Human Language Technology Research Institute

Sieve-Based Entity Linking for the Biomedical Domain

Jennifer D'Souza and Vincent Ng
Human Language Technology Research Institute
University of Texas at Dallas

Entity Linking

- Given an entity mention in a text document and a knowledge base (KB) of entities,
 - find the entity in the KB the entity mention refers to or
 - determine that such entity does not exist in the KB

Entity Linking

- challenging because
 - mentions with the same word/phrase can refer to different entities
 - mentions with different words/phrases can refer to the same entity
- known as normalization for the biomedical domain
 - Map a word/phrase in a document to a concept in an ontology after disambiguating potential ambiguous words/phrases
- Our goal: normalize disorder mentions

Plan for the Talk

- Datasets
- Multi-pass sieve approach to normalization
- Evaluation

Plan for the Talk

- Datasets
- Multi-pass sieve approach to normalization
- Evaluation

Datasets

- Two standard evaluation datasets from two genres
- The ShARe eHealth Challenge corpus (Pradhan et al., 2013)
 - 298 de-identified clinical reports from US Intensive Care
- The NCBI disease corpus (Dogan et al., 2014)
 - 793 biomedical abstracts

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

	ShARe (Clinical reports)	NCBI (Biomedical abstracts)
Documents	298	792
Disorder mentions	11167	6885
Mentions with ID	7793	6885
ID-less mentions	3374	0

Ontologies

- ShARe: UMLS Metathesaurus (128,430 disorder concepts)
- NCBI: MEDIC (11,915 disorder concepts)

Ontology Concepts

- Each concept in these two ontologies is described by:
 - the concept ID
 - the list of terms commonly used to refer to the concept
 - its definition
 - ...

Ontology Concepts

- Each concept in the two ontologies is described by:
 - the concept ID
 - the list of terms commonly used to refer to the concept
 - its definition
 - •

Our multi-pass sieve approach only uses this information

Example Ontology Concept

 preprocessed the ontologies so that for each concept we retain only the concept ID and the associated terms

UMLS Metathesaurus

C0000731 | swollen abdomen | abdominal distension | abdomen distended | abdominal distention | abdominal swelling

NCBI

D008288 | Malaria | Fever, Marsh | Fever, Remittent | Infection, Plasmodium | MALS | Plasmodium Infection | Remittent Fever

Example Ontology Concept

- preprocessed the ontologies so that for each concept we retain only the concept ID and the associated terms
- UMLS Metathesaurus

C0000731 | swollen abdomen | abdominal distension | abdomen distended | abdominal distention | abdominal swelling

NCBI

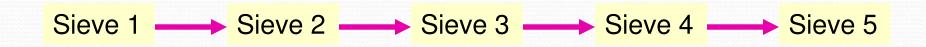
D008288 | Malaria | Fever, Marsh | Fever, Remittent | Infection, Plasmodium | MALS | Plasmodium Infection | Remittent Fever

Example Ontology Concept

- preprocessed the ontologies so that for each concept we retain only the concept ID and the associated terms
- UMLS Metathesaurus

C0000731 | swollen abdomen | abdominal distension | abdomen distended | abdominal distention | abdominal swelling

NCBI


D008288 | Malaria | Fever, Marsh | Fever, Remittent | Infection, Plasmodium | MALS | Plasmodium Infection | Remittent Fever

Plan for the Talk

- Datasets
- Multi-pass sieve approach to normalization
- Evaluation

Overview of the Sieve Approach

- A sieve is composed of one or more heuristic rules
 - In the context of normalization, each rule normalizes (i.e., assigns a concept ID) to a disorder mention in a document
- Sieves are ordered as a pipeline, in decreasing order of precision

- Later sieves can exploit decisions made by earlier sieves
 - Cannot undo earlier mistakes: errors can propagate

Applying Sieves for Normalization

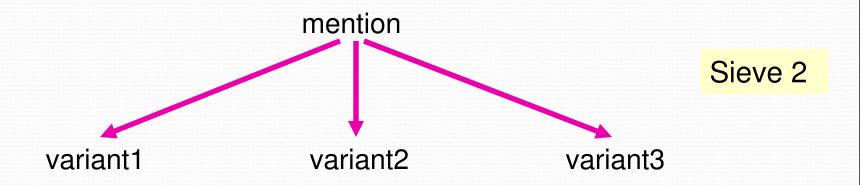
- The normalizer makes multiple passes over the mentions in a document
 - In the i-th pass, it uses only the rules in the i-th sieve for normalization

Applying Sieves for Normalization

- The normalizer makes multiple passes over the mentions in a document
 - In the i-th pass, it uses only the rules in the i-th sieve for normalization
 - If the i-th sieve cannot normalize a mention unambiguously (i.e., the sieve normalizes it to more than one concept in the ontology), the sieve will leave it unnormalized

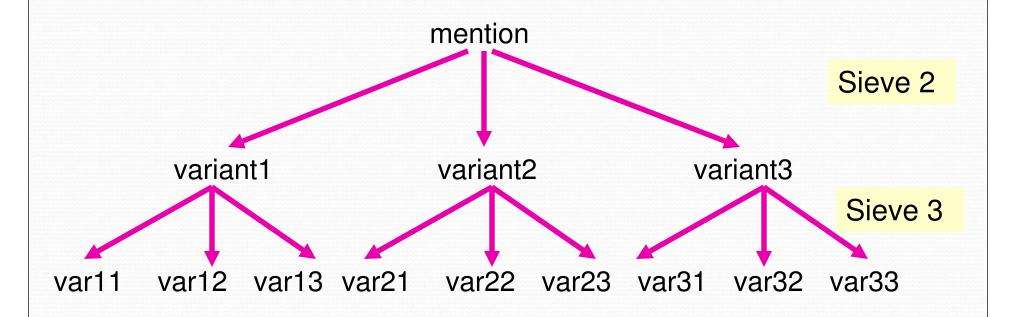
Applying Sieves for Normalization

- The normalizer makes multiple passes over the mentions in a document
 - In the i-th pass, it uses only the rules in the i-th sieve for normalization
 - If the i-th sieve cannot normalize a mention unambiguously (i.e., the sieve normalizes it to more than one concept in the ontology), the sieve will leave it unnormalized
 - If a mention is normalized, it will be added to the list of terms associated with the ontology concept to which it's normalized
 - so later sieves can exploit the decisions made by earlier sieves
 - but earlier normalization decisions cannot be overridden later


Ten Sieves for Normalization

General idea

mention


- Sieve 1: mention has exact match with any concept terms?
 - If yes, link mention to the concept associated with the term

If no, the next sieve creates variants

- Does any of these variants have an exact match with any concept terms?
 - If yes, link mention to the concept associated with the term

If no, the next sieve creates variants

- Does any of these new variants have an exact match with any concept terms?
 - If yes, link mention to the concept associated with the term

If no, the process repeats

 The next sieve generates more lexico-syntactic variants for each variant generated by the previous sieve

Sieve 1: Exact Match

 Performs exact match of the given disorder mention with the concept terms

Sieve 2: Abbreviation Expansion

 Variants are generated by expanding abbreviated disorder mentions

Sieve 3: Word Reordering

- Variants of a disorder mention are generated by
 - replacing any preposition(s) with other prepositions
 - e.g., "changes on ekg" → "changes in ekg"
 - dropping a preposition and swapping substrings surrounding it
 - e.g., "changes on ekg" → "ekg changes"

Sieve 4: Numbers Replacement

- Variants are generated by replacing each number in the mention with other forms of the same number
 - e.g., "three vessel disease"
 - → "3 vessel disease", "iii vessel disease", "triple vessel disease"

Sieve 5: Hyphenation

- Variants are generated by hyphenation or dehypenation
- Hyphenation
 - consecutive words are hyphenated one pair at a time
 - e.g., "ventilator associated pneumonia"
 - → "ventilator-associated pneumonia", "ventilator associated-pneumonia"
- Dehypenation
 - hyphens are removed one at a time
 - e.g., "saethre-chotzen syndrome" → "saethre chotzen syndrome"

Sieve 6: Suffixation

- Variants are generated by applying suffixation patterns manually derived from the training data
 - e.g., "infectious source" → "source of infectious" (Sieve 3)
 - → "source of infection"

Sieve 7: Disorder Synonym Replacement

- Variants are generated by
 - replacing the disorder term with its synonyms
 - e.g., "presyncopal events"
 - → "presyncopal disorders", "presyncopal episodes", ...
 - synonyms are manually compiled based on the training data

Sieve 8: Stemming

 Variants are generated by stemming the mention using the Porter stemmer

Sieve 9: Composite Mentions and Terms

- A disorder mention or concept term is composite if it contains more than one concept term
- To increase the likelihood of an exact match, we split each composite mention/concept term into its constituent mentions/concept terms before matching
 - E.g., "common eye and/or eyelid symptom"
 - → "common eye symptom", "common eyelid symptom"

Sieve 10: Partial Match

- Rules are different for the two datasets
 - in part because NCBI has no ID-less disorder mentions
- For NCBI, a mention is normalized to the concept containing a term it shares most tokens with

- For ShARe, a mention m is normalized to a concept c if
 - all tokens in *m* appear in one of the terms in *c* or vice versa
 - m has more than 3 tokens and has an exact match with a term in c after dropping its 1st token or 2nd to last token; or
 - c has a term with three tokens and m has an exact match with this term after dropping its 1st or middle token; or

Plan for the Talk

- Datasets
- Multi-pass sieve approach to normalization
- Evaluation

Experimental Setup

- Datasets
 - ShARe (Pradhan et al., 2013)
 - 199 clinical reports for training, 99 reports for testing
 - NCBI (Dogan et al., 2014)
 - 693 biomedical abstracts for training, 100 abstracts for testing
- Evaluation measure: Accuracy
 - Percentage of gold mentions correctly normalized

Baseline Systems: Supervised Approach

- DNorm (Leaman et al., 2013)
 - best result to date on NCBI

- Ghiasvand and Kate (2014)
 - best result to date on ShARe

Results: Baseline Systems

	ShARe	NCBI	
BASELINE	89.5	82.2	

	ShARe	NCBI
BASELINE	89.5	82.2
OUR SYSTEM		
Sieve 1 (Exact Match)	84.04	69.71
+ Sieve 2 (Abbreviation)	86.13	74.17
+ Sieve 3 (Word Reordering)	86.40	74.27
+ Sieve 4 (Numbers Replacement)	86.45	75.00
+ Sieve 5 (Hyphenation)	86.62	75.21
+ Sieve 6 (Suffixation)	88.11	75.62
+ Sieve 7 (Synonyms Replacement)	88.45	76.56
+ Sieve 8 (Stemming)	90.47	77.70
+ Sieve 9 (Composite Mentions/Terms)	90.53	78.00
+ Sieve 10 (Partial Match)	90.75	84.65

	ShARe	NCBI
BASELINE	89.5	82.2
OUR SYSTEM		
Sieve 1 (Exact Match)	84.04	69.71
+ Sieve 2 (Abbreviation)	86.13	74.17
+ Sieve 3 (Word Reordering)	86.40	74.27
+ Sieve 4 (Numbers Replacement)	86.45	75.00
+ Sieve 5 (Hyphenation)	86.62	75.21
+ Sieve 6 (Suffixation)	88.11	75.62
+ Sieve 7 (Synonyms Replacement)	88.45	76.56
+ Sieve 8 (Stemming)	90.47	77.70
+ Sieve 9 (Composite Mentions/Terms)	90.53	78.00
+ Sieve 10 (Partial Match)	90.75	84.65

	ShARe	NCBI
BASELINE	89.5	82.2
OUR SYSTEM		
Sieve 1 (Exact Match)	84.04	69.71
+ Sieve 2 (Abbreviation)	86.13	74.17
+ Sieve 3 (Word Reordering)	86.40	74.27
+ Sieve 4 (Numbers Replacement)	86.45	75.00
+ Sieve 5 (Hyphenation)	86.62	75.21
+ Sieve 6 (Suffixation)	88.11	75.62
+ Sieve 7 (Synonyms Replacement)	88.45	76.56
+ Sieve 8 (Stemming)	90.47	77.70
+ Sieve 9 (Composite Mentions/Terms)	90.53	78.00
+ Sieve 10 (Partial Match)	90.75	84.65

	ShARe	NCBI
BASELINE	89.5	82.2
OUR SYSTEM		
Sieve 1 (Exact Match)	84.04	69.71
+ Sieve 2 (Abbreviation)	86.13	74.17
+ Sieve 3 (Word Reordering)	86.40	74.27
+ Sieve 4 (Numbers Replacement)	86.45	75.00
+ Sieve 5 (Hyphenation)	86.62	75.21
+ Sieve 6 (Suffixation)	88.11	75.62
+ Sieve 7 (Synonyms Replacement)	88.45	76.56
+ Sieve 8 (Stemming)	90.47	77.70
+ Sieve 9 (Composite Mentions/Terms)	90.53	78.00
+ Sieve 10 (Partial Match)	90.75	84.65

	ShARe	NCBI
BASELINE	89.5	82.2
OUR SYSTEM		
Sieve 1 (Exact Match)	84.04	69.71
+ Sieve 2 (Abbreviation)	86.13	74.17
+ Sieve 3 (Word Reordering)	86.40	74.27
+ Sieve 4 (Numbers Replacement)	86.45	75.00
+ Sieve 5 (Hyphenation)	86.62	75.21
+ Sieve 6 (Suffixation)	88.11	75.62
+ Sieve 7 (Synonyms Replacement)	88.45	76.56
+ Sieve 8 (Stemming)	90.47	77.70
+ Sieve 9 (Composite Mentions/Terms)	90.53	78.00
+ Sieve 10 (Partial Match)	90.75	84.65

Two Major Sources of Error

- occurs when a mention is mapped to more than one concept in the Partial Match sieve
 - E.g., aspiration → pulmonary aspiration, aspiration pneumonia
- accounts for 11-13% of the errors
- ambiguity arose typically when a shortened form of the entity was used (e.g., when the mention is anaphoric)
 - can be addressed by employing a coreference resolver to find its full name, and normalize the full name instead

Two Major Sources of Error

- occurs when a disorder mention's string is so lexically dissimilar with the concept terms that none of our heuristics can syntactically transform it into any of them
- accounts for 64-71% of the errors
- Additional information is needed for normalization
 - E.g., query Wikipedia for the mention's alternate names

Summary

- Presented a simple, modular approach to normalizing disorder mentions, the multi-pass sieve approach
- Achieved state-of-the-art normalization results on two standard datasets
- Released the source code of our system