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My first ACL talk

� “Improving Machine Learning Approaches to Coreference
Resolution” (Ng & Cardie, 2002)

� Proposed linguistic and extra-linguistic extensions to                     
Soon et al.’s (2001) system

� The mention-pair model
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Goal

Survey the major milestones in supervised noun phrase 
coreference research in the past fifteen years (1994-2009)



4

Goal

Survey the major milestones in supervised noun phrase 
coreference research in the past fifteen years (1994-2009)

Focuses on:
Within-document coreference (no cross-doc coreference)

Identity coreference (no bridging references, ..)
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Areas Covered

� Supervised models

� Linguistic features

� Publicly-available annotated coreference corpora

� Evaluation issues
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Noun Phrase Coreference Resolution

� Identify the noun phrases (NPs) in a text that refer to the 
same real-world entity

� Inherently a clustering problem
� Goal: produce a partition of the NPs



8

Standard Supervised Approach

� Step 1 : Learn a coreference model
� CM: NPi X NPj à [0, 1] from annotated data

coref ?

not coref ?

coref ?

Mr. Clinton Clinton she
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Mention-Pair Model

� a classifier that determines whether two NPs are coreferent

� Train the model using any off-the-shelf machine learner
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Mention-Pair Model

� a classifier that determines whether two NPs are coreferent

� Train the model using any off-the-shelf machine learner
� Apply the model to a test text to determine whether two NPs 

are coreferent

� Need a clustering algorithm to coordinate the pairwise
coreference decisions
� many clustering algorithms have been used 
� three types of clustering algorithms
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Really Greedy Clustering Algorithms

� Single-link clustering (Soon et al., 2001)

� For each NPj, select as its antecedent the closest preceding 
NP that is determined as coreferent with it

� Posit NPj as non-anaphoric if no preceding NP is coreferent
with it

� Best-first clustering (Ng & Cardie, 2002)

� Same as single-link clustering, except that we select as the 
antecedent the NP that has the highest coreference likelihood
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Why are they really greedy?

� Clusters are formed based on a small subset of the pairwise
coreference decisions
� Many pairwise decisions are not used in the clustering process 

Mr. Clinton Clinton she
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Less Greedy Clustering Algorithms

� Use all the pairwise coreference decisions

� Graph partitioning algorithms
� each text is represented as a graph

� each vertex corresponds to a NP; edge weight is coref likelihood
� Goal: partition the graph nodes to form coreference clusters
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Less Greedy Clustering Algorithms

� Use all the pairwise coreference decisions

� Graph partitioning algorithms
� each text is represented as a graph

� each vertex corresponds to a NP; weight of an edge indicates the
likelihood that the two NPs are coreferent

� Goal: partition the graph nodes to form coreference clusters

� Correlation clustering (e.g., McCallum & Wellner (2004))
� cluster that respects as many pairwise decisions as possible

� Minimum-cut-based clustering (Nicolae & Nicolae, 2006)
� Find the mincut of the graph and partition the graph nodes;    

repeat until some stopping criterion is reached



19

Time-Aware Clustering Algorithms

� Later coreference decisions depend on the earlier ones
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Time-Aware Clustering Algorithms

� Later coreference decisions depend on the earlier ones
� Luo et al. (2004): Bell-tree clustering

� Bell tree: represents the space of possible NP partitions

Recast as a search 
problem

Expands the most 
promising paths

Scores a path based on 
pairwise probabilities

[1]

[12]

[1][2]

[123]

[12][3]

[13][2]

[1][23]

[1][2][3]
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Which clustering algorithm is the best?

� Few empirical comparisons

� Luo et al. (2004) didn’t compare their Bell-tree approach 
against the really greedy algorithms
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of heuristics to prune the space, making it a greedy algorithm
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Which clustering algorithm is the best?

� Few empirical comparisons

� Luo et al. (2004) didn’t compare their Bell-tree approach 
against the really greedy algorithms

� Klein (2005, pc): search space is too large, need to apply a lot
of heuristics to prune the space, making it a greedy algorithm

� Nicolae & Nicolae (2006): not much difference in performance 
between Bell tree clustering and the really greedy algorithms
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� Step 1 : Learn a coreference model

� Step 2 : Apply a clustering algorithm

Supervised Coreference (Recap)
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� Step 1 : Learn a coreference model
� Mention-pair model

� Step 2 : Apply a clustering algorithm
� Really greedy algorithms
� Less greedy algorithms
� Time-aware algorithms

Supervised Coreference (Recap)
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Weaknesses of the Mention-Pair Model

� Limited expressiveness
� information extracted from two NPs may not be sufficient for 

making an informed coreference decision

� Can’t determine which candidate antecedent is the b est
� only determine how good a candidate is relative to NP to be 

resolved, not how good it is relative to the others
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� information extracted from two NPs may not be sufficient for 

making an informed coreference decision

� Can’t determine which candidate antecedent is the b est
� only determine how good a candidate is relative to NP to be 

resolved, not how good it is relative to the others

Weaknesses of the Mention-Pair Model

Mention-ranking model

Entity-mention model
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Improving Model Expressiveness

� Want a coreference model that can tell us how likely “she”
and a preceding cluster of “she” are coreferent

Mr. Clinton Clinton she?

?
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The Entity-Mention Model

� a classifier that determines whether (or how likely) an NP 
belongs to a preceding coreference cluster

� more expressive than the mention-pair model
� can employ cluster-level features defined over any subset of 

NPs in a preceding cluster

� addresses the expressiveness problem

Pasula et al. (2003), Luo et al. (2004), Yang et al. (2004, 2008),
Daume & Marcu (2005), Culotta et al. (2007), …
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How to address this problem?

� Idea: train a model that imposes a ranking on the candidate 
antecedents for an NP to be resolved
� so that it assigns the highest rank to the correct antecedent 
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How to address this problem?

� Idea: train a model that imposes a ranking on the candidate 
antecedents for an NP to be resolved
� so that it assigns the highest rank to the correct antecedent 

� A ranker allows all candidate antecedents to be considered 
simultaneously and captures competition among them

� allows us find the best candidate antecedent for an NP

� There is a natural resolution strategy for a ranking model
� An NP is resolved to the highest-ranked candidate antecedent
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How to train a ranking model?

� Convert the problem of ranking m NPs into the a set of 
pairwise ranking problems

� Each pairwise ranking problem involves determining which of 
two candidate antecedents is better for an NP to be resolved

� Each one is essentially a classification problem
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How to train a ranking model?

� Convert the problem of ranking m NPs into the a set of 
pairwise ranking problems

� Each pairwise ranking problem involves determining which of 
two candidate antecedents is better for an NP to be resolved

� Each one is essentially a classification problem

� First supervised coreference model: Connolly et al. (1994)
� Train a decision tree to determine which of the two candidate 

antecedents of an NP is more likely to be its antecedent

� During testing, need to heuristically combine the pairwise
ranking results to select an antecedent for each NP
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Revival of the Ranking Approach

� The ranking model is theoretically better but far less popular 
than the mention-pair model in the decade following its 
proposal

� Rediscovered almost ten years later independently by
� Yang et al. (2003): twin-candidate model
� Iida et al. (2003): tournament model
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The Mention-Ranking Model

� Denis & Baldridge (2007, 2008): train the ranker using 
maximum entropy 
� model outputs a rank value for each candidate antecedent
� obviates need to heuristically combine pairwise ranking results



45

The Mention-Ranking Model

� Denis & Baldridge (2007, 2008): train the ranker using 
maximum entropy 
� model outputs a rank value for each candidate antecedent
� obviates need to heuristically combine pairwise ranking results



46

Caveat

� Since a ranker only imposes a ranking on the candidates, it 
cannot determine whether an NP is anaphoric

� Need to train a classifier to determine if an NP is anaphoric
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Recap

Cannot determine 
best candidate

Limited 
expressiveness

Mention 
Ranking

Entity 
Mention

Problem

Can we combine the strengths of these two model?
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Consider preceding clusters, 
not candidate antecedents

Rank candidate antecedents

Mention-ranking model Entity-mention model
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The Cluster-Ranking Model

Consider preceding clusters, 
not candidate antecedents

Rank candidate antecedents

Mention-ranking model Entity-mention model

Rank preceding clusters
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The Cluster-Ranking Model (Rahman &Ng, 2009)

� Training
� train a ranker to rank preceding clusters

� Testing
� resolve each NP to the highest-ranked preceding cluster
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The Cluster-Ranking Model (Rahman &Ng, 2009)

� Training
� train a ranker to rank preceding clusters

� Testing
� resolve each NP to the highest-ranked preceding cluster

Lappin & Leass’s (1994) heuristic pronoun resolver 
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� As a ranker, the cluster-ranking model cannot determine 
whether an NP is anaphoric
� Before resolving an NP, we still need to use an anaphoricity

classifier to determine if it is anaphoric
� yields a pipeline architecture

� Potential problem
� errors made by the anaphoricity classifier will be propagated to 

the coreference resolver

� Solution 
� joint learning for anaphoricity and coreference resolution

The Cluster-Ranking Model (Rahman &Ng, 2009)
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Some Empirical Results on ACE 2005

B3 CEAF 
 

R P F R P F 

Mention-Pair Baseline 50.8 57.9 54.1 56.1 51.0 53.4 

Entity-Mention Baseline 51.2 57.8 54.3 56.3 50.2 53.1 

Mention-Ranking Baseline (Pipeline) 52.3 61.8 56.6 51.6 56.7 54.1 

Mention-Ranking Baseline (Joint) 50.4 65.5 56.9 53.0 58.5 55.6 

Cluster-Ranking Model (Pipeline) 55.3 63.7 59.2 54.1 59.3 56.6 

Cluster-Ranking Model (Joint) 54.4 70.5 61.4 56.7 62.6 59.5 
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� Cluster ranking is better than mention ranking, which in turn is
better than the entity-mention model and the mention-pair model

� Joint models perform better than pipeline models
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Summary

� A lot of progress in supervised coreference modeling
� the mention-pair model is theoretically unappealing

� it makes coreference decisions based on only two NPs

� The cluster-ranking model
� resembles Lappin & Leass’s (1994) heuristic pronoun resolver 
� narrows the gap between the sophistication of heuristic-based 

coref models and the simplicity of learning-based coref models
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Concluding Remarks
� To ensure progress, new coreference results should be 

compared against a baseline stronger than Soon et al. (2001)
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Concluding Remarks
� To ensure progress, new coreference results should be 

compared against a baseline stronger than Soon et al. (2001)

� Publicly available coreference systems
� The mention-pair model

� JavaRAP (Qiu et al., 2004)
� GuiTAR (Poesio & Kabadjov, 2004)
� BART (Versley et al., 2008)
� The Illinois Coreference Package (Bengtson & Roth, 2008)
� Reconcile (Stoyanov et al., 2010)

� The mention-ranking model
� CoRTex (Denis & Baldridge, 2008)

� The cluster-ranking model
� CherryPicker (Rahman & Ng, 2009)


