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My first ACL talk

“Improving Machine Learning Approaches to Coreference
Resolution” (Ng & Cardie, 2002)

e Proposed linguistic and extra-linguistic extensions to
Soon et al.’s (2001) system

- The mention-pair model
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Survey the major milestones in supervised noun phrase
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Focuses on:
Within-document coreference (no cross-doc coreference)
Identity coreference (no bridging references, ..)




Areas Covered

Supervised models

Linguistic features

Publicly-available annotated coreference corpora

Evaluation issues




Areas Covered

Supervised models

Linguistic features

Publicly-available annotated coreference corpora

Evaluation issues




Noun Phrase Coreference Resolution

|dentify the noun phrases (NPs) in a text that refer to the
same real-world entity

Inherently a clustering problem
e Goal: produce a partition of the NPs




Standard Supervised Approach

» Step 1: Learn a coreference model
 CM: NP; XNP; [0, 1] from annotated data
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Mention-Pair Model

a classifier that determines whether two NPs are coreferent

Train the model using any off-the-shelf machine learner

Apply the model to a test text to determine whether two NPs
are coreferent
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Mention-Pair Model

a classifier that determines whether two NPs are coreferent

Train the model using any off-the-shelf machine learner

Apply the model to a test text to determine whether two NPs
are coreferent

Need a clustering algorithm to coordinate the pairwise
coreference decisions |

e many clustering algorithms have been used
e three types of clustering algorithms
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Really Greedy Clustering Algorithms

Single-link clustering (Soon et al., 2001)

* For each NP;, select as its antecedent the closest preceding
NP that is determined as coreferent with it

* Posit NP; as non-anaphoric if no preceding NP is coreferent
with it

Best-first clustering (Ng & Cardie, 2002)

e Same as single-link clustering, except that we select as the
antecedent the NP that has the highest coreference likelihood
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Why are they really greedy?

» Clusters are formed based on a small subset of the pairwise

coreference decisions

e Many pairwise decisions are not used in the clustering process
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Less Greedy Clustering Algorithms

Use all the pairwise coreference decisions

Graph partitioning algorithms
e each text is represented as a graph

« each vertex corresponds to a NP; edge weight is coref likelihood

« Goal: partition the graph nodes to form coreference clusters
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Less Greedy Clustering Algorithms

Use all the pairwise coreference decisions

Graph partitioning algorithms
e each text is represented as a graph

« each vertex corresponds to a NP; weight of an edge indicates the
likelihood that the two NPs are coreferent

« Goal: partition the graph nodes to form coreference clusters

 Correlation clustering (e.g., McCallum & Wellner (2004))
« cluster that respects as many pairwise decisions as possible

* Minimum-cut-based clustering (Nicolae & Nicolae, 2006)

« Find the mincut of the graph and partition the graph nodes;
repeat until some stopping criterion is reached 8




Time-Aware Clustering Algorithms

» Later coreference decisions depend on the earlier ones
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Time-Aware Clustering Algorithms

Later coreference decisions depend on the earlier ones

Luo et al. (2004): Bell-tree clustering

» Bell tree: represents the space of possible NP partitions
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Time-Aware Clustering Algorithms

Later coreference decisions depend on the earlier ones

Luo et al. (2004): Bell-tree clustering

» Bell tree: represents the space of possible NP partitions
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Time-Aware Clustering Algorithms

Later coreference decisions depend on the earlier ones

Luo et al. (2004): Bell-tree clustering
» Bell tree: represents the space of possible NP partitions

[129] J Recast as a search
[12] problem
: [12][3] Expands the most

[1] promising paths

| [13]12] |
/ : \ Scores a path based on
[1](2] 1\ 122] pairwise probabilities
[1][2]13] |
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Which clustering algorithm is the best?

Few empirical comparisons

Luo et al. (2004) didn’t compare their Bell-tree approach
against the really greedy algorithms
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e Klein (2005, pc): search space is too large, need to apply a lot
of heuristics to prune the space, making it a greedy algorithm

30




Which clustering algorithm is the best?

Few empirical comparisons

Luo et al. (2004) didn’t compare their Bell-tree approach
against the really greedy algorithms

e Klein (2005, pc): search space is too large, need to apply a lot
of heuristics to prune the space, making it a greedy algorithm

* Nicolae & Nicolae (2006): not much difference in performance
between Bell tree clustering and the really greedy algorithms
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Supervised Coreference (Recap)

» Step 1: Learn a coreference model

o Step 2: Apply a clustering algorithm
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Supervised Coreference (Recap)

Step 1: Learn a coreference model
e Mention-pair model

Step 2: Apply a clustering algorithm
» Really greedy algorithms
* Less greedy algorithms
e Time-aware algorithms
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Weaknesses of the Mention-Pair Model

Limited expressiveness

e information extracted from two NPs may not be sufficient for
making an informed coreference decision

Can’t determine which candidate antecedent is the b est

e only determine how good a candidate is relative to NP to be
resolved, not how good it is relative to the others
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Weaknesses of the Mention-Pair Model

Limited expressiveness

e information extracted two NPs may not be sufficient for
making an informed corefelepce decision

Entity-mention model

Can’t determine which candidate antecedent is the b est

e only determine how goo0ng candidate is relative to NP to be
resolved, not how good it is tive to the others

Mention-ranking model
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Improving Model Expressiveness

Mr. Clinton

* Want a coreference model that can tell us how likely “she”
and a preceding cluster of “she” are coreferent




The Entity-Mention Model

a classifier that determines whether (or how likely) an NP
belongs to a preceding coreference cluster

more expressive than the mention-pair model

e can employ cluster-level features defined over any subset of
NPs in a preceding cluster

addresses the expressiveness problem

Pasula et al. (2003), Luo et al. (2004), Yang et al. (2004, 2008),
Daume & Marcu (2005), Culotta et al. (2007), ... 37
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How to address this problem?

|ldea: train a model that imposes a ranking on the candidate

antecedents for an NP to be resolved
e so that it assigns the highest rank to the correct antecedent
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How to address this problem?

|ldea: train a model that imposes a ranking on the candidate
antecedents for an NP to be resolved

e so that it assigns the highest rank to the correct antecedent

A ranker allows all candidate antecedents to be considered
simultaneously and captures competition among them

e allows us find the best candidate antecedent for an NP

There Is a natural resolution strategy for a ranking model
* An NP is resolved to the highest-ranked candidate antecedent
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How to train a ranking model?

Convert the problem of ranking m NPs into the a set of
pairwise ranking problems

e Each pairwise ranking problem involves determining which of
two candidate antecedents Is better for an NP to be resolved

« Each one is essentially a classification problem
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How to train a ranking model?

Convert the problem of ranking m NPs into the a set of
pairwise ranking problems

e Each pairwise ranking problem involves determining which of
two candidate antecedents Is better for an NP to be resolved

« Each one is essentially a classification problem

First supervised coreference model: Connolly et al. (1994)

e Train a decision tree to determine which of the two candidate
antecedents of an NP is more likely to be its antecedent

e During testing, need to heuristically combine the pairwise
ranking results to select an antecedent for each NP
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Revival of the Ranking Approach

The ranking model is theoretically better but far less popular

than the mention-pair model in the decade following its
proposal

Rediscovered almost ten years later independently by
e Yang et al. (2003): twin-candidate model
e lida et al. (2003): tournament model

43




The Mention-Ranking Model

Denis & Baldridge (2007, 2008): train the ranker using
maximum entropy

e model outputs a rank value for each candidate antecedent

e obviates need to heuristically combine pairwise ranking results
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Caveat

Since a ranker only imposes a ranking on the candidates, it
cannot determine whether an NP is anaphoric

e Need to train a classifier to determine if an NP is anaphoric




Recap

Problem

Entity
Mention

Mention
Ranking

Limited
expressiveness

V4

Cannot determine
best candidate

/

Can we combine the strengths of these two model?
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Mention-ranking model Entity-mention model

| 1

Rank candidate antecedents Consider preceding clusters,
not candidate antecedents
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Rank preceding clusters

49




The Cluster-Ranking Model

Mention-ranking model Entity-mention model
Rank candidate antecedents Consider preceding clusters,

not candidate antecedents

/

Rank preceding clusters
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The Cluster-Ranking Model (Rahman &Ng, 2009)

* Training
e train a ranker to rank preceding clusters

* Testing
e resolve each NP to the highest-ranked preceding cluster
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The Cluster-Ranking Model (Rahman &Ng, 2009)

Training
e train a ranker to rank preceding clusters

Testing
* resolve each NP to the highest-ranked preceding cluster

Lappin & Leass’s (1994) heuristic pronoun resolver
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The Cluster-Ranking Model (Rahman &Ng, 2009)

As a ranker, the cluster-ranking model cannot determine
whether an NP is anaphoric

» Before resolving an NP, we still need to use an anaphoricity
classifier to determine if it is anaphoric

- yields a pipeline architecture

Potential problem

e errors made by the anaphoricity classifier will be propagated to
the coreference resolver

Solution
e joint learning for anaphoricity and coreference resolution
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Some Empirical Results on ACE 2005

B® CEAF
R P F R P F
Mention-Pair Baseline 508 579 541 | 56.1 510 534
Entity-Mention Baseline R R S e B B S S A e
Mention-Ranking Baseline (Pipeline) | 523 618 56.6 | 51.6 56.7 54.1
Mention-Ranking Baseline (Joint) 504 655 56.9 | 53.0 585 55.6
Cluster-Ranking Model (Pipeline) 553 63.7 59.2 | 541 59.3 56.6
Cluster-Ranking Model (Joint) 544 705 614 | 56.7 62.6 59.5
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Some Empirical Results on ACE 2005

B® CEAF
R P F R P F
Mention-Pair Baseline 508 579 541 | 56.1 510 534
Entity-Mention Baseline R R S e B B S S A e
Mention-Ranking Baseline (Pipeline) | 523 618 56.6 | 51.6 56.7 54.1
Mention-Ranking Baseline (Joint) 504 655 56.9 | 53.0 585 55.6
Cluster-Ranking Model (Pipeline) 553 63.7 59.2 | 541 59.3 56.6
Cluster-Ranking Model (Joint) 544 705 614 | 56.7 62.6 59.5

Cluster ranking is better than mention ranking, which in turn is
better than the entity-mention model and the mention-pair model

Joint models perform better than pipeline models
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Summary

A lot of progress in supervised coreference modeling

e the mention-pair model is theoretically unappealing
« It makes coreference decisions based on only two NPs

The cluster-ranking model
e resembles Lappin & Leass’s (1994) heuristic pronoun resolver

e narrows the gap between the sophistication of heuristic-based
coref models and the simplicity of learning-based coref models




Concluding Remarks

To ensure progress, new coreference results should be

compared against a baseline stronger than Soon et al. (2001)
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Concluding Remarks

To ensure progress, new coreference results should be
compared against a baseline stronger than Soon et al. (2001)

Publicly available coreference systems
e The mention-pair model

- JavaRAP (Qiu et al., 2004)
« GUITAR (Poesio & Kabadjov, 2004)
« BART (Versley et al., 2008)
« The lllinois Coreference Package (Bengtson & Roth, 2008)
- Reconcile (Stoyanov et al., 2010)

e The mention-ranking model
« CoRTex (Denis & Baldridge, 2008)

e The cluster-ranking model
« CherryPicker (Rahman & Ng, 2009) 58




