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Automated Essay Scoring

• Important educational application of NLP

• Related research on essay scoring

– Grammatical errors

– Coherence

– Thesis clarity

– Organization

– Prompt adherence
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What is Prompt Adherence?

• refers to how related an essay’s content is to 

the prompt for which it was written
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What is Prompt Adherence?

• refers to how related an essay’s content is to 

the prompt for which it was written

– An essay with a high prompt adherence score 

consistently remains on topic introduced by the 

prompt and is free of irrelevant digressions
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Goal

• Develop a model for scoring the prompt 

adherence of student essays
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Related Work on Prompt Adherence Scoring

• Off-topic sentence detection (Higgins et al., 2004)

• Off-topic essay detection (Higgins et al., 2006)

• Off-topic essay detection with short prompts

(Louis and Higgins, 2010)
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• Off-topic essay detection with short prompts
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Binary decision (off-topic/on-topic)
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Related Work on Prompt Adherence Scoring

• Off-topic sentence detection (Higgins et al., 2004)

• Off-topic essay detection (Higgins et al., 2006)

• Off-topic essay detection with short prompts

(Louis and Higgins, 2010)

Binary decision (off-topic/on-topic)

Knowledge-lean

– Features derived from semantic similarity measures

• Random indexing (RI) and Content Vector Analysis (CVA)
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What are the differences between   

our work and previous work?

10



11

What are the differences between   

our work and previous work?
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Task: 

Score can range from 1-4 points

Supervised prompt adherence scoring

Approach: 

Feature-rich
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• Corpus and Annotations

• Approach for scoring prompt adherence

• Evaluation

Plan for the Talk
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Plan for the Talk

�Corpus and Annotations

• Approach for scoring prompt adherence

• Evaluation
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Selecting a Corpus

• International Corpus of Learner English (ICLE)

– 4.5 million words in more than 6000 essays

– Written by university undergraduates who are 

learners of English as a foreign language

– Mostly (91%) argumentative writing topics

• Essays selected for annotation

– 830 argumentative essays from 13 prompts

– annotate each essay with its prompt adherence score
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Prompt Adherence Scoring Rubric

  4 – essay fully addresses the prompt and 

consistently stays on topic

  3 – essay mostly addresses the prompt or 

occasionally wanders off topic

  2 – essay does not fully address the prompt or 

consistently wanders off topic

  1 – essay does not address the prompt at all or is 

completely off topic

• Half-point increments (i.e., 1.5, 2.5, 3.5) allowed
15
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Inter-Annotator Agreement

• 707 of 830 essays scored by both annotators
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Inter-Annotator Agreement

• 707 of 830 essays scored by both annotators

• Perfect agreement on 38% of essays

• Scores within 0.5 points on 66% of essays

• Scores within 1.0 point on 89% of essays
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Inter-Annotator Agreement

• 707 of 830 essays scored by both annotators

• Perfect agreement on 38% of essays

• Scores within 0.5 points on 66% of essays

• Scores within 1.0 point on 89% of essays

• Whenever annotators disagree, use the average 

score rounded to the nearest half point
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Plan for the Talk

�Corpus and Annotations

�Approach for scoring prompt adherence

• Evaluation
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• recast problem as a linear regression task

• train one regressor per prompt

Approach for Scoring Prompt Adherence



21

• recast problem as a linear regression task

• train one regressor per prompt

– common problems students have writing essays for one 

prompt may not apply to essays written for another

Approach for Scoring Prompt Adherence
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• recast problem as a linear regression task

• train one regressor per prompt

– common problems students have writing essays for one 

prompt may not apply to essays written for another

• one training instance per training essay

– “class” value: prompt adherence score

– learner: LIBSVM

– features: 7 feature types

Approach for Scoring Prompt Adherence
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Features

• 7 types of features

– baseline features

– 6 types of new features
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Features

• 7 types of features

– baseline features

– 6 types of new features
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Baseline Features

• Features based on Random Indexing (RI)

– adapted from Higgins et al. (2004)
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Baseline Features

• Features based on Random Indexing (RI)

– adapted from Higgins et al. (2004)

• Random indexing

– “an efficient and scalable alternative to LSI” (Sahlgren, 

2005)

– generates a semantic similarity measure between any 

two words

– generalized to computing similarity between two 

groups of words (Higgins & Burstein, 2007)
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Why Random Indexing (RI)?

• May help find text in essay related to the prompt 

even if some of its words have been rephrased

– E.g., essay talks about “jail” while prompt has “prison”

• Train a RI model on the English Gigaword
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5 Random Indexing Features

• The entire essay’s similarity to the prompt

• The essay’s highest individual sentence’s similarity to 

the prompt

• The highest entire essay similarity to one of the 

prompt sentences

• The highest individual sentence similarity to an 

individual prompt sentence

• The essay’s similarity to a manually rewritten version 

of the prompt that excludes extraneous material
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Features

• 7 types of features

– baseline features

– 6 types of features
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1. Thesis Clarity Keyword Features
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1. Thesis Clarity Keyword Features

refers to how clearly an author explains the thesis of her essay
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• introduced in Persing & Ng (2013) for scoring the        

thesis clarity of an essay 

• generated based on thesis clarity keywords

1. Thesis Clarity Keyword Features

refers to how clearly an author explains the thesis of her essay
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What are Thesis Clarity Keywords?



34

What are Thesis Clarity Keywords?

• “important” words in a prompt

– important word: good word for a student to use when 

stating her thesis about the prompt
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How to Identify Keywords?
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How to Identify Keywords?

• By hand
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Hand-Selecting Keywords

• Hand-segment each multi-part prompt into parts

• For each part, hand-pick the most important (primary) 

and second most important (secondary) words that it 

would be good for a writer to use to address the part

The prison system is outdated. No civilized society 

should punish its criminals: it should rehabilitate them.
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Hand-Selecting Keywords

• Hand-segment each multi-part prompt into parts

• For each part, hand-pick the most important (primary) 

and second most important (secondary) words that it 

would be good for a writer to use to address the part

The prison system is outdated. No civilized society 

should punish its criminals: it should rehabilitate them.

Primary: rehabilitate

Secondary: society
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Designing Keyword Features

• Example: in one feature, we 

1. compute the random indexing similarity between 

the essay and each group of primary keywords 

taken from parts of the essay’s prompt 

2. assign the feature the lowest of these values
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Designing Keyword Features

• Example: in one feature, we

1. compute the random indexing similarity between 

the essay and each group of primary keywords 

taken from parts of the essay’s prompt 

2. assign the feature the lowest of these values

• A low feature value suggests that the student ignored 

the prompt component from which the value came
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Thesis Clarity Keyword Features

• Though these features were designed for scoring thesis 

clarity, some of them are useful for prompt adherence 

scoring
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2. Prompt Adherence Keyword Features

• Motivation: rather than relying on keywords for thesis 

clarity, why not hand-pick keywords for prompt 

adherence and create features from them?
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2. Prompt Adherence Keyword Features

• Rather than relying on keywords for thesis clarity, why 

not hand-pick keywords for prompt adherence and 

create features from them?
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An Illustrative Example

Marx once said that religion was the opium of the 

masses. If he was alive at the end of the 20th century, 
he would replace religion with television.
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An Illustrative Example

• This question suggests that students discuss whether 

television is analogous to religion in this way

Marx once said that religion was the opium of the 

masses. If he was alive at the end of the 20th century, 
he would replace religion with television.
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An Illustrative Example

• This question suggests that students discuss whether 

television is analogous to religion in this way

– prompt adherence keywords contain “religion”

– thesis clarity keywords do not contain “religion”

Marx once said that religion was the opium of the 

masses. If he was alive at the end of the 20th century, 
he would replace religion with television.
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An Illustrative Example

• This question suggests that students discuss whether 

television is analogous to religion in this way

– prompt adherence keywords contain “religion”

– thesis clarity keywords do not contain “religion”

– A thesis like “Television is bad” can be stated clearly without 

reference to “religion”

Marx once said that religion was the opium of the 

masses. If he was alive at the end of the 20th century, 
he would replace religion with television.
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An Illustrative Example

• This question suggests that students discuss whether 

television is analogous to religion in this way

– prompt adherence keywords contain “religion”

– thesis clarity keywords do not contain “religion”

– A thesis like “Television is bad” can be stated clearly without 

reference to “religion”

• essay with this thesis could have high thesis clarity score

– But low adherence score: Religion should be discussed

Marx once said that religion was the opium of the 

masses. If he was alive at the end of the 20th century, 
he would replace religion with television.
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Creating Features from Keywords

• Two types of features
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Creating Features from Keywords

• Two types of features

• For each prompt component,

1. take the RI similarity between the whole essay and  the 

component’s keywords

2. compute the fraction of the component’s keywords 

that appear in the essay
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3. LDA Topics

• Motivation: the features introduced so far have 

trouble identifying topics that are related to but not 

explicitly mentioned in the prompt
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3. LDA Topics

• Motivation: the features introduced so far have 

trouble identifying topics that are related to but not 

explicitly mentioned in the prompt

All armies should consist entirely of professional soldiers: 

there is no value in a system of military service
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3. LDA Topics

• Motivation: the features introduced so far have 

trouble identifying topics that are related to but not 

explicitly mentioned in the prompt

• An essay containing words like “peace”, “patriotism”, or 

“training” are probably not digressions and should not be 

penalized for discussing these topics

All armies should consist entirely of professional soldiers: 

there is no value in a system of military service
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3. LDA Topics

• Motivation: the features introduced so far have 

trouble identifying topics that are related to but not 

explicitly mentioned in the prompt

• An essay containing words like “peace”, “patriotism”, or 

“training” are probably not digressions and should not be 

penalized for discussing these topics

– But the various measures of keyword similarities might not 

notice that anything related to the prompt is discussed 

All armies should consist entirely of professional soldiers: 

there is no value in a system of military service
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3. LDA Topics

• Motivation: the features introduced so far have 

trouble identifying topics that are related to but not 

explicitly mentioned in the prompt

• An essay containing words like “peace”, “patriotism”, or 

“training” are probably not digressions and should not be 

penalized for discussing these topics

– But the various measures of keyword similarities might not 

notice that anything related to the prompt is discussed 

– this might have effects like lowering the RI similarity scores

All armies should consist entirely of professional soldiers: 

there is no value in a system of military service
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How to create LDA features?
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics

– Soft clustering of the words into 1000 sets
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics

– Soft clustering of the words into 1000 sets

• E.g., for the most frequent topic for the military prompt,      

the five most important words are: 

“man”, “military”, “service”, “pay”, and “war”
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics

– Model can tell us how much an essay spends on each topic

• E.g., 

5%Topic1000

……

15%Topic3

45%Topic2

25%Topic1
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics

3. construct 1000 features, one for each topic

• Feature value encodes how much of the essay was spent 

discussing the topic
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How to create LDA features?

For each prompt, 

1. collect all the essays in the ICLE corpus written in response 

to it, not just those we labeled

2. build an LDA of 1000 topics

3. construct 1000 features, one for each topic

• Feature value encodes how much of the essay was spent 

discussing the topic

E.g., if an essay written for the military prompt spends

55%“fully”, “count”, “ordinary”, “czech”, “day”

45%“man”, “military”, “service”, “pay”, “war”
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4. Manually Annotated LDA Topics

• Motivation: the regressor using LDA features may not be 

able to distinguish an infrequent topic that is adherent to 

the prompt and one that is an irrelevant digression
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4. Manually Annotated LDA Topics

• Motivation: the regressor using LDA features may not be 

able to distinguish an infrequent topic that is adherent to 

the prompt and one that is an irrelevant digression

– An infrequent topic may not appear enough in the training 

set for the regressor to make this judgment
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4. Manually Annotated LDA Topics

• Motivation: the regressor using LDA features may not be 

able to distinguish an infrequent topic that is adherent to 

the prompt and one that is an irrelevant digression

– An infrequent topic may not appear enough in the training 

set for the regressor to make this judgment

• Create manually annotated LDA features
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How to create Manually Annotated 

LDA Features?
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How to create Manually Annotated 

LDA Features?

1. For each set of essays written for a given prompt, build an 

LDA of 100 topics
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How to create Manually Annotated 

LDA Features?

1. For each set of essays written for a given prompt, build an 

LDA of 100 topics

2. For each topic, inspect its top 10 words and hand-annotate 

it with a number from 0 to 5 representing how likely it is 

that the topic is adherent to the prompt

• higher score � more adherent
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How to create Manually Annotated 

LDA Features?

1. For each set of essays written for a given prompt, build an 

LDA of 100 topics

2. For each topic, inspect its top 10 words and hand-annotate 

it with a number from 0 to 5 representing how likely it is 

that the topic is adherent to the prompt

• higher score � more adherent

3. For each essay, create 10 features from the labeled topics
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10 Features from the labeled topics

• Five features encode the sum of contributions to an essay 

of topics annotated with the number 0, 1, …, 4, resp.

• Five features encode the sum of contributions to an essay 

of topics annotated with a number ≥ 1, ≥ 2, …, ≥ 5 resp.
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10 Features from the labeled topics

• Five features encode the sum of contributions to an essay 

of topics annotated with the number 0, 1, …, 4, resp.

• Five features encode the sum of contributions to an essay 

of topics annotated with a number ≥ 1, ≥ 2, …, ≥ 5 resp.

• These features should give the regressor a better idea of 

how much of an essay is composed of prompt-related vs. 

prompt-unrelated discussions
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5. Predicted Thesis Clarity Errors

• In previous work on thesis clarity essay scoring  

(Persing & Ng, 2013), we

– score an essay w.r.t. the clarity of its thesis

– determine which type(s) of errors an essay contains that 

detract from the clarity of its thesis
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5 Types of Thesis Clarity Errors

• Confusing Phrasing

• Missing Details

• Writer Position

• Incomplete Prompt Response

• Relevance to Prompt
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• Confusing Phrasing

• Missing Details

• Writer Position

• Incomplete Prompt Response

• Relevance to Prompt

5 Types of Thesis Clarity Errors
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Features based on Error Types

• Introduced features for prompt adherence scoring 

that encode the error types an essay contains
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Features based on Error Types

• Introduced features for prompt adherence scoring 

that encode the error types an essay contains

– Though each essay was manually annotated with the 

errors it contains, in a realistic setting we won’t have 

access to these manual annotations
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Features based on Error Types

• Introduced features for prompt adherence scoring 

that encode the error types an essay contains

– Though each essay was manually annotated with the 

errors it contains, in a realistic setting we won’t have 

access to these manual annotations

• Predict which of the 5 error types an essay contains

– Recast as a multi-label classification task
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Creating Predicted “Error Type” Features

• Add a binary feature indicating the presence or 

absence of each error type
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6. N-gram features

• Can capture useful words and phrases related to a 

prompt

• 10K lemmatized unigrams, bigrams, and trigrams

– selected according to information gain 
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Summary of Features

• Baseline features

– Random indexing features

• Six types of features

– Lemmatized n-grams

– Thesis clarity keyword features

– Prompt adherence keyword features

– LDA topics

– Manually annotated LDA topics

– Predicted thesis clarity errors
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�Corpus and Annotations

�Model for scoring prompt adherence

�Evaluation

Plan for the Talk

82
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Evaluation

• Goal: evaluate our system for prompt 

adherence scoring

• 5-fold cross validation
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Scoring Metrics

• Define 4 evaluation metrics

84
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• Define 4 evaluation metrics

85

probability that a system 

predicts the wrong score out 

of 7 possible scores (1, 1.5, 2, 

2.5, 3, 3.5, 4)

Scoring Metrics
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• Define 4 evaluation metrics

86

probability that a system 

predicts the wrong score out 

of 7 possible scores (1, 1.5, 2, 

2.5, 3, 3.5, 4)annotated 
scores

estimated 
scores

Scoring Metrics
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Scoring Metrics

• Define 4 evaluation metrics

87

(probability of error)

average absolute error

annotated 
scores

estimated 
scores
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Scoring Metrics

• Define 4 evaluation metrics

88

(probability of error)

distinguishes near misses from 

far misses

annotated 
scores

estimated 
scores
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Scoring Metrics

• Define 4 evaluation metrics

89

(probability of error)

(average absolute error)

average squared error
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Scoring Metrics

• Define 4 evaluation metrics

90

(probability of error)

(average absolute error)

prefer systems whose 

estimations are not too often 

far away from correct scores
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Scoring Metrics

• Define 4 evaluation metrics

91

(probability of error)

(average absolute error)

(average squared error)

PC: Pearson’s correlation coefficient between Ai and Ei
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Scoring Metrics
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(probability of error)

(average absolute error)

(average squared error)

PC: Pearson’s correlation coefficient between Ai and Ei

S1, S2, S3

• error metrics

• smaller value is better



93

Scoring Metrics

• Define 4 evaluation metrics

93

(probability of error)

(average absolute error)

(average squared error)

PC: Pearson’s correlation coefficient between Ai and Ei

S1, S2, S3

• error metrics

• smaller value is better

PC

• correlation coefficient

• larger value is better
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Regressor Training

• SVM regressors are trained to maximize performance 

w.r.t. each scoring metric by tuning the regularization 

parameter on held-out development data
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Results

.233

PCSystem S1 S2 S3

Baseline .517 .368 .234

+ Misspelling 

feature

.654 .515 .402

+ Keyword 

features

.663 .490 .369

+ Aggregated 

word n-grams

.651 .484 .374

+ Aggregated 

POS n-grams

.671 .483 .377

+ Aggregated 

frames

.672 .486 .382
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Results
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Results

.360

.233

PCSystem S1 S2 S3
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+ Keyword 

features
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• Improvements w.r.t. all four scoring metrics
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• Improvements w.r.t. all four scoring metrics
• Improvements w.r.t. all four scoring metrics

Results

.360

.233

PCSystem S1 S2 S3

Baseline .517 .368 .234

Our system .488 .348 .197

+ Keyword 

features

.663 .490 .369

+ Aggregated 

word n-grams

.651 .484 .374

+ Aggregated 

POS n-grams

.671 .483 .377

+ Aggregated 

frames

.672 .486 .382
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Significant differences
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Feature Ablation

• Goal: examine how much impact each of the feature 

types has on our system’s performance w.r.t. each 

scoring metric

– Train a regressor on all but one type of features
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Feature Ablation Results

PA 
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Feature Ablation Results
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• Relative importance of features does not always remain 

consistent if we measure performance in different ways
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• But… there are feature that tend to be more important than 

the others in the presence of other features
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• most important: TC keywords
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• most important: TC keywords, n-grams
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• most important: TC keywords, n-grams, annotated LDA topics
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• most important: TC keywords, n-grams, annotated LDA topics

• middling important: RI
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• most important: TC keywords, n-grams, annotated LDA topics

• middling important: RI, unlabeled LDA topics
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• most important: TC keywords, n-grams, annotated LDA topics

• middling important: RI, unlabeled LDA topics

• least important: predicted TC errors
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• most important: TC keywords, n-grams, annotated LDA topics

• middling important: RI, unlabeled LDA topics

• least important: predicted TC errors, PA keywords
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Summary

• Examined the problem of prompt adherence 

scoring in student essays

– feature-rich approach

• Released the annotations

– prompt adherence scores

– prompt adherence keywords

– manually annotated LDA topics


