Human Language Technology Research Institute

Modeling Thesis Clarity in Student Essays

Isaac Persing and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

Automated Essay Grading

- Important educational application of NLP
- Related research on essay scoring
 - Grammatical errors (Leacock et al.,2010)
 - Coherence (Miltsakaki and Kukich, 2004)
 - Relevance to prompt (Higgins et al., 2004)
 - Organization (Persing et al., 2010)
 - Little work done on modeling thesis clarity

What is Thesis Clarity?

- refers to how clearly an author explains the thesis of her essay
 - the position she argues for with respect to the topic on which the essay is written

What is Thesis Clarity?

- refers to how clearly an author explains the thesis of her essay
 - the position she argues for with respect to the topic on which the essay is written

overall message of the entire essay

unbound from the concept of thesis sentences

 Develop a model for scoring the thesis clarity of student essays

- Develop a model for scoring the thesis clarity of student essays
- Develop a system for determining why an essay receives its thesis clarity score

- Develop a model for scoring the thesis clarity of student essays
- Develop a system for determining why an essay receives its thesis clarity score
 - Provides more informative feedback to a student

- Develop a model for scoring the thesis clarity of student essays
- Develop a system for determining why an essay receives its thesis clarity score
 - Provides more informative feedback to a student
 - Given a predefined set of common errors that impact thesis clarify, determine which of these errors occur in a given essay

Plan for the Talk

- Corpus and Annotations
- Model for identifying thesis clarity errors
- Model for scoring thesis clarity
- Evaluation

Plan for the Talk

- ➤ Corpus and Annotations
- Model for identifying thesis clarity errors
- Model for scoring thesis clarity
- Evaluation

Selecting a Corpus

- International Corpus of Learner English (ICLE)
 - 4.5 million words in more than 6000 essays
 - Written by university undergraduates who are learners of English as a foreign language
 - Mostly (91%) argumentative writing topics
- Essays selected for annotation
 - 830 argumentative essays from 13 prompts
 - 2 types of annotation: thesis clarity score and errors

Thesis Clarity Scoring Rubric

- **4** essay presents a **very clear thesis** and requires little or no clarification
- 3 essay presents a **moderately clear thesis** but could benefit from some clarification
- 2 essay presents an unclear thesis and would greatly benefit from further clarification
- 1 essay presents no thesis of any kind and it is difficult to see what the thesis could be
- Half-point increments (i.e., 1.5, 2.5, 3.5) allowed

Inter-Annotator Agreement

100 of 830 essays scored by both annotators

Inter-Annotator Agreement

100 of 830 essays scored by both annotators

- Perfect agreement on 36% of essays
- Scores within 0.5 point on 62% of essays
- Scores within 1.0 point on 85% of essays

- Confusing Phrasing (18%)
 - Thesis is phrased oddly, making it hard to understand writer's point

- Confusing Phrasing (18%)
 - Thesis is phrased oddly, making it hard to understand writer's point
- Incomplete Prompt Response (15%)
 - Thesis seems to leave part of a multi-part prompt unaddressed

- Confusing Phrasing (18%)
 - Thesis is phrased oddly, making it hard to understand writer's point
- Incomplete Prompt Response (15%)
 - Thesis seems to leave part of a multi-part prompt unaddressed
- Relevance to Prompt (17%)
 - The apparent thesis's weak relation to the prompt causes confusion

- Confusing Phrasing (18%)
 - Thesis is phrased oddly, making it hard to understand writer's point
- Incomplete Prompt Response (15%)
 - Thesis seems to leave part of a multi-part prompt unaddressed
- Relevance to Prompt (17%)
 - The apparent thesis's weak relation to the prompt causes confusion
- Missing Details (6%)
 - Thesis omits important detail needed to understand writer's point

- Confusing Phrasing (18%)
 - Thesis is phrased oddly, making it hard to understand writer's point
- Incomplete Prompt Response (15%)
 - Thesis seems to leave part of a multi-part prompt unaddressed
- Relevance to Prompt (17%)
 - The apparent thesis's weak relation to the prompt causes confusion
- Missing Details (6%)
 - Thesis omits important detail needed to understand writer's point
- Writer Position (5%)
 - Thesis describes a position on the topic without making it clear that this is the position the writer supports

Inter-Annotator Agreement

- 100 of 830 essays scored by 2 annotators
- Compute Cohen's Kappa on each error type from the two sets of annotations

Inter-Annotator Agreement

- 100 of 830 essays scored by 2 annotators
- Compute Cohen's Kappa on each error type from the two sets of annotations
- Average Kappa: 0.75

Plan for the Talk

- ✓ Corpus and Annotations
- > Model for identifying thesis clarity errors
- Model for scoring thesis clarity
- Evaluation

Error Identification

 Goal: assign zero or more of the five error types to each essay

Error Identification

 Goal: assign zero or more of the five error types to each essay

Approach:

- recast problem as a set of 5 binary classification tasks
 - train five binary classifiers, each of which predicts whether a particular type of error exists in an essay

Learning the Binary Classification Tasks

- Goal: train a classifier c_i for identifying error type e_i
- Training data creation
 - create one training instance from each training essay
 - label the instance as
 - positive if essay has e_i as one of its labels
 - negative otherwise
- Learning algorithm
 - SVM^{light}

Features

- 7 types of features
 - 2 types of baseline features
 - 5 types of new features

Features

- 7 types of features
 - 2 types of baseline features
 - 5 types of new features

N-gram features

- Lemmatized unigrams, bigrams, and trigrams
 - only the top k n-gram features selected according to information gain is used for each classifier
 - k is determined using validation data

Features based on Random Indexing

- Random indexing
 - "an efficient and scalable alternative to LSI" (Sahlgren, 2005)
 - generates a semantic similarity measure between any two words

Why Random Indexing?

- May help identify Incomplete Prompt Response and Relevance to Prompt errors
 - May help find text in essay related to the prompt even if some of its words have been rephrased
 - E.g., essay talks about "jail" while prompt has "prison"
- Train a random indexing model on English Gigaword

4 Random Indexing Features

- The entire essay's similarity to the prompt
- The essay's highest individual sentence's similarity to the prompt
- The highest entire essay similarity to one of the prompt sentences
- The highest individual sentence similarity to an individual prompt sentence

Features

- 7 types of features
 - 2 types of baseline features
 - 5 types of new features

Misspelling Feature

Motivation

 When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list

Misspelling Feature

- Motivation
 - When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list
- This makes sense!
 - A thesis sentence containing excessive misspellings may be less clear to the reader

Misspelling Feature

- Motivation
 - When examining the information gain top-ranked features for the Confusing Phrasing error, we see some misspelled words at the top of the list
- This makes sense!
 - A thesis sentence containing excessive misspellings may be less clear to the reader
- Introduce a misspelling feature
 - Value is the number of spelling errors in an essay's most-misspelled sentence

Keyword Features

Observations

- If an essay doesn't contain words that are semantically similar to the important words in the prompt (i.e., keywords), it could have a Relevance to Prompt error
- If an essay doesn't contain words semantically similar to the keywords from every part of a multi-part prompt, it could have an Incomplete Prompt Response error

Keyword Features

Observations

- If an essay doesn't contain words that are semantically similar to the important words in the prompt (i.e., keywords), it could have a Relevance to Prompt error
- If an essay doesn't contain words semantically similar to the keywords from every part of a multi-part prompt, it could have an Incomplete Prompt Response error
- Hypothesis: could identify these two types of errors by
 - 1. Hand-picking keywords for each part of each prompt
 - Designing features that encode how similar an essay's words are to the keywords

- Hand-segment each multi-part prompt into parts
- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

- Hand-segment each multi-part prompt into parts
- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

The prison system is outdated. No civilized society should punish its criminals: it should rehabilitate them.

- Hand-segment each multi-part prompt into parts
- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

The prison system is outdated. No civilized society should punish its criminals: it should rehabilitate them.

- Hand-segment each multi-part prompt into parts
- For each part, hand-pick the most important (primary) and second most important (secondary) words that it would be good for a writer to use to address the part

The prison system is outdated. No civilized society should punish its criminals: it should rehabilitate them.

Primary: rehabilitate

Secondary: society

Step 2: Designing Keyword Features

- Example: in one feature, we
 - compute the random indexing similarity between the essay and each group of primary keywords taken from parts of the essay's prompt
 - 2. assign the feature the lowest of these values

Step 2: Designing Keyword Features

- Example: in one feature, we
 - compute the random indexing similarity between the essay and each group of primary keywords taken from parts of the essay's prompt
 - 2. assign the feature the lowest of these values
- A low feature value suggests that the essay may have an Incomplete Prompt Response error

- Motivation: Regular N-gram features have a problem
 - It is infrequent for the exact same useful phrase to occur frequently
 - May render useful phrases less useful

- Motivation: Regular N-gram features have a problem
 - It is infrequent for the exact same useful phrase to occur frequently
 - May render useful phrases less useful
- Solution: Construct aggregate versions of the word Ngram features

- Motivation: Regular N-gram features have a problem
 - It is infrequent for the exact same useful phrase to occur frequently
 - May render useful phrases less useful
- Solution: Construct aggregate versions of the word Ngram features

How?

 For each error type e_i, we create two aggregated word n-gram features, Aw+_i and Aw-_i

 For each error type e_i, we create two aggregated word n-gram features, Aw+_i and Aw-_i

> Aw+_i counts the number of word n-grams we believe indicate that the essay contains e_i

 For each error type e_i, we create two aggregated word n-gram features, Aw+_i and Aw-_i

> Aw+_i counts the number of word n-grams we believe indicate that the essay contains e_i

Aw-i counts the number of word n-grams we believe indicate that the essay does **not** contain ei

 For each error type e_i, we create two aggregated word n-gram features, Aw+_i and Aw-_i

> Aw+_i counts the number of word n-grams we believe indicate that the essay contains e_i

Aw-i counts the number of word n-grams we believe indicate that the essay does **not** contain ei

• To compute Aw+_i and Aw-_i, we need to create two sets of word n-grams for each error type e_i

 For each error type e_i, we create two aggregated word n-gram features, Aw+_i and Aw-_i

> Aw+_i counts the number of word n-grams we believe indicate that the essay contains e_i

Aw-i counts the number of word n-grams we believe indicate that the essay does **not** contain ei

- To compute Aw+_i and Aw-_i, we need to create two sets of word n-grams for each error type e_i
 - word n-grams whose presence suggest essay has e_i
 - word n-grams whose presence suggest essay doesn't have e

How to create these two sets?

How to create these two sets?

- For each error type e_i,
 - sort the list of all word n-gram features occurring at least 10 times in the training set by information gain
 - by inspecting the top 1000 features, manually create
 - a positive set
 - a negative set

How to create these two sets?

- For each error type e_i,
 - sort the list of all word n-gram features occurring at least 10 times in the training set by information gain
 - by inspecting the top 1000 features, manually create
 - a positive set
 - word n-grams whose presence suggest essay has e_i
 - a negative set
 - word n-grams whose presence suggest essay doesn't have e_i

May help identify the two minority error types,
 Missing Details and Writer Position

- May help identify the two minority error types,
 Missing Details and Writer Position
 - e.g., for Missing Details
 - positive set may contain phrases like "there is something" or "this statement"
 - negative set may contain words taken from an essay's prompt

Aggregated POS N-gram Features

- Computed in the same way as the aggregated word n-gram features, except that POS n-grams (n = 1, 2, 3 and 4) are used
 - Two sets, the positive set and the negative set, are created manually for each error type i

- For each sentence in an essay,
 - 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event

- For each sentence in an essay,
 - 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event

"They said they don't believe the prison system is outdated"

- For each sentence in an essay,
 - 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event

"They said they don't believe the prison system is outdated"

- frame: Statement
- frame element: they with the semantic role Speaker

- For each sentence in an essay,
 - 1. identify each semantic frame occurring in it as well as the associated frame elements using SEMAFOR
 - frame: describes an event mentioned in a sentence
 - frame element: person/object participating in the event

"They said they don't believe the prison system is outdated"

- frame: Statement
- frame element: they with the semantic role Speaker
- 2. create a frame-based feature by pairing the frame with the frame element and its role
 - Statement-Speaker-they

- After collecting all frame-based features, create aggregated frame-based features
 - Computed in the same way as aggregated word/POS ngram features, except that frame-based features are used
 - Two sets, the positive set and the negative set, are created manually for each error type i

- After collecting all frame-based features, create aggregated frame-based features
 - Computed in the same way as aggregated word/POS ngram features, except that frame-based features are used
 - Two sets, the positive set and the negative set, are created manually for each error type i
- May help identify Writer Position errors
 - e.g., positive set may contain Statement-Speaker-they
 - It tells us the writer is attributing the statement made to someone else

Features for Training the Error Identification Classifiers

- Two types of baseline features
 - Lemmatized n-grams
 - Random indexing features
- Five types of novel features
 - Misspelling feature
 - Keyword features
 - Aggregated word n-gram features
 - Aggregated POS n-gram features
 - Aggregated frame-based features

Plan for the Talk

- ✓ Corpus and Annotations
- ✓ Model for identifying thesis clarity errors
- ➤ Model for scoring thesis clarity
- Evaluation

Score Prediction

• Goal:

predict the thesis clarity score for an essay

Score Prediction

• Goal:

predict the thesis clarity score for an essay

Approach:

recast problem as a linear regression task

Score Prediction

Goal:

predict the thesis clarity score for an essay

Approach:

- recast problem as a linear regression task
- One training instance created from each training essay
 - "class" value: thesis clarity score
 - features: same as those used for error identification
 - learner: SVM^{light}

Plan for the Talk

- ✓ Corpus and Annotations
- ✓ Model for identifying thesis clarity errors
- ✓ Model for scoring thesis clarity
- **>** Evaluation

Evaluation

- Goal: evaluate our systems for
 - error identification
 - scoring
- 5-fold cross validation

Evaluation

- Goal: evaluate our systems for
 - error identification
 - scoring

Evaluation Metrics

- Recall, precision, micro F, and macro F aggregated over the 5 error types
 - Micro F: places more importance on frequent classes
 - Macro F: places equal importance on all classes

Results: Error Identification

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0

Results: Adding Misspelling Feature

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3

Results: Adding Misspelling Feature

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3

- small, insignificant improvements in micro and macro F
 - Though designed to improve Confusing Phrasing, it has more of a positive impact on Missing Details and Writer Position

Results: Adding Keyword Features

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7

Results: Adding Keyword Features

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7

- Significant gains in micro F; insignificant gains in macro F
 - due to large improvements in Incomplete Prompt Response and Relevance to Prompt

Results: Adding Aggregated Word n-grams

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4

Results: Adding Aggregated Word n-grams

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4

- Significant gains in macro F; insignificant gains in micro F
 - due to large improvements in Missing Details and Writer Position

Results: Adding Aggregated POS n-grams

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6

Results: Adding Aggregated POS n-grams

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6

- Significant gains in both micro and macro F
 - due to large improvements in Confusing Phrasing,
 Incomplete Prompt Response, and Missing Details

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6
+ Aggregated frames	33.6	54.4	41.4	37.6

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6
+ Aggregated frames	33.6	54.4	41.4	37.6

- Significant gains in macro F; insignificant gains in micro F
 - due to very large improvements in Missing Details and Writer Position

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6
+ Aggregated frames	33.6	54.4	41.4	37.6

 Full system improves the baseline by 13.3% in macro F and 10.3% in micro F

System	Prec.	Recall	Micro F	Macro F
Baseline	24.8	44.7	31.1	24.0
+ Misspelling feature	24.2	44.2	31.2	25.3
+ Keyword features	29.2	44.2	34.9	26.7
+ Aggregated word n-grams	28.5	49.6	35.5	31.4
+ Aggregated POS n-grams	34.2	49.6	40.4	34.6
+ Aggregated frames	33.6	54.4	41.4	37.6

- Full system improves the baseline by 13.3% in macro F and 10.3% in micro F
- No consistent pattern to how precision and recall changed as more features are added

Evaluation

- Goal: evaluate our systems for
 - error identification
 - scoring

• Define 3 evaluation metrics:

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$

measures frequency at which a system predicts the wrong score out of 7 possible scores

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$

(frequency of error)

$$S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i|$$

measures the average distance between a predicted score and a correct score

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$
 (frequency of error)

$$S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i|$$
 distinguishes near misses from far misses

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$

(frequency of error)

$$S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i|$$
 (average error distance)

$$S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2$$

measures average square of the distance between correct score and predicted score

Define 3 evaluation metrics:

$$S_1 = \frac{1}{N} \sum_{A_i \neq E_i} 1$$

(frequency of error)

$$S_2 = \frac{1}{N} \sum_{i=1}^{N} |A_i - E_i|$$
 (average error distance)

$$S_3 = \frac{1}{N} \sum_{i=1}^{N} (A_i - E_i)^2$$

prefer systems whose estimations are not too often far away from correct scores

Results: Scoring

System	S1	S2	S3
Baseline	.658	.517	.403

Results: Adding Misspelling Feature

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402

Results: Adding Misspelling Feature

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402

 small, insignificant improvements in scoring according to all 3 metrics

Results: Adding Keyword Features

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369

Results: Adding Keyword Features

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369

- S2's and S3's scores are improved significantly
- insignificant impact on S1's score

Results: Adding Aggregated Word n-grams

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369
+ Aggregated word n-grams	.651	.484	.374

Results: Adding Aggregated Word n-grams

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369
+ Aggregated word n-grams	.651	.484	.374

- S2's score is improved significantly
- insignificant impact on the other two metrics

Results: Adding the Remaining Features

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369
+ Aggregated word n-grams	.651	.484	.374
+ Aggregated POS n-grams	.671	.483	.377
+ Aggregated frames	.672	.486	.382

Results: Adding the Remaining Features

System	S1	S2	S3
Baseline	.658	.517	.403
+ Misspelling feature	.654	.515	.402
+ Keyword features	.663	.490	.369
+ Aggregated word n-grams	.651	.484	.374
+ Aggregated POS n-grams	.671	.483	.377
+ Aggregated frames	.672	.486	.382

 Adding aggregated POS n-grams and aggregated framebased features do not improve any scores

Summary

- Examined the problem of determining thesis clarity errors and scores in student essays
 - Proposed new features for use in these tasks
 - Lots of room for improvement
- Released the thesis clarity annotations