Model

Limited expressiveness

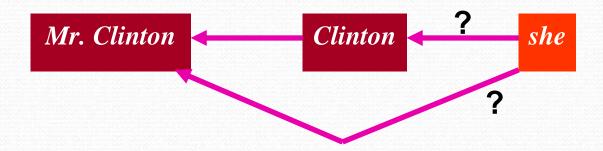
 information extracted from two NPs may not be sufficient for making an informed coreference decision

Entity-mention model

- Can't determine which candidate antecedent is the best
 - only determine how good a candidate is relative to NP to be resolved, not how good it is relative to the others

Mention-ranking model

Improving Model Expressiveness



 Want a coreference model that can tell us how likely "she" and a preceding cluster of "she" are coreferent

The Entity-Mention Model

- a classifier that determines whether (or how likely) an NP belongs to a preceding coreference cluster
- more expressive than the mention-pair model
 - can employ cluster-level features defined over any subset of NPs in a preceding cluster
- addresses the expressiveness problem

Pasula et al. (2003), Luo et al. (2004), Yang et al. (2004, 2008), Daume & Marcu (2005), Culotta et al. (2007), ...

Weaknesses of the Mention-Pair Model

Limited expressiveness

 information extracted from two NPs may not be sufficient for making an informed coreference decision

Can't determine which candidate antecedent is the best

 only determine how good a candidate is relative to NP to be resolved, not how good it is relative to the others

How to address this problem?

- Idea: train a model that imposes a ranking on the candidate antecedents for an NP to be resolved
 - so that it assigns the highest rank to the correct antecedent

How to address this problem?

- Idea: train a model that imposes a ranking on the candidate antecedents for an NP to be resolved
 - so that it assigns the highest rank to the correct antecedent
- A ranker allows all candidate antecedents to be considered simultaneously and captures competition among them
 - allows us find the best candidate antecedent for an NP
- There is a natural resolution strategy for a ranking model
 - An NP is resolved to the highest-ranked candidate antecedent

How to train a ranking model?

- Convert the problem of ranking m NPs into the a set of pairwise ranking problems
 - Each pairwise ranking problem involves determining which of two candidate antecedents is better for an NP to be resolved
 - Each one is essentially a classification problem

How to train a ranking model?

- Convert the problem of ranking m NPs into the a set of pairwise ranking problems
 - Each pairwise ranking problem involves determining which of two candidate antecedents is better for an NP to be resolved
 - Each one is essentially a classification problem
- First supervised coreference model: Connolly et al. (1994)
 - Train a decision tree to determine which of the two candidate antecedents of an NP is more likely to be its antecedent
 - During testing, need to heuristically combine the pairwise ranking results to select an antecedent for each NP

Revival of the Ranking Approach

- The ranking model is theoretically better but far less popular than the mention-pair model in the decade following its proposal
- Rediscovered almost ten years later independently by
 - Yang et al. (2003): twin-candidate model
 - lida et al. (2003): tournament model

The Mention-Ranking Model

- Denis & Baldridge (2007, 2008): train the ranker using maximum entropy
 - model outputs a rank value for each candidate antecedent
 - obviates need to heuristically combine pairwise ranking results

The Mention-Ranking Model

- Denis & Baldridge (2007, 2008): train the ranker using maximum entropy
 - model outputs a rank value for each candidate antecedent
 - obviates need to heuristically combine pairwise ranking results

Caveat

- Since a ranker only imposes a ranking on the candidates, it cannot determine whether an NP is anaphoric
 - Need to train a classifier to determine if an NP is anaphoric

Recap

Problem	Entity Mention	Mention Ranking
Limited expressiveness		X
Cannot determine best candidate	X	1

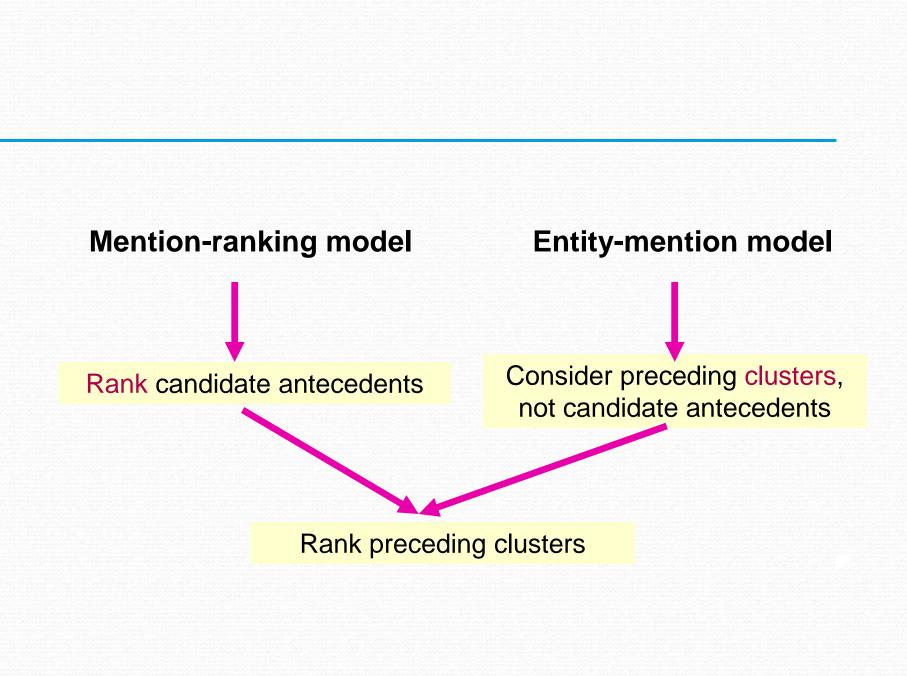
Can we combine the strengths of these two model?

Mention-ranking model

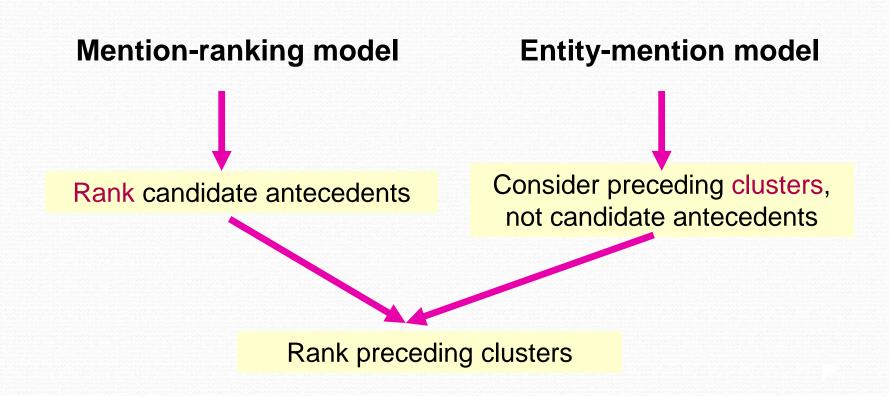
Rank candidate antecedents

Entity-mention model

Consider preceding clusters, not candidate antecedents



The Cluster-Ranking Model



The Cluster-Ranking Model (Rahman & Ng, 2009)

Training

train a ranker to rank preceding clusters

Testing

resolve each NP to the highest-ranked preceding cluster

The Cluster-Ranking Model (Rahman & Ng, 2009)

Training

train a ranker to rank preceding clusters

Testing

resolve each NP to the highest-ranked preceding cluster

Lappin & Leass's (1994) heuristic pronoun resolver

The Cluster-Ranking Model (Rahman & Ng, 2009)

- As a ranker, the cluster-ranking model cannot determine whether an NP is anaphoric
 - Before resolving an NP, we still need to use an anaphoricity classifier to determine if it is anaphoric
 - yields a pipeline architecture
- Potential problem
 - errors made by the anaphoricity classifier will be propagated to the coreference resolver
- Solution
 - joint learning for anaphoricity and coreference resolution

Some Empirical Results on ACE 2005

	B^3			CEAF			
	R	P	F	R	P	F	
Mention-Pair Baseline	50.8	57.9	54.1	56.1	51.0	53.4	
Entity-Mention Baseline	51.2	57.8	54.3	56.3	50.2	53.1	
Mention-Ranking Baseline (Pipeline)	52.3	61.8	56.6	51.6	56.7	54.1	
Mention-Ranking Baseline (Joint)	50.4	65.5	56.9	53.0	58.5	55.6	
Cluster-Ranking Model (Pipeline)	55.3	63.7	59.2	54.1	59.3	56.6	
Cluster-Ranking Model (Joint)	54.4	70.5	61.4	56.7	62.6	59.5	

Some Empirical Results on ACE 2005

	B^3			CEAF			
	R	P	F	R	P	F	
Mention-Pair Baseline	50.8	57.9	54.1	56.1	51.0	53.4	
Entity-Mention Baseline	51.2	57.8	54.3	56.3	50.2	53.1	
Mention-Ranking Baseline (Pipeline)	52.3	61.8	56.6	51.6	56.7	54.1	
Mention-Ranking Baseline (Joint)	50.4	65.5	56.9	53.0	58.5	55.6	
Cluster-Ranking Model (Pipeline)	55.3	63.7	59.2	54.1	59.3	56.6	
Cluster-Ranking Model (Joint)	54.4	70.5	61.4	56.7	62.6	59.5	

- Cluster ranking is better than mention ranking, which in turn is better than the entity-mention model and the mention-pair model
- Joint models perform better than pipeline models

Summary

- A lot of progress in supervised coreference modeling
 - the mention-pair model is theoretically unappealing
 - it makes coreference decisions based on only two NPs
- The cluster-ranking model
 - resembles Lappin & Leass's (1994) heuristic pronoun resolver
 - narrows the gap between the sophistication of heuristic-based coref models and the simplicity of learning-based coref models

Concluding Remarks

 To ensure progress, new coreference results should be compared against a baseline stronger than Soon et al. (2001)

Concluding Remarks

- To ensure progress, new coreference results should be compared against a baseline stronger than Soon et al. (2001)
- Publicly available coreference systems
 - The mention-pair model
 - JavaRAP (Qiu et al., 2004)
 - GuiTAR (Poesio & Kabadjov, 2004)
 - BART (Versley et al., 2008)
 - The Illinois Coreference Package (Bengtson & Roth, 2008)
 - Reconcile (Stoyanov et al., 2010)
 - The mention-ranking model
 - CoRTex (Denis & Baldridge, 2008)
 - The cluster-ranking model
 - CherryPicker (Rahman & Ng, 2009)